欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (1): 19-29.doi: 10.3724/SP.J.1006.2021.01050

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

过表达TaJRL53基因提高了小麦赤霉病抗性

陈同睿(), 罗艳君, 赵潘婷, 贾海燕*(), 马正强   

  1. 南京农业大学农学院/作物遗传与种质创新国家重点实验室/江苏省现代作物生产协同创新中心, 江苏南京 210095
  • 收稿日期:2020-06-17 接受日期:2020-09-13 出版日期:2021-01-12 网络出版日期:2020-09-30
  • 通讯作者: 贾海燕
  • 作者简介:E-mail: 2017101089@njau.edu.cn
  • 基金资助:
    国家重点研发计划项目(2016YFD0101004)

Overexpression of TaJRL53 enhances the Fusarium head blight resistance in wheat

CHEN Tong-Rui(), LUO Yan-Jun, ZHAO Pan-Ting, JIA Hai-Yan*(), MA Zheng-Qiang   

  1. College of Agriculture, Nanjing Agricultural University / State Key Laboratory for Crop Genetics and Germplasm Enhancement / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, Jiangsu, China
  • Received:2020-06-17 Accepted:2020-09-13 Published:2021-01-12 Published online:2020-09-30
  • Contact: JIA Hai-Yan
  • Supported by:
    National Key Research and Development Program of China(2016YFD0101004)

摘要:

Jacalin-related lectins (JRLs)是一种含有Jacalin结构域的植物凝集素, 在植物应对生物胁迫和非生物胁迫过程中发挥重要作用。根据其糖结合特性被划分为半乳糖特异性JRL (gJRLs)和甘露糖或葡萄糖特异性JRL (mJRLs)两类。前期研究表明普通小麦TaJRL53编码一个具有Jacalin结构域和Dirigent结构域的蛋白, 并能在赤霉菌的诱导下上调表达。由赤霉菌侵染引起的小麦赤霉病是一种毁灭性的病害, 它不仅能够导致大幅度减产, 而且使感病的麦粒品质下降。受真菌毒素污染的籽粒, 严重影响人畜健康。为分析该基因在抗赤霉病方面的作用, 本研究利用 VIGS系统在小麦中沉默TaJRL53, 导致了其对赤霉病的抗性减弱。通过基因枪的方法将该基因的过量表达载体导入到感赤霉病小麦品种中, 增强了赤霉病抗性, 其病小穗数, 病轴长都明显缩短。在赤霉菌侵染后, ROS合成途径相关基因、JA信号通路中的主要标志基因、JA合成基因及病程相关蛋白基因在TaJRL53过量表达的转基因植株中明显高于它们在野生型中的表达量, 因此推测TaJRL53提高小麦赤霉病抗性可能跟ROS和JA合成, JA信号转导途径有关。本研究增进了对小麦JRLs家族基因功能的了解, 为解析TaJRL53抗赤霉病机制奠定了基础。

关键词: 小麦, Jacalin-related lectins, 赤霉病抗性, ROS, JA信号通路

Abstract:

Jacalin-related lectins (JRLs) are a group of plant lectins with jacalin protein domain, which play important roles during plant response to biotic and abiotic stress. According their carbohydrate binding specificities, the JRLs were described as two types: galactose-binding acalins (gJRLs) and mannose-binding jacalins (mJRLs). Previous studies have shown that TaJRL53 encodes a protein with Jacalin and Dirigent domains and can be up-regulated by Fusarium graminearum infection. Wheat FHB induced by this pathogen is a disastrous disease, which not only reduces the grain yield, but also contains deoxynivalenol and other toxins, which seriously affect the health of human and livestock. To dissect the gene’s function in FHB resistance, we silenced and overexpressed the TaJRL53 in wheat respectively. As a result, attenuating TaJRL53 increased susceptibility to Fusarium graminearum. And susceptible wheat transformed with TaJRL53 over-expression showed higher Fusarium head blight resistance, the number of diseased spikelets (NDS) and length of diseased spike rachis (LDR) of transgenics wheat with TaJRL53 overexpression were significantly reduced than those of wild type. After Fusarium graminearum infection, the expression of ROS synthesis pathway, JA synthesis and signaling pathways marker genes, and disease related genes in TaJRL53 over-expression transgenic plants were higher than those in non-transgenic control. These results suggest that TaJRL53 enhanced the FHB resistance in wheat through regulating ROS synthesis pathway and JA signal transduction pathways. This study enhanced the understanding of wheat JRLs family genes’ function and laid a foundation for the mechanism dissection of TaJRL53 resistant to FHB in wheat.

