欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (2): 320-331.doi: 10.3724/SP.J.1006.2022.02045

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻小粒不育系新组合卓两优141混播制种优势分析

周杰强1(), 张桂莲1,2, 邓化冰1,2, 明兴权1, 雷斌1, 李凡1, 唐文帮1,2,*()   

  1. 1湖南农业大学农学院, 湖南长沙 410128
    2湖南农业大学水稻油菜抗病育种湖南省重点实验室, 湖南长沙 410128
  • 收稿日期:2020-07-02 接受日期:2021-06-16 出版日期:2022-02-12 网络出版日期:2021-07-21
  • 通讯作者: 唐文帮
  • 作者简介:E-mail: crackzjq@163.com
  • 基金资助:
    本研究由国家重点研发计划项目(2017YFD0100303);湖南省科技重大专项(2018NK1020);湖南省重点研发计划项目资助(2017NK2013)

Advantages of small grain male sterile lines in seed production for a new combination Zhuoliangyou 141 through the mixed-sowing manner

ZHOU Jie-Qiang1(), ZHANG Gui-Lian1,2, DENG Hua-Bing1,2, MING Xing-Quan1, LEI Bin1, LI Fan1, TANG Wen-Bang1,2,*()   

  1. 1College of Agronomy, Hunan Agricultural University, Changsha 410128, Hunan, China
    2Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Hunan Agricultural University, Changsha 410128, Hunan, China
  • Received:2020-07-02 Accepted:2021-06-16 Published:2022-02-12 Published online:2021-07-21
  • Contact: TANG Wen-Bang
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2017YFD0100303);the Major Scientific and Technological Special of Hunan Province(2018NK1020);the Key Research and Development Program of Hunan Province(2017NK2013)

摘要:

传统的杂交水稻制种方式落后、效益低、成本高的问题, 制约了杂交稻推广应用。利用小粒型不育系可实现杂交水稻混播、混收、机械分离等全程机械化制种, 降低杂交稻制种成本, 提高制种效率。本研究以小粒型不育系卓201S、大粒恢复系R141和新组合卓两优141为材料, 对其适合机械化制种的农艺性状、异交特性、混播制种及大面积制种实践进行了研究。结果表明, 与C815S相比, 卓201S株高较矮, 穗长较长且直立, 包颈粒率、穗萌率、黑粉病、开颖率均低于C815S, 对“九二〇”较敏感, 且较难落粒, 具有较好的农艺性状。而R141株高较高, 花粉数量大, 花期长, 且对环境温度较钝感, 两者均具有良好的异交特性。卓201S谷粒厚1.71 mm, 千粒重14.00 g, R141谷粒厚2.23 mm, 千粒重28.20 g, 两者籽粒大小差异显著, 通过特定的狭长形筛孔筛子, 实现了杂种F1与父本种子的高效分离, 杂交种子含父本率为0, 杂种损失率为 2.31%, 种子纯度在生产上达标, 可实现机械化制种; 与传统制种模式相比, 混播制种可使父本基本苗减少85%, 母本容量增加20%, 制种产量增加21.37%, 制种综合效益增加31.4%。父母本较好的农艺性状、异交特性, 且粒型大小差异明显, 是小粒型不育系新组合卓两优141机械混播制种的优势, 可实现杂交水稻全程机械化制种, 因此具有广阔的应用前景。

关键词: 水稻, 小粒型不育系, 卓两优141, 混播制种技术, 优势

Abstract:

Traditional hybrid breeding is backward, low benefit, and high cost, which restricts the promotion and application in hybrid rice. However, Small Grain TMS lines are easy to be mechanically separated after mixed-sowing and mixed-harvesting. Their application will promote the realization of complete Mechanization of Hybrid Rice Seed Production, leading to the reduction of cost and the improvement of seed production efficiency. In this study, we investigated the agronomic characteristics and outcrossing rates suitable for Mechanization of Hybrid Rice Seed Production, using the Small Grain male sterile line Zhuo 201S, Large Grain restorer line R141, and their combination Zhuoliangyou 141 as materials for mixed-sowing and large-scale seed production practice. The results demonstrated that compared with the control TMS C815S, Zhuo 201S plants were shorter, exhibiting longer and more erect ear, fewer glume opening, lower percentage of panicle enclosure and germination on ears. Moreover, Zhuo 201S plants were resistant to smut disease but sensitive to “920” treatment and had weak seed-shattering characteristic. However, R141 plants were tall and insensitive to environmental temperature with large amount of pollen and a long florescence. Both Zhuo 201S and R141 had good outcrossing characteristics. The grain thickness of Zhuo 201S and R141 was 1.71 mm and 2.23 mm, respectively. The 1000-grain weight of Zhuo 201S and R141 was 14.00 g and 28.20 g, respectively. Due to the significant difference in grain sizes, the hybrid F1 seeds could be easily separated with the male parent seeds through a special sieve with narrow and long apertures. The percentage of male parent seeds mixed in hybrid seeds was 0 while the hybrid seed loss rate was 2.31%, suggesting that the seed purity met the standards for Mechanization of Hybrid Rice Seed Production. Compared with the traditional seed production mode, the basic seedling of male parent was reduced by 85%, the capacity of female parent was increased by 20%, the seed production yield was increased by 21.37%, and the comprehensive benefit of seed production was increased by 31.4%. Zhuoliangyou 141 was endowed with the advantages suitable for mechanized production by mix-sowing, with excellently agronomic traits and outcrossing properties along with huge difference in grain size from its parents. Therefore, the whole process of Zhuoliangyou 141 mechanized seed production had a broad application prospect.

