欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (1): 50-60.doi: 10.3724/SP.J.1006.2021.92069

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻矮化宽叶突变体osdwl1的生理特性和基因定位

黄妍1(), 贺焕焕1, 谢之耀1, 李丹莹1, 赵超越1, 吴鑫1, 黄福灯2, 程方民1, 潘刚1,*()   

  1. 1浙江大学农业与生物技术学院, 浙江杭州 310058
    2浙江省农业科学院作物与核技术利用研究所, 浙江杭州 310021
  • 收稿日期:2019-12-22 接受日期:2020-09-13 出版日期:2021-01-12 网络出版日期:2020-09-25
  • 通讯作者: 潘刚
  • 作者简介:黄妍, E-mail: 869163852@qq.com
  • 基金资助:
    国家自然科学基金项目(31771688);国家自然科学基金项目(31971819);国家转基因生物新品种培育重大专项(2016ZX08001-002)

Physiological characters and gene mapping of a dwarf and wide-leaf mutant osdwl1 in rice (Oryza sativa L.)

HUANG Yan1(), HE Huan-Huan1, XIE Zhi-Yao1, LI Dan-Ying1, ZHAO Chao-Yue1, WU Xin1, HUANG Fu-Deng2, CHENG Fang-Min1, PAN Gang1,*()   

  1. 1College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
    2Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
  • Received:2019-12-22 Accepted:2020-09-13 Published:2021-01-12 Published online:2020-09-25
  • Contact: PAN Gang
  • Supported by:
    National Natural Science Foundation of China(31771688);National Natural Science Foundation of China(31971819);National Major Project for Developing New GM Crops(2016ZX08001-002)

摘要:

株高是影响水稻倒伏的重要因素之一, 培育适度矮化水稻品种有利于提高其抗倒性, 进而减少产量损失并提高稻米品质, 因此研究矮秆形成的分子生理机制具有重要意义。通过辐射诱变籼稻恢复系自选1号获得一个稳定遗传的矮化宽叶突变体osdwl1, 本文对其形态与生理特征、细胞结构差异、遗传分析和基因定位等方面进行了研究。大田条件下, osdwl1矮化宽叶性状始于分蘖期后, 成熟期穗长和各茎节长度均极显著短于对照, 最终导致株高矮化, 究其原因, 是由于突变体茎节细胞变短所致; 而叶片石蜡切片及扫描电镜结果显示, osdwl1的叶片小维管束数及其间距显著增加, 从而导致叶片变宽, 且其上下表皮的小刺毛数也极显著增加。此外, osdwl1的中上部叶片还表现黄化症状, 该性状始于3~4叶期幼苗。生理分析和透射电镜观察表明, 与野生型对照相比, 孕穗期osdwl1的叶绿体类囊体结构松散, 且部分已开始降解, 从而导致其倒二叶和倒三叶的叶绿素总含量、净光合速率以及Fv/Fm比值均极显著降低, 而其可溶性蛋白、过氧化氢酶及超氧化物歧化酶酶活依次极显著降低, 从而导致叶中H2O2及O2-累积, 促使丙二醛含量急剧增加。遗传分析表明, osdwl1的矮化宽叶表型受单隐性核基因调控, 利用图位克隆技术将该基因定位于6号染色体短臂的SSR标记RM19297与InDel标记ID269-2之间, 物理距离为333 kb, 该结果为进一步克隆OsDWL1基因并研究其功能奠定了基础。

关键词: 水稻, osdwl1, 矮化宽叶, 生理分析, 基因定位

Abstract:

Plant height is one of the important factors affecting rice lodging. The semi-dwarf rice varieties possess high level of lodging resistance, and could reduce yield loss and improve grain quality. Thus, it is very important to study the molecular and physiological mechanism of dwarf formation in rice. In this study, a stable hereditary dwarf and wider-leaf mutant osdwl1 was obtained from 60Co γ-radiated indica restore line Zixuan 1, and its morphological and physiological characteristics, cytological observation, genetic analysis and gene mapping were investigated. Under field condition, the mutant osdwl1 exhibited dwarf and wider-leaf after the tillering stage due to shorter length of the parenchyma cells, and its panicle length and all internodes length were significantly shorter compared with wild type plants at mature stage. Paraffin sections and scanning electronic microscopy (SEM) observation revealed that the number of small vascular (SV) bundles and the distance between SVs increased significantly, resulting in wider-leaf blade in osdwl1. Moreover, the number of microhairs on the abaxial and adaxial epidermis were also increased significantly in osdwl1. In addition, starting at the 3-4 leaf seedling stage, yellowing was visible at the upper middle parts of old leaves in osdwl1. Physiological analysis and transmission electron microscopy (TEM) observation indicated that the lamellar structure of chloroplast was distorted and began to collapse in some mesophyll cells, which led to the reduction of total chlorophyll contents, net photosynthetic rate and Fv/Fm ratio of the second and third leaves from top in osdwl1 at the heading stage. Relative to the wild type plants, the soluble protein content, catalase (CAT) and superoxide dismutase (SOD) activities were significantly decreased, which in turn resulting in the accumulation of H2O2 and O2-, and a steady increase of malondialdehyde (MDA) contents in the mutant leaves. Genetic analysis and gene mapping showed that osdwl1 was controlled by a single recessive nuclear gene, located in a region of 333 kb between SSR marker RM19297 and the InDel marker ID269-2 on the short arm of chromosome 6. The results would further facilitate the cloning and functional analysis of OsDWL1 gene.

Key words: rice, osdwl1, dwarf and wider-leaf, physiological analysis, gene mapping

图1

突变体及其野生型的表型 A: 幼苗期; B: 开花初期; C: 开花初期叶片, 其中F代表剑叶, 2~4分别为倒二叶至倒四叶; D: 成熟期; E: 成熟期穗及茎节, P代表小穗, 1~5分别为倒一节至倒五节; F: 2019年成熟期各茎节长度; G~H: 野生型对照(G)和突变体(H)倒二茎节的纵切面。A~F的标尺为20 cm, G~H的标尺为20 μm。* 表示在0.05水平上差异显著; ** 表示在0.01水平上差异显著(t-test)。"

表1

突变体及其野生型的主要农艺性状"

性状
Trait
2018 2019
野生型
WT
突变体
osdwl1
野生型
WT
突变体
osdwl1
株高 Plant height (cm) 110.74±2.16 65.90±3.62** 82.91±4.96 58.40±2.38**
穗长 Panicle length (cm) 24.35±0.31 14.87±1.26** 23.07±0.82 15.67±1.25**
有效穗数 Effective panicle number 6.20±1.64 3.60±1.55** 11.80±3.56 5.20±2.49**
每穗粒数 Grain number per panicle 165.96±7.64 97.56±12.67** 177.72±10.51 117.74±21.21**
结实率 Seed-setting rate (%) 90.92±3.19 55.07±1.97** 79.57±3.01 43.57±8.01**
千粒重 1000-grain weight (g) 23.17±1.04 26.91±1.31** 22.42±0.67 26.06±1.06**
单株产量 Yield per plant (g) 19.44±1.34 3.27±0.91** 20.89±2.13 4.76±1.00**

图2

突变体osdwl1及其对照叶片的表型特征 A: 突变体及其对照幼叶及剑叶叶宽; B: 突变体及其对照剑叶石蜡切片, 蓝色三角形指示的是小维管束, LV代表大维管束; C: 突变体及其对照整个剑叶的小维管束数, SV代表小维管束; D: 突变体及其对照剑叶的小维管束之间的间距; E, F: 维管束之间的上表皮细胞数(E)及其宽度(F); G: 突变体及其对照剑叶上下表皮的扫描电镜观察, 双向箭头显示两个SV之间距; H, I: 突变体及其对照剑叶下表皮(H)和上表皮(I)的刺毛数。标尺为200 μm。* 表示在0.05水平上差异显著; ** 表示在0.01水平上差异显著(t-test)。"