Key words: wheat, Jacalin-related lectins, FHB resistance, ROS, JA pathway

图1

TaJRL53过量表达载体结构图"

图2

TaJRL53组织表达特异性分析 A: 苗期; B: 开花期。标尺为50 μm。"

图3

TaJRL53-GFP融合蛋白在洋葱表皮细胞中的表达"

图4

TaJRL53沉默后穗部的赤霉菌抗性 A: 涂抹病毒后TaJRL53在穗部的表达; B病小穗数; C: 病轴长; D: 穗部病症。图B和C中括号里的数值表示调查的样本数。*, ***分别表示在P < 0.05和P < 0.001水平的差异。"

图5

T0代转基因植株的PCR鉴定(A)和TaJRL53的表达水平(B) M: 分子量marker; 1~6: 以Bobwhite为受体的转基因植株; 7: 以PH691为受体的转基因植株; Ph: PH691; Bob: Bobwhite; H: 水对照; P: 阳性对照;"

图6

T1代转TaJRL53基因植株的抗病表现 A: 接种赤霉菌的叶片; B: 病斑面积; C: 接种赤霉菌的穗部; D: 病小穗数; E: 病轴长。1~5: 以Bobwhite为受体的转基因植株; 7: 以Ph691为受体的转基因植株。图B、D和E中括号里的数值表示统计的样本数。*、**和***分别表示在P < 0.05、P < 0.01和P < 0.001水平差异显著。"

图7

抗病信号途径中标志基因的表达 A~C: JA信号途径的标志基因; D, H, I: 病程相关基因; E, F: ROS合成途径相关基因; G: 活性氧运输相关基因; J~L: SA信号途径相关基因; M, N: SA合成相关基因; O: 木质素合成基因; Bob: Bobwhite; 1~4: Bobwhite为受体的转基因植株; *和**分别表示在P < 0.05和P < 0.01水平差异显著。"