Key words: rice, small grain sterile line, Zhuoliangyou 141, mixed sowing seed production, advantage

表1

父本R141异交特性"

材料
Material
株高
PLH
(cm)
穗长
PAH
(cm)
单株穗数 PPP 每穗粒数
TGPP
单穗花期
FPPA
(d)
单株花期
FPPL
(d)
始花时间 ST 盛花时间 FLT 花粉密度
PD
(×104 m-2)
R141 115.7±2.4 a 28.30±1.8 a 9.2±0.8 b 209.4±10.4 a 6.0±0.7 a 10.0±1.1 a 10:50 11:05 108.0±8.9 a
华占Huazhan 109.4±2.1 b 23.90±1.2 b 10.6±0.7 a 162.3±8.7 b 4.0±0.5 b 6.0±0.6 b 10:15 11:40 80.2±7.3 b

图1

恢复系花粉量与气温之间的关系"

图2

卓201S抽穗开花动态"

图3

卓201S花时动态"

表2

卓201S的柱头大小和柱头外露率"

材料
Material
长度
Length
(mm)
宽度
Width
(mm)
面积
Area
(mm2)
体积
Volume
(mm3)
双边外露率
Bilateral
exposure rate (%)
单边外露率
Unilateral
exposure rate (%)
总外露率
Total
exposure rate
(%)
卓201S Zhuo 201S 1.21±0.12 b 0.40±0.01 b 0.49±0.03 b 0.15±0.01 b 53.56±1.33 a 34.08±1.03 a 87.64±1.96 a
C815S (CK) 1.25±0.08 a 0.46±0.02 a 0.57±0.02 a 0.20±0.01 a 55.40±1.46 b 29.60±0.87 b 85.00±1.24 b

表3

卓201S柱头活力"

材料
Material
8月11日
Aug. 11
8月12日
Aug. 12
8月13日
Aug. 13
8月14日
Aug. 14
8月15日
Aug. 15
8月16日
Aug. 16
8月17日
Aug. 17
8月18日
Aug. 18
活力系数
VC
卓201S Zhuo 201S 73.1±1.7 a 60.1±1.3 a 52.7±0.8 a 47.0±0.4 a 39.8±0.4 a 12.0±0.4 a 10.0±0.4 a 8.8±0.4 a 2.2±0.1 a
C815S (CK) 68.6±1.9 b 48.9±1.1 b 30.0±0.6 b 21.0±0.6 b 11.2±0.4 b 7.9±0.4 b 3.7±0.4 b 0 b 1.5±0.1 b

表4

R141与卓201S的农艺性状"

材料
Material
株高
PLH (cm)
穗长
PL (cm)
穗形
PT
包颈粒率
RWG (%)
经济系数
EC
卓201S Zhuo 201S 60.5±1.9 a 27.6±0.6 a 直立 Erect 5.1±0.5 b 48.7±0.1 a
C815S 68.3±2.1 b 24.2±0.4 b 弯曲 Bend 15.7±0.8 a 40.6±0.2 b
R141 115.7±2.4 a 28.3±0.8 a 弯曲 Bend 44.9±0.2 b
华占 Huazhan 109.4±2.1 b 23.9±0.2 b 弯曲 Bend 47.2±0.3 a
卓201S Zhuo 201S 22.4±1.6 a 0.1±0 b 0 b 0.2±0.1 b 较难落粒Not easy shattering
C815S 19.7±1.2 b 12.9±1.1 a 23.9±2.2 a 2.7±0.1 a 易落粒 Easy shattering
R141 35.6±2.4 a
华占 Huazhan 28.7±1.9 b

