欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (2): 332-341.doi: 10.3724/SP.J.1006.2022.14001

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作

杨宗桃(), 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升*()   

  1. 福建农林大学国家甘蔗工程技术研究中心 / 农业农村部福建甘蔗生物学与遗传育种重点实验室 / 教育部作物遗传育种与综合利用重点实验室, 福建福州 350002
  • 收稿日期:2021-01-05 接受日期:2021-04-14 出版日期:2022-02-12 网络出版日期:2021-06-16
  • 通讯作者: 徐景升
  • 作者简介:E-mail: fafuyangzongtao@163.com
  • 基金资助:
    本研究由国家自然科学基金项目(31971991);福建农林大学科技创新基金项目(CXZX2018026);福建省科技厅引导性项目资助(2017N0003)

Sugarcane ubiquitin-like protein UBL5 responses to SCMV infection and interacts with SCMV-6K2

YANG Zong-Tao(), LIU Shu-Xian, CHENG Guang-Yuan, ZHANG Hai, ZHOU Ying-Shuan, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng*()   

  1. Sugarcane Research & Development Center, China Agricultural Technology System, Fujian Agriculture and Forestry University / Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs / Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fuzhou 350002, Fujian, China
  • Received:2021-01-05 Accepted:2021-04-14 Published:2022-02-12 Published online:2021-06-16
  • Contact: XU Jing-Sheng
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31971991);the Science and Technology Innovation Project of Fujian Agriculture and Forestry University(CXZX2018026);Guiding Project of Science and Technology Department of Fujian Province(2017N0003)

摘要:

泛素化修饰在蛋白功能调控、生长发育和逆境应答中具有重要作用。类泛素蛋白(ubiquitin-like proteins, UBLs)是泛素-蛋白酶体系统(ubiquitin-proteasome system, UPS)的重要组分。本课题组前期利用酵母双杂交(yeast two-hybrid, Y2H)技术从甘蔗(Saccharum spp. hybrid)中分离鉴定了1个与甘蔗花叶病毒(Sugarcane mosaic virus, SCMV)编码蛋白6K2互作的类泛素蛋白UBL5, 命名为ScUBL5, 长度为73 aa。本研究利用双分子荧光互补(bimolecular fluorescence complementation, BiFC)试验进一步证实了ScUBL5与SCMV-6K2互作; 生物信息学分析表明, ScUBL5为稳定的亲水性非分泌蛋白, 无信号肽和跨膜结构。系统进化树分析表明, ScUBL5具有明显的种属特异性。亚细胞定位分析表明, ScUBL5定位于细胞质和细胞核。实时荧光定量PCR分析发现, ScUBL5基因的表达具有明显的组织特异性, 在完成形态建成的正一叶、第7叶、根和第8节间中的相对表达量显著高于未成熟的心叶和第3节间; SCMV侵染对ScUBL5基因表达影响显著, ScUBL5基因在侵染早期显著上调, 侵染后期下调但显著高于对照。

关键词: 甘蔗, 类泛素蛋白, 甘蔗花叶病毒, 6K2

Abstract:

Ubiquitylation plays key roles in the regulation of protein function, growth and development, and response to stress. Ubiquitin-like proteins (UBLs) are the main components of the ubiquitin-proteasome system (UPS). In our previous study, the UBL5 homologue was isolated from sugarcane (Saccharum spp. hybrid) by yeast two-hybrid (Y2H) with the 6K2 of Sugarcane mosaic virus (SCMV) as bait, and then designated as ScUBL5 with 73 aa in length. In the present study, the interaction of ScUBL5 with the SCMV-6K2 was further confirmed by bimolecular fluorescence complementation assays (BiFC). Bioinformatics analysis showed that ScUBL5 is a stable hydrophilic non-secretory protein without signal peptide or transmembrane domain. Phylogenetic tree analysis showed that ScUBL5 is species specific. Subcellular localization analysis showed that ScUBL5 is localized in cytoplasm and nucleus. ScUBL5 gene shows obvious tissue specificity in sugarcane by real-time quantitative PCR analysis. The expression levels of ScUBL5 gene in the established morphogenesis tissues such as the 1st leaf, the 7th leaf, the 8th internode and the root were significantly higher than those in the immature tissues such as leaf roll and the 3rd internode. The expression of ScUBL5 gene is significantly affected by SCMV infection. ScUBL5 was significantly upregulated in the early stage of SCMV infection, then downregulated but significantly higher than the control at the late stage of SCMV infection.