[1] Chisholm S T, Coaker G, Day B, Staskawicz B J. Host-microbe interactions: shaping the evolution of the plant immune response. Cell, 2006,124:803-814.
doi: 10.1016/j.cell.2006.02.008 pmid: 16497589
[2] Jones J D, Dangl J L. The plant immune system. Nature, 2006,444:323-329.
pmid: 17108957
[3] 李圣军. 世界小麦产量格局及演变分析. 粮食问题研究, 2017, (6):9-15.
Li S J. Analysis of world wheat production, marketing pattern and evolution. Grain Issues Res, 2017, (6):9-15 (in Chinese).
[4] Gilbert J, Tekauz A. Review: recent developments in research on fusarium head blight of wheat in Canada. Can J Plant Pathol, 2000,22:1-8.
doi: 10.1080/07060660009501155
[5] Goswami R S, Kistler H C. Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol, 2010,5:515-525.
pmid: 20565626
[6] Song M, Xu W Q, Xiang Y, Jia H Y, Zhang L X, Ma Z Q. Association of jacalin-related lectins with wheat responses to stresses revealed by transcriptional profiling. Plant Mol Biol, 2014,84:95-110.
doi: 10.1007/s11103-013-0121-5
[7] Jiang S Y, Ma Z, Ramachandran S. Evolutionary history and stress regulation of the lectin superfamily in higher plants. BMC Evol Biol, 2010,10:79.
doi: 10.1186/1471-2148-10-79 pmid: 20236552
[8] Van Damme E J M, Lannoo N, Peumans W J. Plant lectins. Adv Bot Res, 2008,48:107-209.
[9] 徐文琦. 小麦JRL凝集素基因的表达及TaJRL2.1的功能分析. 南京农业大学博士学位论文, 江苏南京, 2014.
Xu W Q. Expression and Function Analysis of TaJRL2.1 in Wheat. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2014 (in Chinese with English abstract).
[10] Azarkan M, Feller G, Vandenameele J, Herman R, El Mahyaoui R, auvage E, Vanden Broeck A, Matagne A, Charlier P, Kerff F. Biochemical and structural characterization of a mannose binding jacalin-related lectin with two-sugar binding sites from pineapple (Ananas comosus) stem. Sci Rep, 2018,8:11508.
pmid: 30065388
[11] Raval S, Gowda S B, Singh D D, Chandra N R. A database analysis of jacalin-like lectins: sequence-structure-function relationships. Glycobiology, 2004,14:1247-1263.
doi: 10.1093/glycob/cwh140 pmid: 15329359
[12] Ma Q H. Monocot chimeric jacalins: a novel sub family of plant lectins. Crit Rev Biotechnol, 2014,34:300-306.
doi: 10.3109/07388551.2013.793650 pmid: 23886351
[13] Esch L, Schaffrath U. An update on jacalin-like lectins and their role in pant defense. Int J Mol Sci, 2017,18:1592-1602.
doi: 10.3390/ijms18071592
[14] Ye X Y, Ng T B, Tsang P W, Wang J. Isolation of a homodimeric lectin with antifungal and antiviral activities from red kidney bean (Phaseolus vulgaris) seeds. J Protein Chem, 2001,20:367-375.
doi: 10.1023/a:1012276619686 pmid: 11732688
[15] Desclos-Theveniau M, Arnaud D, Huang T Y, Lin G J, Chen W Y, Lin Y C, Zimmerli L. The Arabidopsis lectin receptor kinase LecRK-V.5 represses stomatal immunity induced by Pseudomonas syringae pv. tomato DC3000. PLoS Pathog, 2012,8:e1002513.
doi: 10.1371/journal.ppat.1002513 pmid: 22346749
[16] Singh P, Kuo Y C, Mishra S, Tsai C H, Chen C C, Chen C W, Desclos-Theveniau M, Chu P W, Schulze B, Chinchilla D, Boller T, Zimmerli L. The lectin receptor Kinase-VI.2 is required for priming and positively regulates Arabidopsis pattern-triggered immunity. Plant Cell, 2012,24:1256-1270.
doi: 10.1105/tpc.112.095778
[17] Yamaji Y, Maejima K, Komatsu K, Shiraishi T, Okano Y, Himeno M, Sugawara K, Neriya Y, Minato N, Miura C, Hashimoto M, Namba S. Lectin-mediated resistance impairs plant virus infection at the cellular level. Plant Cell, 2012,24:778-793.
pmid: 22307853