图3

孕穗期突变体及其野生型叶片的光合特性及叶绿体超微结构 A~D: 突变体及其野生型叶片的叶绿素a (A)、叶绿素b (B)、总叶绿素含量(C)及叶绿素a/b比值(D); E~H: 突变体(G, H)及其野生型(E, F)剑叶叶肉细胞超微结构, nu代表细胞核; Cl代表叶绿体; og代表嗜锇颗粒; I~J: 突变体及其野生型叶片的净光合速率(I)及Fv/Fm值(J)。1: 剑叶; 2: 倒二叶; 3: 倒三叶。* 表示在0.05水平上差异显著; ** 表示在0.01水平上差异显著(t-test)。"

图4

孕穗期突变体osdwl1及其野生型叶片的O2-和H2O2累积以及CAT和SOD的酶活 1: 剑叶; 2: 倒二叶; 3: 倒三叶。* 表示在0.05水平上差异显著; ** 表示在0.01水平上差异显著(t-test)。"

图5

孕穗期突变体osdwl1及其野生型叶片的MDA和可溶性蛋白含量 1: 剑叶; 2: 倒二叶; 3: 倒三叶。* 表示在0.05水平上差异显著; ** 表示在0.01水平上差异显著(t-test)。"

附表1

用于OsDWL1基因定位的分子标记"

标记
Marker
正向引物
Forward primer (5'-3')
反向引物
Reverse primer (5'-3')
RM7399 CAGATATGATGTTCTTGCCCTTGC GCTTGCCAGATCACCTACCTACC
RM19288 CGGAGCTGTTGCCGTTCTGC CGATGTGCCATGTCAGGATGACC
RM19297 ATTTGCTCCGCTTCCAAATCACC AGCGGCCAACAGAGACAACTGG
ID269-2 AGGGTGTGTTTAGTTCACGA AAAATTTGTCATGGCTGTTG
RM3805 ACACCACCATCAACGTACCAACC AAGTCGAGAGGAAGAAGCCAAGG
RM19549 CCTGGTACTAACCATGTGATTGAGC AACGTCAGAGTCTCACCACAAGC

图6

水稻矮化宽叶基因OsDWL1在6号染色体上的分子定位"

表2

定位区间内的基因及功能注释"