Key words: sugarcane, ubiquitin-like protein, Sugarcane mosaic virus, 6K2

表1

本研究使用的引物"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
策略
Strategy
221-ScUBL5-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCGCAGTCCATGCT 双分子荧光互补载体构建
Vector generation for BiFC
221-ScUBL5-R GGGGACCACTTTGTACAAGAAAGCTGGGTCCTACTCTTCGTCCTCGC
ScUBL5-qF CTCCATCATCGGCGAGATCATCAC 定量PCR
Real-time-qPCR
ScUBL5-qR GGCGGCGACGAAGAAGAAGAG
GAPDH-F CACGGCCACTGGAAGCA 内参基因
Reference gene
GAPDH-R TCCTCAG GGTTCCTGATGCC
eEF-1α-F TTTCACACTTGGAGTGAAGCAGAT 内参基因
Reference gene
eEF-1α-R GACTTCCTTCACAATCTCATCATAA
SCMV-CP-F TACAGAGAGACACACAGCTG SCMV检测
Detection of SCMV
SCMV-CP-R ACGCTACACCAGAAGACACT

图1

基于SWISS-MODEL的ScUBL5蛋白三维建模 ScUBL5 (MN167908): 甘蔗的UBL5; SbUBL5 (XP_002448973.1): 高粱的UBL5; OsUBL5 (XP_015619383.1): 水稻的UBL5; AtUBL5 (NP_176030.1): 拟南芥的UBL5。"

图2

ScUBL5的氨基酸序列 水稻: OsUBL5 (XP_015619383.1); 甘蔗: ScUBL5 (QHD26889.1); 二穗短柄草: BdUBL5 (XP_003578938.1); 高粱: SbUBL5 (XP_002448973.1); 拟南芥: AtUBL5 (NP_199045.1); 烟草: NtUBL5 (XP_016510251.1); 小麦: TaUBL5 (AJA91631.1)。"

图3

不同物种UBL5蛋白的系统进化分析"

图4

ScUBL5-YFP在本氏烟表皮细胞中的定位 标尺为25 μm。"

图5

BiFC检测ScUBL5与SCMV-6K2的互作 A: YC融合于ScUBL5的C末端, YN融合于SCMV-6K2的N末端; B: YN融合于ScUBL5的N末端, YC融合于SCMV-6K2的C末端。将6K2-YN和ScUBL5-YC (A), 6K2-YC和ScUBL5-YN (B)分别共注射到本氏烟叶片中进行瞬时表达, 48 h后激光共聚焦观察。标尺为25 μm。"

图6

ScUBL5基因在甘蔗不同组织中的表达模式 LR: 心叶; +1 L: 正一叶; +7 L: 正七叶; +3 I: 第3节间; +8 I: 第8节间; R: 根。误差线为每组处理的标准误差(n = 3)。柱上不同的小写字母表示在P < 0.05时差异显著。"

图7

ScUBL5基因应答SCMV侵染的表达模式 误差线为每组处理的标准误差(n = 3)。柱上不同的小写字母表示在P < 0.05时差异显著。"