表5

R141与卓201S籽粒形态性状"

品系
Line
材料
Material
粒长
Grain length (mm)
粒厚
Grain width (mm)
长宽比
Length-width ratio
千粒重
1000-grain weight (g)
恢复系
Restorer line
R141 6.61±0.13 a 2.23±0.03 a 3.04±0.04 b 28.22±0.62 a
华占 Huazhan 6.54±0.21 a 2.01±0.04 b 3.42±0.03 a 23.64±0.43 b
不育系
Sterile line
卓201S Zhuo 201S 5.82±0.11 a 1.71±0.04 b 3.32±0.03 a 14.01±0.33 b
C815S 5.63±0.16 a 1.96±0.02 a 2.95±0.03 b 23.42±0.56 a

图4

不同制种模式下卓201S与R141的基本苗"

图5

不同制种模式下R141花粉密度变化动态"

表6

不同制种模式产量性状比较"

制种模式
SPM
单株有效穗
EPP
有效穗
EP (m2)
每穗总粒数
TGP
结实率
SSR (%)
千粒重
GW (g)
理论产量
TY (kg hm-2)
实际产量
AY (kg hm-2)
混播制种MSP 7.33±1.17 b 409.30±1.33 a 149.10±10.21 b 51.60±78 b 14.50±06 a 6843.00±12.45 a 5785.50±04.03 a
传统制种TSP 13.47±1.49 a 272.60±3.12 b 168.50±12.36 a 53.90±25 a 14.50±08 a 5383.50±96.23 b 4603.50±79.65 b

表7

机械化混播制种与传统制种收益比较"

制种模式
SPM
种植方式
PM
辅助授粉
APM
收割方式
HM
母本容量
MC
异交率
AOR
(%)
平均产量
AY
(kg hm-2)
综合效益
CBOSP
(Yuan hm-2)
增益
TAB
传统制种TSP 移栽Transplanting 需要Yes 父母本分收
Parents separate harvesting
74.40±3.21 a 3382.50±96.33 b 67,650
机械化制种MSP 父母本机械混合直播
Parent-mixed direct seeding
无需No 机械混收
Mechanical harvesting
增加20.00%
Increased by 20.00%
70.30±2.98 b 4105.50±106.76 a 82,110 1464
Yuan hm-2
增加效益TAB 4500
Yuan hm-2
1500
Yuan hm-2
1500
Yuan hm-2
14,460 Yuan 31.40%

表8

卓两优141混播制种实践"

年份
Year
地点
Place
有效穗
EP
每穗总粒数
SNPP
结实率
SSR (%)
千粒重
GW (g)
理论产量
TY (kg hm-2)
实际产量
AY (kg hm-2)
2018 三亚Sanya 5492.2±252.3 152.4±10.5 70.6±6.5 13.9±0.6 5473.5±304.1 5073.3±268.4
2019 长沙Changsha 5217.8±289.4 152.4±9.4 55.3±5.8 14.1±0.4 4133.7±248.4 3574.1±200.5
2019 怀化Huaihua 4257.0±205.3 155.4±11.4 72.3±6.2 13.8±0.6 4398.1±268.3 3658.1±197.4

图6

机械混播制种实践 A: 卓两优141混播制种苗期田间照片; B: 卓两优141混播制种分蘖期田间照片; C: 卓两优141混播制种成熟期田间照片; D: 卓201S与恢复系R141粒型比较, 红色箭头所示为R141种子, 卓201S千粒重为14.10 g, 粒厚1.71 mm; 父本R141的千粒重为27.80 g, 粒厚2.32 mm。E: 分选机器所用的狭长形筛孔筛子(2 mm × 20 mm); F: 分选后的卓两优141杂交种(左)和恢复系R141 (右)种子。"

图1

附卓两优141田间图片"

表1

附卓两优141参加2017-2018年国家区试表现"