基因号
Locus identifier
功能注释
Functional annotation
LOC_Os06g03390 Expressed protein
LOC_Os06g03486.1 Expressed protein
LOC_Os06g03514.1 Expressed protein
LOC_Os06g03520.1 DUF581 domain containing protein, expressed
LOC_Os06g03530.1 Pentatricopeptide, putative, expressed
LOC_Os06g03540.1 Oligopeptide transporter, putative, expressed
LOC_Os06g03560.1 Oligopeptide transporter, putative, expressed
LOC_Os06g03570.1 Pentatricopeptide, putative, expressed
LOC_Os06g03580.1 Zinc RING finger protein, putative, expressed
LOC_Os06g03600.1 Transcriptional corepressor SEUSS, putative, expressed
LOC_Os06g03610.1 The CrRLK1L-1 subfamily has homology to the CrRLK1L homolog, expressed
LOC_Os06g03640.1 BAG domain containing protein, expressed
LOC_Os06g03660.1 Peroxisomal biogenesis factor 11, putative, expressed
LOC_Os06g03670.1 Dehydration-responsive element-binding protein, putative, expressed
LOC_Os06g03676.1 CAMK includes calcium/calmodulin dependent protein kinases, expressed
LOC_Os06g03682.1 Calcium-dependent protein kinase isoform AK1, putative, expressed
LOC_Os06g03690.1 RNA recognition motif containing protein, putative, expressed
LOC_Os06g03700.1 Oligopeptide transporter, putative, expressed
LOC_Os06g03710.1 DELLA protein SLR1, putative, expressed
LOC_Os06g03720.1 Ribonucleoside-diphosphate reductase small chain, putative, expressed
LOC_Os06g03750.1 Dehydration response related protein, putative, expressed
LOC_Os06g03760.1 LMBR1 integral membrane protein, putative, expressed
LOC_Os06g03770.1 ABC transporter, putative, expressed
LOC_Os06g03780.1 NUC153 domain containing protein, expressed
LOC_Os06g03790.1 39S ribosomal protein L47, mitochondrial precursor, putative, expressed
LOC_Os06g03800.1 Pollen ankyrin, putative, expressed
LOC_Os06g03810.1 Expressed protein
LOC_Os06g03820.1 Expressed protein
LOC_Os06g03830.1 Retinol dehydrogenase, putative, expressed
LOC_Os06g03840.1 Bric-a-Brac, Tramtrack, Broad Complex BTB domain with H family conserved sequence, expressed
LOC_Os06g03850.1 Impaired sucrose induction 1, putative, expressed
LOC_Os06g03860.4 Uncharacterized membrane protein, putative, expressed
LOC_Os06g03890.1 Alpha-L-fucosidase 3 precursor, putative, expressed
LOC_Os06g03910.1 Hydrolase, NUDIX family, domain containing protein, expressed
LOC_Os06g03920.1 Expressed protein
LOC_Os06g03930.1 Cytochrome P450 86A1, putative, expressed
LOC_Os06g03940.1 Spastin, putative, expressed
[1] 刘兴舟, 张建, 庄晓林, 陈瑞佶, 付华, 马桂美, 李猛. 中国粮食安全现状与应对策略. 农业工程, 2019,9(7):61-64.
Liu X Z, Zhang J, Zhuang X L, Chen R J, Fu H, Ma G M, Li M. Current situation and countermeasures of Chinese food security. Agric Eng, 2019,9(7):61-64 (in Chinese with English abstract).
[2] 成升魁, 徐增让, 谢高地, 甄霖, 王灵恩, 郭金花, 侯鹏, 何中虎. 中国粮食安全百年变化历程. 农学学报, 2018,8(1):186-192.
Cheng S K, Xu Z R, Xie G D, Zhen L, Wang L E, Guo J H, Hou P, He Z H. The history of China’s food security in the past hundred years. J Agric, 2018,8(1):186-192 (in Chinese with English abstract).
[3] 张永恩, 褚庆全, 王宏广. 发展高产农业保障粮食安全的探索和实践. 中国农业科技导报, 2012,14(2):17-21.
Zhang Y E, Chu Q Q, Wang H G. Exploration and practice of developing high-yielding agriculture to ensure food security. J Agric Sci Technol, 2012,14(2):17-21 (in Chinese with English abstract).
[4] Liu F, Wang P, Zhang X, Li X, Yan X, Fu D, Wu G. The genetic and molecular basis of crop height based on a rice model. Planta, 2018,247:1-26.
doi: 10.1007/s00425-017-2798-1 pmid: 29110072
[5] Hirano K, Ordonio R L, Matsuoka M. Engineering the lodging resistance mechanism of post-green revolution rice to meet future demands. Proc Jpn Acad Ser B Phys Biol Sci, 2017,93:220-233.