[1] Glickman M H, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev, 2002,82:373-428.
[2] Pickart C M. Back to the future with ubiquitin. Cell, 2004,116:181-190.
[3] Downes B, Vierstra R D. Post-translational regulation in plants employing a diverse set of polypeptide tags. Biochem Soc Trans, 2005,33:393-399.
[4] 张孝廉, 张吉顺, 邹颉, 赵杰宏, 任学良. 蛋白泛素化和类泛素化修饰在植物开花时间调控中的作用. 浙江大学学报(农业与生命科学版), 2015,41:371-384.
Zhang X L, Zhang J H, Zou J, Zhao J H, Ren X L. Function of protein ubiquitination and SUMOylation in regulating flowering time of plants. J Zhejiang Univ(Agric Life Sci), 2015,41:371-384 (in Chinese with English abstract).
[5] Su T, Yang M, Wang P, Zhao Y, Ma C. Interplay between the ubiquitin proteasome system and ubiquitin-mediated autophagy in plants. Cells, 2020,9:2219.
[6] Chen B, Lin L, Lu Y, Peng J, Zheng H, Yang Q, Rao S, Wu G, Li J, Chen Z, Song B, Chen J, Yan F. Ubiquitin-Like protein 5 interacts with the silencing suppressor p3 of Rice stripe virus and mediates its degradation through the 26S proteasome pathway. PLoS Pathog, 2020,16:e1008780.
[7] 魏文毅, 孙毅, 曹诚, 常智杰, 陈策实, 陈佺, 程金科, 冯仁田, 高大明, 胡荣贵, 贾立军, 姜天霞, 金建平, 李汇华, 李卫, 刘翠华, 刘萱, 马蕾娜, 缪时英, 饶枫, 商瑜, 宋质银, 万勇, 王恒彬, 王平, 王占新, 吴缅, 吴乔, 谢旗, 谢松波, 谢志平, 徐平, 许执恒, 杨波, 阳成伟, 应美丹, 张宏冰, 张令强, 赵永超, 周军, 朱军, 王琳芳, 张宏, 王琛, 邱小波. 类泛素蛋白及其中文命名. 科学通报, 2018,63:2564-2569.
Wei W Y, Sun Y, Cao C, Chang Z J, Chen C S, Chen Q, Cheng J K, Feng R T, Gao D M, Hu R G, Jia L J, Jiang T X, Jin J P, Li H H, Li W, Liu C H, Liu X, Ma L N, Miao S Y, Rao F, Shang Y, Song Z Y, Wan Y, Wang H B, Wang P, Wang Z X, Wu M, Wu Q, Xie Q, Xie S B, Xie Z P, Xu P, Xu Z H, Yang B, Yang C W, Ying M D, Zhang H B, Zhang L Q, Zhao Y C, Zhou J, Zhu J, Wang L F, Zhang H, Wang C, Qiu X B. Ubiquitin-like proteins and their Chinese nomenclatures. Chin Sci Bull, 2018,63:2564-2569 (in Chinese with English abstract).
[8] Mishra S K, Ammon T, Popowicz G M, Krajewski M, Nagel R J, Ares M Jr, Holak T A, Jentsch S. Role of the ubiquitin-like protein Hub1 in splice-site usage and alternative splicing. Nature, 2011,474:173-178.
[9] 商书交, 周燕, 娄兴亮, 高述民, 范春霞. UBL5基因的结构与功能研究. 北京林业大学学报, 2010,32(5):172-176.
Shang S J, Zhou Y, Lou X L, Gao S M, Fan C X. UBL5 gene and its product structure and function. J Beijing For Univ, 2010,32(5):172-176 (in Chinese with English abstract).
[10] Yashiroda H, Tanaka K. Hub1 is an essential ubiquitin-like protein without functioning as a typical modifier in fission yeast. Genes Cells, 2004,9:1189-1197.
[11] Park H J, Kim W Y, Park H C, Lee S Y, Bohnert H J, Yun D J. SUMO and SUMOylation in plants. Mol Cells, 2011,32:305-316.
[12] Cheng X, Xiong R, Li Y, Li F, Zhou X, Wang A. Sumoylation of Turnip mosaic virus RNA polymerase promotes viral infection by counteracting the host NPR1-mediated immune response. Plant Cell, 2017,29:508-525.
[13] Morrell R, Sadanandom A. Dealing with stress: a review of plant SUMO proteases. Front Plant Sci, 2019,10:1122.