品种
Variety
产量
Yield (kg hm-2)
生育期
GP (d)
有效穗
EP
株高
PLH (cm)
穗长
PL (cm)
每穗总粒数
SNPP
结实率
SSR (%)
千粒重
GW (g)
稻米品质
Rice quality
卓两优141
Zhuoliangyou 141
9531 138.0 247.5 118.5 26.0 241.5 78.4 23.3 优质二级
The second class stand of fine quality rice
丰两优4号
Fengliangyou 4
9132 135.6 220.5 126.0 25.2 192.1 83.9 27.9 优质三级
The third class stand of fine quality rice
[1] Khush G S. What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol, 2005,59:1-6.
[2] 袁隆平. 发展杂交水稻保障粮食安全. 科学新闻, 2014, ( 12):32-33.
Yuan L P. Develop hybrid rice to ensure food security. Sci News, 2014, ( 12):32-33 (in Chinese with English abstract).
[3] 彭少兵. 转型时期杂交水稻的困境与出路. 作物学报, 2016,42:313-319.
Peng S B. Dilemma and way-out of hybrid rice during the transition period in China. Acta Agron Sin, 2016,42:313-319 (in Chinese with English abstract).
[4] 李晏军. 中国杂交水稻技术发展研究(1964-2010). 南京农业大学博士学位论文, 江苏南京, 2010.
Li Y J. Study on the Development of Hybrid Rice Technology in China (1964-2010). PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2010 (in Chinese with English abstract).
[5] 许二波. 水稻小粒突变的基因定位及育种利用研究. 中国农业科学院硕士学位论文, 北京, 2015.
Xu E B. Study on Gene Location and Breeding Utilization of Rice Small Grain Mutation. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2015 (in Chinese with English abstract).
[6] 石萌萌. 杂交水稻发展推广面临新考验. 科技导报, 2014,32(27):9.
Shi M M. The new challenges of development and extension of hybrid rice. Sci Technol Rev, 2014,32(27):9 (in Chinese with English abstract).
[7] 刘延斌, 杨远柱, 刘建丰, 符辰建, 秦鹏, 胡小淳. 杂交水稻亲本混播机械化制种研究进展. 作物研究, 2012,26(1):85-87.
Liu Y B, Yang Y Z, Liu J F, Fu C J, Qin P, Hu X C. Research progress of mechanization production of hybrid rice seed through parents’ seeds mixed plant. Crop Res, 2012,26(1):85-87 (in Chinese with English abstract) .
[8] 唐文帮, 张桂莲, 邓化冰. 杂交水稻机械化制种的技术探索与实践. 中国水稻科学, 2020,34:95-103.
Tang W B, Zhang G L, Deng H B. Technology exploration and practice of hybrid rice mechanized seed production. Chin J Rice Sci, 2020,34:95-103 (in Chinese with English abstract).
[9] 吕直文, 郑济万, 卿明敬, 黄成文. 杂交水稻理想型机械化制种组合II优86. 杂交水稻, 1996,9(5):12-13.
Lyu Z W, Zheng J W, Qing M J, Huang C W. II You 86, a suitable hybrid rice for hybrid seed production mechanization. Hybrid Rice, 1996,9(5):12-13 (in Chinese with English abstract).
[10] 许二波, 王跃星, 倪深, 陈红旗, 朱旭东. 水稻隐性小粒基因在杂交稻种子机械分选上的应用研究. 中国稻米, 2015,21(3):8-11.
Xu E B, Wang Y X, Ni S, Chen H Q, Zhu X D. Application of small grain recessive gene in the mechanical sorting of hybrid rice seeds. China Rice, 2015,21(3):8-11 (in Chinese with English abstract).
[11] 余应弘. 小粒矮秆水稻在杂交水稻工程化制种中的应用基础研究. 湖南农业大学博士学位论文, 湖南长沙, 2010.
Yu Y H. Basic Research on the Application of Small Grain Dwarf Rice in Hybrid Rice Engineering Seed Production. PhD Dissertation of Hunan Agricultural University, Changsha, Hunan, China, 2010 (in Chinese with English abstract).
[12] 明兴权. 水稻小粒型两用核不育系卓201S应用研究. 湖南农业大学硕士学位论文, 湖南长沙, 2018.
Ming X Q. Study on the Application of Small Grain CMS Lines Zhuo 201S. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2008 (in Chinese with English abstract).
[13] 彭正明, 周逢明. 母本机械直播技术在杂交水稻集约化制种上的应用初探. 杂交水稻, 2000,15(6):27-32.
Peng Z M, Zhou F M. Application of the mechanized direct seeding technique in hybrid rice seed production. Hybrid Rice, 2000,15(6):27-32 (in Chinese with English abstract).
[14] 李青茂. 杂交水稻在美国实行机械化制种的要求和前景. 杂交水稻, 1990, ( 2):45-47.
Li Q M. The requirement for mechanization of hybrid rice seed production in USA and its prospects. Hybrid Rice, 1990, ( 2):45-47 (in Chinese with English abstract).