[18] Sugawara K, Shiraishi T, Yoshida T, Fujita N, Netsu O, Yamaji Y, Namba S. A replicase of Potato Virus X acts as the resistance-breaking determinant for JAX1-mediated resistance. Mol Plant Microbe, 2013,26:1106-1129.
doi: 10.1094/MPMI-04-13-0094-R
[19] Hwang I S, Hwang B K. The pepper mannose-binding lectin gene CaMBL1 is required to regulate cell death and defense responses to microbial pathogens. Plant Physiol, 2011,155:447-463.
pmid: 21205632
[20] Miya A, Albert P, Shinya T, Desak Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci USA, 2007,104:19613-19618.
[21] Wan J, Zhang X C, Neece D, Ramonell K M, Clough S, Kim S Y, Stacey M G, Stacey G. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell, 2008,20:471-481.
[22] Chisholm S T, Mahajan S K, Whitham S A, Yamamoto M L, Carrington J C. Cloning of the Arabidopsis RTM1 gene, which controls restriction of long-distance movement of tobacco etch virus. Proc Natl Acad Sci USA, 2001,97:489-494.
pmid: 10618445
[23] Chisholm S T, Parra M A, Anderberg R J, Carrington J C. Arabidopsis RTM1 and RTM2 genes function in phloem to restrict long-distance movement of tobacco etch virus. Plant Physiol, 2001,127:1667-1675.
pmid: 11743111
[24] Cosson P, Sofer L, Schurdi-Levraud V, Revers F. A member of a new plant gene family encoding a Meprin and TRAF homology (MATH) domain-containing protein is involved in restriction of long distance movement of plant viruses. Plant Signal Behave, 2010,5:1321-1323.
[25] Nagano A J, Fukao Y, Fujiwara M, Nishimura M, Hara- Nishimura I. Antagonistic jacalin-related lectins regulate the size of ER body-type β-glucosidase complexes in Arabidopsis thaliana. Plant Cell Physiol, 2008,49:969-980.
pmid: 18467340
[26] Weidenbach D, Esch L, Möller C, Hensel G, Kumlehn J, Höfle C, Hückelhoven R, Schaffrath U. Polarized defense against fungal pathogens is mediated by the jacalin-related lectin domain of modular Poaceae-specific proteins. Mol Plant, 2016,9:514-527.
doi: 10.1016/j.molp.2015.12.009 pmid: 26708413
[27] Han Y, Song L, Peng C L, Liu X, Liu L H, Zhang Y H, Wang W Z, Zhou J, Wang S H, Ebbole D, Wang Z H, Lu G D. A Magnaporthe chitinase interacts with a rice jacalin-related lectin to promote host colonization. Plant Physiol, 2019,179:1416-1430.
doi: 10.1104/pp.18.01594 pmid: 30696749
[28] Xiang Y, Song M, Wei Z Y, Tong J H, Zhang L X, Xiao L T, Ma Z Q, Wang Y. A jacalin-related lectin-like gene in wheat is a component of the plant defence system. J Exp Bot, 2011,62:5471-5483.
doi: 10.1093/jxb/err226 pmid: 21862481
[29] Goriach J, Volrath S, Knauf-Beiter G, Hengy G, Beckhove U, Kogel K H, Oostendorp M, Staub T, Ward E, Kessmann H, Ryals J. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell, 1996,8:629-643.
doi: 10.1105/tpc.8.4.629 pmid: 8624439
[30] Subramanyam S, Smith D F, Clemens J C, Webb M A, Sardesai N, Williams C E. Functional characterization of HFR1, a high-mannose N-glycan-specific wheat lectin induced by Hessian fly larvae. Plant Physiol, 2008,147:1412-1426.
doi: 10.1104/pp.108.116145 pmid: 18467454
[31] Ma Q H, Tian B, Li Y L. Overexpression of a wheat jasmonate-regulated lectin increases pathogen resistance. Biochimie, 2010,92:187-193.
doi: 10.1016/j.biochi.2009.11.008 pmid: 19958808
[32] Krattinger S G, Keller B. Molecular genetics and evolution of disease resistance in cereals. New Phytol, 2016,212:320-332.
pmid: 27427289
[33] Han Y J, Zhong Z H, Song L L, Olsson Stefan, Wang Z H, Lu G D. Evolutionary analysis of plant jacalin-related lectins (JRLs) family and expression of rice JRLs in response to Magnaporthe oryzae. J Integr Agric, 2018,17:60345-60347.
[34] 宋敏. 小麦JRL和DIR基因家族的鉴定和分析. 南京农业大学博士学位论文, 江苏南京, 2013.