[14] Patel M, Milla-Lewis S, Zhang W, Templeton K, Reynolds W C, Richardson K, Biswas M, Zuleta M C, Dewey R E, Qu R, Sathish P. Overexpression of ubiquitin-like LpHUB1 gene confers drought tolerance in perennial ryegrass. Plant Biotechnol J, 2015,13:689-699.
[15] Feng H, Wang Q, Zhao X, Han L, Wang X, Kang Z. TaULP5 contributes to the compatible interaction of adult plant resistance wheat seedlings-stripe rust pathogen. Physiol Mol Plant Pathol, 2016,96:29-35.
[16] 刘燕群, 李玉萍, 梁伟红, 宋启道, 秦小立, 叶露. 国外甘蔗产业发展现状. 世界农业, 2015, (8):147-152.
Liu Y Q, Li Y P, Liang W H, Song Q D, Qin X L, Ye L. Current status and development of the abroad sugarcane industry. World Agric, 2015, ( 8):147-152 (in Chinese with English abstract).
[17] 王明强, 李文凤, 黄应昆, 王晓燕, 卢文洁, 罗志明. 我国大陆蔗区发生的甘蔗病毒病及防控对策. 中国糖料, 2010, ( 4):55-58.
Wang M Q, Li W F, Huang Y K, Wang X Y, Lu W J, Luo Z M. Occurrence and controlling strategies on sugarcane viral diseases in Chinese mainland. Sugar Crops China, 2010, ( 4):55-58 (in Chinese with English abstract).
[18] 翁卓, 黄寒. 中国制糖产业竞争力对比与政策建议——基于对巴西、印度、泰国考察的比较. 甘蔗糖业, 2015, ( 4):65-72.
Weng Z, Huang H. Comparative analysis on China’s sugar industry competitiveness: based on the comparison of Brazil, India and Thailand sugar industry. Sugar Canesugar, 2015, ( 4):65-72 (in Chinese with English abstract).
[19] 刘晓雪, 王新超. 2017/18榨季中国食糖生产形势分析与2018/19榨季展望. 农业展望, 2018,14(11):40-46.
Liu X X, Wang X C. Domestic sugar production situation in 2017/18 crushing season and its prospect for 2018/19 crushing season. Outlook Agric, 2018,14(11):40-46 (in Chinese with English abstract).
[20] 周丰静, 黄诚华, 李正文, 商显坤, 黄伟华, 潘雪红, 魏吉利, 林善海. 广西蔗区甘蔗花叶病病毒种群分析. 南方农业学报, 2015,46:609-613.
Zhou F J, Huang C H, Li Z W, Shang X S, Huang W H, Pan X H, Wei J L, Lin S H. Analysis of the virus population causing Sugarcane mosaic virus disease in sugarcane growing area of Guangxi. J Southern Agric, 2015,46:609-613 (in Chinese with English abstract).
[21] 周国辉, 许东林, 沈万宽. 甘蔗重要病害研究及防治策略. 甘蔗糖业, 2005, ( 1):11-16.
Zhou G H, Xu D L, Shen W K. On sugarcane major diseases and their controlling. Sugar Canesugar, 2005, ( 1):11-16 (in Chinese with English abstract).
[22] Shukla D D, Frenkel M J, McKern N M, Ward C W, Jilka J, Tosic M, Ford R E. Confirmation that the Sugarcane mosaic virus subgroup consists of four distinct Potyviruses by using peptide profiles of coat proteins. Arch Virol, 1992,5:363-373.
[23] Shukla D D, Tosic M, Jilka J, Ford R E, Toler R W, Mac L. Taxonomy of potyviruses infecting maize, sorghum, and sugarcane in Australia and the United States as determined by reactivities of polyclonal antibodies directed towards virus-specific N-termini of coat proteins. Phytopathology, 1989,79:223-229.
[24] Ward C W, Shukla D D. Taxonomy of potyviruses: current problems and some solutions. Intervirology, 1991,32:269-296.
[25] Putra L K, Kristini A, Achadian E M, Damayanti T A. Sugarcane streak mosaic virus in Indonesia: distribution, characterisation, yield losses and management approaches. Sugar Tech, 2014,16:392-399.
