作物学报 ›› 2021, Vol. 47 ›› Issue (1): 94-103.doi: 10.3724/SP.J.1006.2021.04156
张海(), 程光远, 杨宗桃, 王彤, 刘淑娴, 商贺阳, 赵贺, 徐景升*()
ZHANG Hai(), CHENG Guang-Yuan, YANG Zong-Tao, WANG Tong, LIU Shu-Xian, SHANG He-Yang, ZHAO He, XU Jing-Sheng*()
摘要:
钙网蛋白(calreticulin, CRT)在真核生物中广泛表达, 是重要的分子伴侣和钙离子结合蛋白, 参与调控Ca2+稳态、钙依赖信号、内质网质量控制、植物生长发育、免疫反应和逆境应答等多种生物学过程。甘蔗(Saccharum spp. hybrid)中CRT应答甘蔗花叶病毒(Sugarcane mosaic virus, SCMV)侵染尚未见报道。本研究从热带种Badila (S. officinarum)中克隆了1个CRT1/CRT2亚型的CRT编码基因, 命名为ScCRT1。该基因开放读码框(open reading frame, ORF)长度为1281 bp, 编码长度为426 aa的蛋白。生物信息学分析表明, ScCRT1具有典型的CRT蛋白结构域, 为稳定的亲水性蛋白, 其N端有一个信号肽, 具有典型的跨膜结构域, C端有典型的内质网定位信号; 二级结构多为无规则卷曲; 系统进化树分析表明, 该蛋白是典型的CRT蛋白, 在单子叶和双子叶植物中具有明显的分化。亚细胞定位表明ScCRT1定位于内质网。实时荧光定量PCR分析发现, ScCRT1基因在甘蔗各组织中都有表达, 在第8节间中的表达量最低, 在心叶中的表达量较高; 该基因在SCMV侵染早期表达量上调, 后期下调表达。酵母双杂交(yeast two hybrid, Y2H)和双分子荧光互补(bimolecular fluorescence complementation, BiFC)试验表明, ScCRT1与SCMV-6K2蛋白互作。推测SCMV-6K2通过与ScCRT1互作调控钙离子稳态进而便于SCMV侵染。
[1] |
Michalak M, Corbett E F, Mesaeli N, Nakamura K, Opas M. Calreticulin: one protein, one gene, many functions. Biochem J, 1999,344:281-292.
pmid: 10567207 |
[2] |
Jia X Y, Xu C Y, Jing R L, Li R Z, Mao X G, Wang J P, Chang X P. Molecular cloning and characterization of wheat calreticulin (CRT) gene involved in drought-stressed responses. J Exp Bot, 2008,59:739-751.
pmid: 18349049 |
[3] |
Qiu Y, Xi J, Du L, Poovaiah B W. The function of calreticulin in plant immunity: new discoveries for an old protein. Plant Signal Behav, 2012,7:907-910.
doi: 10.4161/psb.20721 pmid: 22827946 |
[4] |
Joshi R, Paul M, Kumar A, Pandey D. Role of calreticulin in biotic and abiotic stress signalling and tolerance mechanisms in plants. Gene, 2019,714:144004.
pmid: 31351124 |
[5] |
Michalak M Robert Parker J M Opas M. Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium, 2002,32:269-278.
doi: 10.1016/s0143416002001884 pmid: 12543089 |
[6] |
Gelebart P, Opas M, Michalak M. Calreticulin, a Ca2+-binding chaperone of the endoplasmic reticulum. Int J Biochem Cell Biol, 2005,37:260-266.
doi: 10.1016/j.biocel.2004.02.030 pmid: 15474971 |
[7] |
Baluška F, Samaj J, Napier R, Volkmann D. Maize calreticulin localizes preferentially to plasmodesmata in root apex. Plant J, 1999,19:481-488.
pmid: 10504570 |
[8] |
Chen M H, Tian G W, Gafni Y, Citovsky V. Effects of calreticulin on viral cell-to-cell movement. Plant Physiol, 2005,138:1866-1876.