[15] 傅亚萍, 朱正歌, 肖晗, 胡国成, 斯华敏, 于永红, 孙宗修. 抗除草剂基因导入培矮64S实现杂交水稻制种机械化的初步研究. 中国水稻科学, 2010,15:97-100.
Fu Y P, Zhu Z G, Xiao H, Hu G C, Si H M, Yu Y H, Sun Z X. Primary study on mechanization of seed production of hybrid rice by inducing Bar gene to Pei’ai 64S. Chin J Rice Sci, 2010,15:97-100 (in Chinese with English abstract).
[16] 张德文, 杨前进, 王士梅, 汪婉琳, 朱启升. 混制1号机械化混播制种生产技术. 中国农学通报, 2008,24(10):66-69.
Zhang D W, Yang Q J, Wang S M, Wang W L, Zhu Q S. The production technology of seeds by mechanize of Hunzhi No. 1. Chin Agric Sci Bull, 2008,24(10):66-69 (in Chinese with English abstract).
[17] 颜昌伟. 一种利用叶绿体转基因技术的机械化杂交稻制种方法: 20091004373. 2010-12-09.
Yan C W. A mechanized hybrid rice seed production method using chloroplast transgenic technology: 20091004373. [2010-12-09]. https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMTAxMDkSEENOMjAwOTEwMDQzNzM1LjEaCGplYnl0cHBq. (in Chinese)
[18] 朱启升. 杂交水稻混播制种技术研究进展. 作物研究, 2004,18(4):204-207.
Zhu Q S. Research progress on hybrid rice seed breeding by mixed planted. Crop Res, 2004,18(4):204-207 (in Chinese with English abstract).
[19] 张集文. 水稻苯达松敏感突变研究进展. 中国水稻科学, 2010,24:551-558.
Zhang J W. Progress on the study of the Bentazon sensitive mutants in rice. Chin J Rice Sci, 2010,24:551-558 (in Chinese with English abstract).
[20] 朱祯. 转基因水稻研发进展. 中国农业科技导报, 2010,12(2):9-16.
Zhu Z. Research progress and development of transgenic rice. J Agric Sci Technol, 2010,12(2):9-16 (in Chinese with English abstract).
[21] 高荣村, 路金根, 范国华, 徐美玲, 李金军. 一份水稻雌性全不育隐性突变体的基本特性. 浙江农业科学, 2007, ( 5):529-530.
Gao R C, Lu J G, Fan G H, Xu M L, Li J J. Basic characteristics of a recessive male and female sterile mutant of rice. J Zhejiang Agric Sci, 2007, ( 5):529-530 (in Chinese with English abstract).
[22] Chang Z Y, Chen Z F, Wang N, Xie G, Lu J W, Yan W, Zhou J L, Tang X Y, Deng X W. Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene. Proc Natl Acad Sci USA, 2016,113:14145-14150.
[23] Xia Y M, Tang N, Hu Y Y, Li D, Li S C, Bu X L, Yu M L, Qi S W, Yang Y S, Zhu H J, Cao C Y, Li P, Yuan L P, Cao M L. A method for mechanized hybrid rice seed production using female sterile rice. Rice, 2019,12:39.
[24] 吴春珠, 程祖辛, 赵明富, 郑建华, 杨聚宝. 水稻雄性不育系博白A的抽穗期遗传分析. 安徽农学通报, 2005,11(6):55-57.
Wu C Z, Cheng Z X, Zhao M F, Zheng J H, Yang J B. Genetic analysis of heading stage of rice male sterile line Bobai A. Anhui Agric Sci Bull, 2005,11(6):55-57 (in Chinese with English abstract).
[25] 何立斌, 曹立勇, 钱前, 程式华. 稻壳颜色标记在杂交水稻制种中的应用初探. 浙江农业学报, 2001,13:357-360.
He L B, Cao L Y, Qian Q, Cheng S H. The prospects of hybrid rice seed production by using rice chaff colour marker. Acta Agric Zhejiangensis, 2001,13:357-360 (in Chinese with English abstract).
[26] 许可, 袁定阳, 谭炎宁, 段美娟. 适于混播制种的水稻隐性红颖资源RG-1的发现及其特征特性研究. 杂交水稻, 2018,33(4):17-21.
Xu K, Yuan D Y, Tan Y N, Duan M J. Discovery and characteristic investigation of a recessive red-glume germplasm RG-1 with applied potential in mixed sowing of hybrid rice seed production. Hybrid rice, 2018,33(4):17-21 (in Chinese with English abstract).
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[7] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[8] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[9] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[10] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[11] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[12] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!