[26] Li W F, He Z, Li S F, Huang Y K, Zhang Z X, Jiang D M, Wang X Y, Luo Z M. Molecular characterization of a new strain of Sugarcane streak mosaic virus(SCSMV). Arch Virol, 2011,156:2101-2104.
[27] Xu D L, Zhou G H, Xie Y J, Mock R, Li R. Complete nucleotide sequence and taxonomy of Sugarcane streak mosaic virus, member of a novel genus in the family Potyviridae. Virus Genes, 2010,40:432-439.
[28] 李文凤, 单红丽, 张荣跃, 王晓燕, 罗志明, 尹炯, 仓晓燕, 李婕, 黄应昆. 我国新育成甘蔗品种(系)对甘蔗线条花叶病毒和高粱花叶病毒的抗性评价. 植物病理学报, 2018,48:389-394.
Li W F, Shan H L, Zhang R Y, Wang X Y, Luo Z M, Yin J, Cang X Y, Li J, Huang Y K. Screening for resistance to Sugarcane streak mosaic virus and Sorghum mosaic virus in new elite sugarcane varieties/clones from China. Acta Phytopathol Sin, 2018,48:389-394 (in Chinese with English abstract).
[29] 冯小艳, 王文治, 沈林波, 冯翠莲, 张树珍. 甘蔗线条花叶病毒研究进展. 生物技术通报, 2017,33(7):22-28.
Feng X Y, Wang W Z, Shen L B, Feng C L, Zhang S Z. Research advances on Sugarcane streak mosaic virus. Biotechnol Bull, 2017,33(7):22-28 (in Chinese with English abstract).
[30] Wu L, Zu X, Wang S, Chen Y. Sugarcane mosaic virus—long history but still a threat to industry. Crop Prot, 2012,42:74-78.
[31] Xu D L, Park J W, Mirkov T E, Zhou G H. Viruses causing mosaic disease in sugarcane and their genetic diversity in southern China. Arch Virol, 2008,153:1031-1039.
[32] 郑艳茹, 翟玉山, 邓宇晴, 成伟, 程光远, 杨永庆, 徐景升. 甘蔗花叶病毒(SCMV)种群结构分析. 福建农林大学学报(自然科学版), 2016,45(2):135-140.
Zheng Y R, Zhai Y S, Deng Y Q, Cheng W, Cheng G Y, Yang Y Q, Xu J S. The population structure of Sugarcane mosaic virus (SCMV). J Fujian Agric For Univ(Nat Sci Edn), 2016,45(2):135-140 (in Chinese with English abstract).
[33] 翟玉山, 彭磊, 杨永庆, 邓宇晴, 程光远, 郑艳茹, 徐景升. 甘蔗条纹花叶病毒HC-Pro、P3N-PIPO、CP和VPg基因酵母双杂交诱饵表达载体的构建及自激活检测. 华北农学报, 2016,31(1):83-89.
Zhai Y S, Peng L, Yang Y Q, Deng Y Q, Cheng G Y, Zheng Y R, Xu J S. Construction and self-activated detection of the baits of HC-Pro, P3N-PIPO, CP and VPg from Sugarcane streak mosaic virus for yeast two hybrid system. Acta Agric Boreali-Sin, 2016,31(1):83-89 (in Chinese with English abstract).
[34] Dong M, Cheng G Y, Peng L, Xu Q, Yang Y Q, Xu J S. Transcriptome analysis of sugarcane response to the infection by Sugarcane streak mosaic virus(SCSMV). Trop Plant Biol, 2017,10:45-55.
[35] Zhai Y S, Deng Y Q, Cheng G Y, Peng L, Zheng Y R, Yang Y, Xu J S. Sugarcane elongin C is involved in infection by sugarcane mosaic disease pathogens. Biochem Biophys Res Commun, 2015,466:312-318.
[36] 李文凤, 丁铭, 方琦, 黄应昆, 张仲凯, 董家红, 苏晓霞, 李婷婷. 云南甘蔗花叶病病原的初步鉴定. 中国糖料, 2006, (2):4-7.
Li W F, Ding M, Fang Q, Huang Y K, Zhang Z K, Dong J H, Su X X, Li T T. Preliminary identification of sugarcane mosaic pathogeny in Yunnan. Sugar Crops China, 2006, (2):4-7 (in Chinese with English abstract).
[37] Filloux D, Fernandez E, Comstock J C, Mollov D, Roumagnac P, Rott P. Viral metagenomic-based screening of sugarcane from florida reveals occurrence of six sugarcane-infecting viruses and high prevalence of Sugarcane yellow leaf virus. Plant Dis, 2018,102:2317-2323.