pmid: 16006596 |
[9] |
Kudla J, Becker D, Grill E, Hedrich R, Hippler M, Kummer U, Parniske M, Romeis T, Schumacher K. Advances and current challenges in calcium signaling. New Phytol, 2018,218:414-431.
pmid: 29332310 |
[10] |
Michalak M, Groenendyk J, Szabo E, Gold L I, Opas M. Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem J, 2009,417:651-666.
doi: 10.1042/BJ20081847 pmid: 19133842 |
[11] | Garg G, Yadav S, Ruchi, Yadav G. Key roles of calreticulin and calnexin proteins in plant perception under stress conditions: a review. Adv Life Sci, 2015,5:18-26. |
[12] |
Krysko D V, Ravichandran K S, Vandenabeele P. Macrophages regulate the clearance of living cells by calreticulin. Nat Commun, 2018,9:4644.
pmid: 30405101 |
[13] |
Fucikova J, Kasikova L, Truxova I, Laco J, Skapa P, Ryska A, Spisek R. Relevance of the chaperone-like protein calreticulin for the biological behavior and clinical outcome of cancer. Immunol Lett, 2018,193:25-34.
pmid: 29175313 |
[14] |
Venkateswaran K, Verma A, Bhatt A N, Shrivastava A, Manda K, Raj H G, Prasad A, Len C, Parmar V S, Dwarakanath B S. Emerging roles of calreticulin in cancer: implications for therapy. Curr Protein Pept Sci, 2018,19:344-357.
doi: 10.2174/1389203718666170111123253 pmid: 28079009 |
[15] |
Menegazzi P, Guzzo F, Baldan B, Mariani P, Treves S. Purification of calreticulin-like protein(s) from spinach leaves. Biochem Biophys Res Commun, 1993,190:1130-1135.
doi: 10.1006/bbrc.1993.1167 pmid: 8439313 |
[16] |
Li Z J, Onodera H, Ugaki M, Tanaka H, Komatsu S. Characterization of calreticulin as a phosphoprotein interacting with cold-induced protein kinase in rice. Biol Pharm Bull, 2003,26:256-261.
doi: 10.1248/bpb.26.256 pmid: 12576690 |
[17] |
Xiang Y, Lu Y H, Song M, Wang Y, Xu W Q, Wu L T, Wang H C, Ma Z Q. Overexpression of a Triticum aestivum calreticulin gene (TaCRT1) improves salinity tolerance in tobacco. PLoS One, 2015,10:e0140591.
doi: 10.1371/journal.pone.0140591 pmid: 26469859 |
[18] |
Pröbsting M, Schenke D, Hossain R, Häder C, Thurau T, Wighardt L, Schuster A, Zhou Z, Ye W Z, Rietz S, Leckband G, Cai D. Loss of function of CRT1a (calreticulin) reduces plant susceptibility to Verticillium longisporum in both Arabidopsis thaliana and oilseed rape (Brassica napus). Plant Biotechnol J, 2020. doi: 10.1111/pbi.13394.
doi: 10.1111/pbi.13506 pmid: 33131209 |
[19] |
Saijo Y, Tintor N, Lu X, Rauf P, Pajerowska-Mukhtar K, Häweker H, Dong X N, Robatzek S, Schulze-Lefert P. Receptor quality control in the endoplasmic reticulum for plant innate immunity. EMBO J, 2009,28:3439-3449.
doi: 10.1038/emboj.2009.263 pmid: 19763087 |
[20] |
Caplan J L, Zhu X, Mamillapalli P, Marathe R, Anandalakshmi R, Dinesh-Kumar S P. Induced ER chaperones regulate a receptor-like kinase to mediate antiviral innate immune response in plants. Cell Host Microbe, 2009,6:457-469.
doi: 10.1016/j.chom.2009.10.005 |
[21] |
Shen W T, Yan P, Gao L, Pan X Y, Wu J Y, Zhou P. Helper component-proteinase (HC-Pro) protein of Papaya ringspot virus interacts with papaya calreticulin. Mol Plant Pathol, 2010,11:335-346.