doi: 10.2183/pjab.93.014 pmid: 28413198
[6] Wang Y, Li J. The plant architecture of rice (Oryza sativa). Plant Mol Biol, 2005,59:75-84.
doi: 10.1007/s11103-004-4038-x pmid: 16217603
[7] Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, Kyozuka J. Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol, 2005,46:79-86.
pmid: 15659436
[8] Tomotsugu A, Hirotaka I, Kenji O, Masahiko M, Masatoshi N, Mikiko K, Hitoshi S, Junko K. DWARF10, an RMS1/MAX4/ DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J, 2007,51:1019-1029.
pmid: 17655651
[9] Tomotsugu A, Mikihisa U, Shinji I, Atsushi H, Masahiko M, Shinjiro Y, Junko K. d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol, 2009,50:1416-1424.
pmid: 19542179
[10] Taito T, Yuko S, Makoto S, Hidemi K, Miyako U, Motoyuki A, Makoto M, Chiharu U. The OsTB1 gene negatively regulates lateral branching in rice. Plant J, 2003,33:513-520.
doi: 10.1046/j.1365-313x.2003.01648.x pmid: 12581309
[11] Zou J, Zhang S, Zhang W, Li G, Chen Z, Zhai W, Zhao X, Pan X, Xie Q, Zhu L. The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J, 2006,48:687-698.
doi: 10.1111/j.1365-313X.2006.02916.x pmid: 17092317
[12] Chen W, Cheng Z, Liu L, Wang M, You X, Wang J, Zhang F, Zhou C, Zhang Z, Zhang H, You S, Wang Y, Luo S, Zhang J, Wang J, Wang J, Zhao Z, Guo X, Lei C, Zhang X, Lin Q, Ren Y, Zhu S, Wan J. Small grain and Dwarf 2, encoding an HD-Zip II family transcription factor, regulates plant development by modulating gibberellin biosynthesis in rice. Plant Sci, 2019,288:110208.
pmid: 31521223
[13] Semami S, Takehara K, Yamamoto T, Kido S, Kondo S, Iwasaki Y, Miura K. Overexpression of SRS5 improves grain size of brassinosteroid-related dwarf mutants in rice (Oryza sativa L.). Breed Sci, 2017,67:393-397.
doi: 10.1270/jsbbs.16198 pmid: 29085249
[14] Ding Z, Lin Z, Li Q, Wu H, Xiang C, Wang J. DNL1, encodes cellulose synthase-like D4, is a major QTL for plant height and leaf width in rice (Oryza sativa L.). Biochem Biophys Res Commun, 2015,457:133-140.
doi: 10.1016/j.bbrc.2014.12.034 pmid: 25522878
[15] Tong H, Jin Y, Liu W, Li F, Fang J, Yin Y, Qian Q, Zhu L, Chu C. DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice. Plant J, 2009,58:803-816.
pmid: 19220793
[16] 徐静, 王莉, 钱前, 张光恒. 水稻叶片形态建成分子调控机制研究进展. 作物学报, 2013,39:767-774.
doi: 10.3724/SP.J.1006.2013.00767
Xu J, Wang L, Qian Q, Zhang G H. Research advance in molecule regulation mechanism of leaf morphogenesis in rice (Oryza sativa L.). Acta Agron Sin, 2013,69:767-774 (in Chinese with English abstract).
[17] Byne M E. Networks in leaf development. Curr Opin Plant Biol, 2005,8:59-66.
doi: 10.1016/j.pbi.2004.11.009 pmid: 15653401
[18] Qi J, Qian Q, Bu Q, Li S, Chen Q, Sun J, Liang W, Zhou Y, Chu C, Li X, Ren F, Palme K, Zhao B, Chen J, Chen M, Li C. Mutation of the rice Narrow Leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport. Plant Physiol, 2008,147:1947-1959.
doi: 10.1104/pp.108.118778 pmid: 18562767
[19] Shi L, Wei X, Adedze Y M, Sheng Z, Tang S, Hu P, Wang J. Characterization and gene cloning of the rice (Oryza sativa L.) dwarf and narrow-leaf mutant dnl3. Genet Mol Res, 2016,15:15038731.
[20] Wang L, Chen Y. Characterization of a wide leaf mutant of rice Oryza sativa L. with high yield potential in field. Pat J Bot, 2013,45:927-932.
[21] Gong P, Luo Y, Huang F, Chen Y, Zhao C, Wu X, Li K, Yang X, Cheng F, Xiang X, Wu C, Pan G. Disruption of a Upf1-like helicase-encoding gene OsPLS2 triggers light-dependent premature leaf senescence in rice. Plant Mol Biol, 2019,100:133-149.