[38] Akbar S, Yao W, Yu K, Qin L, Ruan M, Powell C A, Chen B, Zhang M. Photosynthetic characterization and expression profiles of sugarcane infected by Sugarcane mosaic virus(SCMV). Photosynth Res, 2020. doi. org/10.1007/s11120-019-00706-w.
[39] Yahaya A, Dangora D B, Kumar P L, Alegbejo M D, Gregg L, Alabi O J. Prevalence and genome characterization of field isolates of Sugarcane mosaic virus(SCMV) in Nigeria. Plant Dis, 2019,103:818-824.
[40] Bernardi F. Potyvirus proteins: a wealth of functions. Virus Res, 2001,74:157-175.
[41] Olspert A, Carr J P, Firth A E. Mutational analysis of the Potyviridae transcriptional slippage site utilized for expression of the P3N-PIPO and P1N-PISPO proteins. Nucleic Acids Res, 2016,44:7618-7629.
[42] Olspert A, Chung B Y, Atkins J F, Carr J P, Firth A E. Transcriptional slippage in the positive-sense RNA virus family Potyviridae. Sci Rep, 2015,16:995-1004.
[43] Cheng G Y, Dong M, Xu Q, Peng L, Yang Z T, Wei T Y, Xu J S. Dissecting the molecular mechanism of the subcellular localization and cell-to-cell movement of the Sugarcane mosaic virus P3N- PIPO. Sci Rep, 2017,7:9868.
[44] Riechmann J L, Laín S, García J A. Highlights and prospects of potyvirus molecular biology. J Gen Virol, 1992,73:1-16.
[45] Chung B Y, Miller W A, Atkins J F, Firth A E. An overlapping essential gene in the Potyviridae. Proc Natl Acad Sci USA, 2008,105:5897-5902.
[46] Cheng G Y, Yang Z T, Zhang H, Zhang J S, Xu J S. Remorin interacting with PCaP1 impairs Turnip mosaic virus intercellular movement but is antagonised by VPg. New Phytol, 2019,225:2122-2139.
[47] Cabanillas D, Jiang J, Movahed N, Germain H, Yamaji Y, Zheng H, Laliberté J. Turnip mosaic virus Uses the SNARE protein VTI11 in an unconventional route for replication vesicle trafficking. Plant Cell, 2018,30:2594-2615.
[48] Movahed N, Patarroyo C, Sun J, Vali H, Laliberté J F, Zheng H. Cytoplasmic inclusion of Turnip mosaic virus serves as a docking point for the intercellular movement of viral replication vesicles. Plant Physiol, 2017,175:1732-1744.
[49] Movahed N, Sun J, Vali H, Laliberté J, Zheng H. A host ER fusogen is recruited by Turnip mosaic virus for maturation of viral replication vesicles. Plant Physiol, 2019,179:507-518.
[50] Zhang H, Cheng G Y, Yang Z T, Wang T, Xu J S. Identification of sugarcane host factors interacting with the 6K2 protein of the Sugarcane mosaic virus. Int J Mol Sci, 2019,20:3867.
[51] Wilkinson C R, Dittmar G A, Ohi M D, Uetz P, Jones N, Finley D. Ubiquitin-like protein Hub1 is required for pre-mRNA splicing and localization of an essential splicing factor in fission yeast. Curr Biol, 2004,14:2283-2288.
[52] Watanabe E, Mano S, Nishimura M, Yamada K. AtUBL5 regulates growth and development through pre-mRNA splicing in Arabidopsis thaliana. PLoS One, 2019,14:e0224795.
[53] 邓宇晴, 杨永庆, 翟玉山, 程光远, 彭磊, 郑艳茹, 林彦铨, 徐景升. 甘蔗花叶病毒福州分离物全基因组克隆及种群分析. 植物病理学报, 2016,46:775-782.