Song M. Identification and Analysis of JRL and DIR Gene Family. PhD Dissertation of Nanjing Agricultural University, Jiangsu, Nanjing, China, 2013.
[35] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) Method. Methods, 2001,25:402-408.
pmid: 11846609
[36] Ding L N, Xu H B, Yi H Y, Yang L M, Kong Z X, Zhang L X, Xue S L, Jia H Y, Ma Z Q. Resistance to hemi-biotrophic F. graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways. PLoS One, 2011,6:e19008.
pmid: 21533105
[37] Vasil I K, Vasil V. Transformation of wheat via particle bombardment. Meth Mol Biol, 2006,318:273-283.
[38] Ma Z Q, Sorrells M E. Genetic analysis of fertility restoration in wheat using restriction fragment length polymorphisms. Crop Sci, 1995,3:1137-1143.
[39] Li G Q, Zhou J Y, Jia H Y, Gao Z X, Fan M, Luo Y J, Zhao P T, Xue S L, Li N, Yuan Y, Ma S W, Kong Z X, Jia L, An X, Jiang G, Liu W X, Cao W J, Zhang R R, Fan J C, Xu X W, Liu Y F, Kong Q Q, Zheng S H, Wang Y, Qin B, Cao S Y, Ding Y X, Shi J X, Yan H S, Wang X, Ran C F, Ma Z Q. Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight. Nat Genet, 2019,51:1106-1112.
doi: 10.1038/s41588-019-0426-7 pmid: 31182810
[40] Abebe T, Skadsen R W, Kaeppler H F. A proximal upstream sequence controls tissue-specific expression of Lem2, a salicylate-inducible barley lectin-like gene. Planta, 2005,21:170-183.
[41] Jia F, Rock C D. Jacalin lectin At5g28520 is regulated by ABA and miR846. Plant Signal Behav, 2013,8:e24563.
doi: 10.4161/psb.24563 pmid: 23603955
[42] Xing L J, Li J, Xu Y Y, Xu Z H, Chong K. Phosphorylation modification of wheat lectin VER2 is associated with vernalization-induced O-GlcNAc signaling and intracellular modlity. PLoS One, 2009,4:e4854.
doi: 10.1371/journal.pone.0004854 pmid: 19287503
[43] He X, Li L, Xu H, Xi J, Cao X, Xu H, Rong S, Dong Y, Wang C, Chen R, Xu J, Gao X, Xu Z. A rice jacalin-related mannose- binding lectin gene, OsJRL, enhances Escherichia coli viability under high salinity stress and improves salinity tolerance of rice. Plant Biol (Stuttg), 2017,19:257-267.
pmid: 27718311
[44] Zhang H L, Deng C, Yao J, Zhang Y L, Zhang Y N, Deng S R, Zhao N, Sa G, Zhou X Y, Lu C F, Lin S Z, Zhao R, Chen S L. Populus euphratica JRL mediates ABA response, ionic and ROS homeostasis in Arabidopsis under salt stress. Int J Mol Sci, 2019,20:815.
doi: 10.3390/ijms20040815
[45] Weidenbach D, Esch L, Möller C, Hensel G, Kumlehn J, Höfle C, Hückelhoven R, Schaffrath U. Polarized defense against fungal pathogens is mediated by the jacalin-related lectin domain of modular Poaceae-specific proteins. Mol Plant, 2016,9:514-527.
doi: 10.1016/j.molp.2015.12.009 pmid: 26708413
[46] Beckers G J M, Spoel S H. Fine-tuning plant defense signaling: salicylate versus jasmonate. Plant Biol, 2006,8:1-10.
doi: 10.1055/s-2005-872705 pmid: 16435264
[47] Glazebrook J, Chen W, Estes B, Chang H S, Nawrath C, Metraux J P, Zhu T, Katagiri F. Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J, 2003, 34:217-228.
doi: 10.1046/j.1365-313x.2003.01717.x pmid: 12694596
[48] Khaledi N, Taheri P, Falahati-Rastegar M. Reactive oxygen species and antioxidant system responses in wheat cultivars during interaction with Fusarium species. Australas Plant Pathol, 2016,45:653-670.
doi: 10.1007/s13313-016-0455-y
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[12] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[13] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[14] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[15] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!