doi: 10.1007/s11103-019-00848-4 pmid: 30843130
[22] Pan G, Si P, Yu Q, Tu J, Powles S. Non-target site mechanism of metribuzin tolerance in induced tolerant mutants of narrow-leafed lupin (Lupinus angustifolius L.). Crop Pasture Sci, 2012,63:452-458.
doi: 10.1071/CP12065
[23] Wang F, Liu J, Chen M, Zhou L, Li Z, Zhao Q, Pan G, Zaidi S, Cheng F. Involvement of abscisic acid in PSII photodamage and D1 protein turnover for light-induced premature senescence of rice flag leaves. PLoS One, 2016,11:e0161203.
doi: 10.1371/journal.pone.0161203 pmid: 27532299
[24] Yang X, Gong P, Li K, Huang F, Cheng F, Pan G. A single cytosine deletion in the OsPLS1 gene encoding vacuolar-type H+-ATPase subunit A1 leads to premature leaf senescence and seed dormancy in rice. J Exp Bot, 2016,67:2761-2776.
pmid: 26994476
[25] 曹剑波, 程珂, 袁猛. 水稻组织半薄切片法. Bio-101, 2018 [2020-07-24]. https://bio-protocol.org/bio101/e1010142.
Cao J B, Cheng K, Yuan M. Observation of rice tissue with semi-thin section. Bio-101. 2018 [2020-07-24]. https://bio-protocol.org/bio101/e1010142.
[26] 杨守仁, 张龙步, 陈温福, 徐正进, 王进民. 水稻超高产育种的理论与方法. 中国水稻科学, 1996,10:115-120.
Yang S R, Zhang L B, Chen W F, Xu Z J, Wang J M. Theories and methods of rice breeding for maximum yield. Chin J Rice Sci, 1996,10:115-120.
[27] Kim S R, Yang J I, Moon S, Ryu C H, An K, Kim K M, Yim J, An G. Rice OGR1 encodes a pentatricopeptide repeat-DYW protein and is essential for RNA editing in mitochondria. Plant J, 2009,59:738-749.
pmid: 19453459
[28] Li H, Jiang L, Youn J, Sun W, Cheng Z, Jin T, Ma X, Guo X, Wang J, Zhang X, Wu F, Wu C, Kim S K, Wan J. A comprehensive genetic study reveals a crucial role of CYP90D2/D2 in regulation plant architecture in rice (Oryza sativa). New Phytol, 2013,200:1076-1088.
pmid: 23902579
[29] Du L, Poovaiah B W. Ca2+/calmodulin is critical for brassinosteroid biosynthesis and plant growth. Nature, 2005,437:741-745.
doi: 10.1038/nature03973 pmid: 16193053
[30] Liao Z, Yu H, Duan J, Yuan K, Yu C, Meng X, Kou L, Chen M, Jing Y, Liu G, Smith S, Li J. SLR1 inhibits MOC1 degradation to coordinate tiller number and plant height in rice. Nat Commun, 2019,10:2738.
pmid: 31227696
[31] Imai A, Komura M, Kawano E, Kuwashiro Y, Takahashi T. A semi-dominant mutation in the ribosomal protein L10 gene suppresses the dwarf phenotype of the acl5 mutant in Arabidopsis thaliana. Plant J, 2008,56:881-890.
doi: 10.1111/j.1365-313X.2008.03647.x pmid: 18694459
[32] Li W, Wu J, Weng S, Zhang Y, Zhang D, Shi C. Identification and characterization of dwarf62, a loss-of-function mutation in DLT/OsGRAS-32 affecting gibberellin metabolism in rice. Planta, 2010,232:1383-1396.
doi: 10.1007/s00425-010-1263-1 pmid: 20830595
[33] Lim P O, Kim H J, Nam H G. Leaf senescence. Annu Rev Plant Biol, 2007,58:115-136.
doi: 10.1146/annurev.arplant.57.032905.105316 pmid: 17177638
[34] Jajic I, Sarna T, Strzalka K. Senescence, stress, and reactive oxygen species. Plants, 2015,4:393-411.
pmid: 27135335
[35] Rogers H, Munne-Bosch S. Production and scavenging of reactive oxygen species and redox signaling during leaf and flower senescence: similar but different. Plant Physiol, 2016,17:1560-1568.
[36] Blokhina O, Virolainen E, Fagerstedt K V. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot, 2003,91:179-194.
doi: 10.1093/aob/mcf118 pmid: 12509339
[37] You J, Chan Z. ROS regulation during abiotic stress responses in crop plants. Front Plant Sci, 2015,6:1092.
doi: 10.3389/fpls.2015.01092 pmid: 26697045
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!