Deng Y Q, Yang Y Q, Zhai Y S, Cheng G Y, Peng L, Zheng Y R, Lin Y Q, Xu J S. Genome cloning of two Sugarcane mosaic virus isolates from Fuzhou and phylogenetic analysis of SCMV. Acta Phytopathol Sin, 2016,46:775-782 (in Chinese with English abstract).
[54] 张海, 刘淑娴, 杨宗桃, 王彤, 程光远, 商贺阳, 徐景升. 甘蔗PsbS亚基应答甘蔗花叶病毒侵染及其与6K2蛋白的互作研究. 作物学报, 2020,46:1722-1733.
Zhang H, Liu S X, Yang Z T, Wang T, Cheng G Y, Shang H Y, Xu J S. Sugarcane PsbS subunit response to Sugarcane mosaic virus infection and its interaction with 6K2 protein. Acta Agron Sin, 2020,46:1722-1733 (in Chinese with English abstract).
[55] 朱海龙, 程光远, 彭磊, 柴哲, 郭晋隆, 许莉萍, 徐景升. 甘蔗条纹花叶病毒P3蛋白与甘蔗Rubisco大亚基互作的研究. 西北植物学报, 2014,34:676-681.
Zhu H L, Cheng G Y, Peng L, Chai Z, Guo J L, Xu L P, Xu J S. Interaction between Sugarcane streak mosaic virus P3 and rubisco large subunit from sugarcane. Acta Bot Boreali-Occident Sin, 2014,34:676-681 (in Chinese with English abstract).
[56] Guo J, Ling H, Wu Q, Xu L, Que Y. The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. Sci Rep, 2014,4:7042.
[57] Ammon T, Mishra S K, Kowalska K, Popowicz G M, Holak T A, Jentsch S. The conserved ubiquitin-like protein Hub1 plays a critical role in splicing in human cells. J Mol Cell Biol, 2014,6:312-323.
[58] Correagalvis V, Poschmann G, Melzer M, Kai S, Jahns P. PsbS interactions involved in the activation of energy dissipation in Arabidopsis. Nat Plants, 2016,2:15225.
[59] Daskalakis V, Papadatos S. The photosystem II subunit S under stress. Biophy J, 2017,113:2364-2372.
[60] 翟玉山, 赵贺, 张海, 邓宇晴, 程光远, 杨宗桃, 王彤, 彭磊, 徐倩, 董萌, 徐景升. 甘蔗NAD(P)H脱氢酶复合体O亚基基因克隆及其甘蔗花叶病毒VPg互作研究. 作物学报, 2019,45:1478-1487.
Zhai Y S, Zhao H, Zhang H, Deng Y Q, Cheng G Y, Yang Z T, Wang T, Peng L, Dong M, Xu J S. Cloning of NAD(P)H complex O subunit gene and its interaction with VPg of Sugarcane mosaic virus. Acta Agron Sin, 2019,45:1478-1487 (in Chinese with English abstract).
[61] Hochstrasser M. Origin and function of ubiquitin-like proteins. Nature, 2009,458:422-429.
[62] Marino D, Peeters N, Rivas S. Ubiquitination during plant immune signaling. Plant Physiol, 2012,160:15-27.
[63] Alcaide-Loridan C, Jupin I. Ubiquitin and plant viruses, let’s play together. Plant Physiol, 2012,160:72-82.
[64] Dielen A S, Badaoui S, Candresse T, German-Retana S. The ubiquitin/26S proteasome system in plant-pathogen interactions: a never-ending hide-and-seek game. Mol Plant Pathol, 2010,11:293-308.
[65] Verchot J. Plant virus infection and the ubiquitin proteasome machinery: arms race along the endoplasmic reticulum. Viruses, 2016,8:314.
[66] Reichel C, Beachy R N. Degradation of Tobacco mosaic virus movement protein by the 26S proteasome. J Virol, 2000,74:3330-3337.
[67] 张杰, 董莎萌, 王伟, 赵建华, 陈学伟, 郭惠珊, 何光存, 何祖华, 康振生, 李毅, 彭友良, 王国梁, 周雪平, 王源超, 周俭民. 植物免疫研究与抗病虫绿色防控: 进展、机遇与挑战. 中国科学: 生命科学, 2019,49:1479-1507.
Zhang J, Dong S M, Wang W, Zhao J H, Chen X W, Guo H S, He G C, He Z H, Kang Z S, Li Y, Peng Y L, Wang G L, Zhou X P, Wang Y C, Zhou J M. Research on plant immunity and green control of disease and insect resistance: progress, opportunities and challenge. Sci Sin Vitae, 2019,49:1479-1507 (in Chinese with English abstract).