doi: 10.1111/j.1364-3703.2009.00606.x pmid: 20447282 |
[22] | 翁卓, 黄寒. 中国制糖产业竞争力对比与政策建议——基于对巴西、印度、泰国考察的比较. 甘蔗糖业, 2015, (4):65-72. |
Weng Z, Huang H. Comparative analysis on China’s sugar industry competitiveness: based on the comparison of Brazil, India and Thailand Sugar Industry. Sugar Canesugar, 2015, (4):65-72 (in Chinese with English abstract). | |
[23] | 刘晓雪, 王新超. 2017/18榨季中国食糖生产形势分析与2018/19榨季展望. 农业展望, 2018,14(11):40-46. |
Liu X X, Wang X C. Domestic sugar production situation in 2017/18 crushing season and its prospect for 2018/19 crushing season. Outlook Agric, 2018,14(11):40-46 (in Chinese with English abstract). | |
[24] | 刘燕群, 李玉萍, 梁伟红, 宋启道, 秦小立, 叶露. 国外甘蔗产业发展现状. 世界农业, 2015, (8):147-152. |
Liu Y Q, Li Y P, Liang H W, Song Q D, Qin X L, Ye L. Current status and development of the abroad sugarcane industry. World Agric, 2015, (8):147-152 (in Chinese with English abstract). | |
[25] | 梁姗姗, 罗群, 陈如凯, 高三基. 引起甘蔗花叶病的病原分子生物学进展. 植物保护学报, 2017,44:363-370. |
Liang S S, Luo Q, Chen R K, Gao S J. Advances in researches on molecular biology of viruses causing sugarcane mosaic. Acta Phytophy Sin, 2017,44:363-370 (in Chinese with English abstract). | |
[26] | 李文凤, 单红丽, 张荣跃, 王晓燕, 罗志明, 尹炯, 仓晓燕, 李婕, 黄应昆. 我国新育成甘蔗品种(系)对甘蔗线条花叶病毒和高粱花叶病毒的抗性评价. 植物病理学报, 2018,48:389-394. |
Li W F, Shan H L, Zhang R Y, Wang X Y, Luo Z M, Yin J, Cang X Y, Li J, Huang Y K. Screening for resistance to Sugarcane streak mosaic virus and Sorghum mosaic virus in new elite sugarcane varieties/clones from China. Acta Phytopathol Sin, 2018,48:389-394 (in Chinese with English abstract). | |
[27] | 冯小艳, 王文治, 沈林波, 冯翠莲, 张树珍. 甘蔗线条花叶病毒研究进展. 生物技术通报, 2017,33(7):22-28. |
Feng X Y, Wang W Z, Shen L B, Feng C L, Zhang S Z. Research advances on Sugarcane streak mosaic virus . Biotechnol Bull, 2017,33(7):22-28 (in Chinese with English abstract). | |
[28] |
Wu L, Zu X, Wang S, Chen Y. Sugarcane mosaic virus-long history but still a threat to industry. Crop Prot, 2012,42:74-78.
doi: 10.1016/j.cropro.2012.07.005 |
[29] |
Cheng G Y, Dong M, Xu Q, Peng L, Yang Z T, Wei T Y, Xu J S. Dissecting the molecular mechanism of the subcellular localization and cell-to-cell movement of the Sugarcane mosaic virus P3N-PIPO. Sci Rep, 2017,7:9868.