[68] Hulsmans S, Rodriguez M, De Coninck B, Rolland F. The SnRK1 energy sensor in plant biotic interactions. Trends Plant Sci, 2016,21:648-661.
[69] Wei T, Zhang C, Hou X, Sanfaçon H, Wang A. The SNARE protein Syp71 is essential for Turnip mosaic virus infection by mediating fusion of virus-induced vesicles with chloroplasts. PLoS Pathog, 2013,9:e1003378.
[70] Geng C, Yan Z Y, Cheng D J, Liu J, Tian Y P, Zhu C X, Wang H Y, Li X D. Tobacco vein banding mosaic virus 6K2 protein hijacks NbPsbO1 for virus replication. Sci Rep, 2017,7:43455.
[71] Mandadi K K, Scholthof K B. Genome-wide analysis of alternative splicing landscapes modulated during plant-virus interactions in Brachypodium distachyon. Plant Cell, 2015,27:71-85.
[72] Wang A. Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. Annu Rev Phytopathol, 2015,53:45-66.
[73] Wittmann S, Chatel H, Fortin M G, Laliberté J F. Interaction of the viral protein genome linked of turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology, 1997,234:84-92.
[74] 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作研究. 作物学报, 2021,47:1522-1530.
Zhang H, Cheng G Y, Yang Z T, Liu S X, Shang H Y, Huang G Q, Xu J S. Sugarcane PsbR subunit response to SCMV infection and its interaction with SCMV-6K2. Acta Agron Sin, 2021,47:1522-1530 (in Chinese with English abstract).
[75] 张海, 程光远, 杨宗桃, 王彤, 刘淑娴, 商贺阳, 赵贺, 徐景升. 甘蔗ScCRT1基因克隆及其应答SCMV侵染分子机制的研究. 作物学报, 2021,47:94-103.
Zhang H, Cheng G Y, Yang Z T, Wang T, Liu S X, Shang H Y, Zhao H, Xu J S. Cloning of sugarcane ScCRT1 gene and its response to SCMV infection. Acta Agron Sin, 2021,47:94-103 (in Chinese with English abstract).
[1] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[2] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[3] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[4] 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530.
[5] 傅华英, 张婷, 彭文静, 段瑶瑶, 许哲昕, 林艺华, 高三基. 甘蔗新品种(系)苗期白条病人工接种抗性鉴定与评价[J]. 作物学报, 2021, 47(8): 1531-1539.
[6] 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析[J]. 作物学报, 2021, 47(7): 1275-1296.
[7] 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893.
[8] 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586.
[9] 张荣跃, 王晓燕, 杨昆, 单红丽, 仓晓燕, 李婕, 王长秘, 尹炯, 罗志明, 李文凤, 黄应昆. 甘蔗新品种及主栽品种对褐锈病抗性与Bru1基因分子检测[J]. 作物学报, 2021, 47(2): 376-382.
[10] 仓晓燕, 夏红明, 李文凤, 王晓燕, 单红丽, 王长秘, 李婕, 张荣跃, 黄应昆. 甘蔗优良品种(系)对黑穗病的抗性评价[J]. 作物学报, 2021, 47(11): 2290-2296.
[11] 张海, 程光远, 杨宗桃, 王彤, 刘淑娴, 商贺阳, 赵贺, 徐景升. 甘蔗ScCRT1基因克隆及其应答SCMV侵染分子机制的研究[J]. 作物学报, 2021, 47(1): 94-103.
[12] 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857.
[13] 罗俊,林兆里,李诗燕,阙友雄,张才芳,杨仔奇,姚坤存,冯景芳,陈建峰,张华. 不同土壤改良措施对机械压实酸化蔗地土壤理化性质及微生物群落结构的影响[J]. 作物学报, 2020, 46(4): 596-613.
[14] 王恒波,祁舒婷,陈姝琦,郭晋隆,阙友雄. 甘蔗栽培种单倍体基因组SSR位点的发掘与应用[J]. 作物学报, 2020, 46(4): 631-642.
[15] 张海, 刘淑娴, 杨宗桃, 王彤, 程光远, 商贺阳, 徐景升. 甘蔗PsbS亚基应答甘蔗花叶病毒侵染及其与6K2蛋白的互作研究[J]. 作物学报, 2020, 46(11): 1722-1733.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!