pmid: 28852157 |
[30] | 郑艳茹, 翟玉山, 邓宇晴, 成伟, 程光远, 杨永庆, 徐景升. 甘蔗花叶病毒(SCMV)种群结构分析. 福建农林大学学报(自然科学版), 2016,45(2):135-140. |
Zheng Y R, Zhai Y S, Deng Y Q, Cheng W, Cheng G Y, Yang Y Q, Xu J S. The population structure of Sugarcane mosaic virus (SCMV). J Fujian Agric For Univ(Nat Sci Edn), 2016,45(2):135-140 (in Chinese with English abstract). | |
[31] | 邓宇晴, 杨永庆, 翟玉山, 程光远, 彭磊, 郑艳茹, 林彦铨, 徐景升. 甘蔗花叶病毒福州分离物全基因组克隆及种群分析. 植物病理学报, 2016,46:775-782. |
Deng Y Q, Yang Y Q, Zhai Y S, Cheng G Y, Peng L, Zheng Y R, Lin Y Q, Xu J S. Genome cloning of two Sugarcane mosaic virus isolates from Fuzhou and phylogenetic analysis of SCMV. Acta Phytopathol Sin, 2016,46:775-782 (in Chinese with English abstract). | |
[32] |
Olspert A, Carr J P, Firth A E. Mutational analysis of the Potyviridae transcriptional slippage site utilized for expression of the P3N-PIPO and P1N-PISPO proteins. Nucleic Acids Res, 2016,44:7618-7629.
pmid: 27185887 |
[33] |
Schaad M C, Jensen P E, Carrington J C. Formation of plant RNA virus replication complexes on membranes: role of an endoplasmic reticulum targeted viral protein. EMBO J, 1999, 16:4049-4059.
pmid: 9233814 |
[34] |
Zhang H, Cheng G Y, Yang Z T, Wang T, Xu J S. Identification of sugarcane host factors interacting with the 6K2 protein of the Sugarcane mosaic virus. Int J Mol Sci, 2019,20:3867.
doi: 10.3390/ijms20163867 |
[35] |
Grangeon R, Jiang J, Wan J, Agbeci M, Zheng H Q, Laliberté J F. 6K2-induced vesicles can move cell to cell during Turnip mosaic virus infection. Front Microbiol, 2013,4:351-360.
doi: 10.3389/fmicb.2013.00351 pmid: 24409170 |
[36] |
Movahed N, Patarroyo C, Sun J, Vali H, Laliberté J F, Zheng H. Cylindrical inclusion protein of Turnip mosaic virus serves as a docking point for the intercellular movement of viral replication vesicles. Plant Physiol, 2017,175:1732-1744.
doi: 10.1104/pp.17.01484 pmid: 29089395 |
[37] |
Movahed N, Sun J, Vali H, Laliberté J F, Zheng H. A host ER fusogen is recruited by Turnip mosaic virus for maturation of viral replication vesicles. Plant Physiol, 2019,179:507-518.
doi: 10.1104/pp.18.01342 pmid: 30538165 |
[38] |
Shinohara S, Fitriana Y, Satoh K, Narumi I, Saito T. Enhanced fungicide resistance in Isaria fumosorosea following ionizing radiation-induced mutagenesis. FEMS Microbiol Lett, 2013,349:54-60.
doi: 10.1111/1574-6968.12295 pmid: 24164561 |
[39] |
Guo J L, Ling H, Wu Q B, Xu L P, Que Y X. The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. Sci Rep, 2014,4:7042.
doi: 10.1038/srep07042 pmid: 25391499 |
[40] |
Iskandar H M, Simpson R S, Casu R E, Bonnett G D, Maclean D J, Manners J M. Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression in sugarcane. Plant Mol Biol Rep, 2004,22:325-337.
doi: 10.1007/BF02772676 |
[41] |
Nelson D, Glaunsinger B, Bohnert H J. Abundant accumulation of the calcium-binding molecular chaperone calreticulin in specific floral tissues of Arabidopsis thaliana. Plant Physiol, 1997,114:29-37.
pmid: 9159940 |
[42] |
Jia X Y, He L H, Jing R L, Li R Z. Calreticulin: Conserved protein and diverse functions in plants. Physiol Plant, 2010,136:127-138.
doi: 10.1111/j.1399-3054.2009.1223.x pmid: 19453510 |
[43] |
Whitham S A, Yang C, Goodin M M. Global impact: elucidating plant responses to viral infection. Mol Plant Microbe Interact, 2006,19:1207-1215.
pmid: 17073303 |
[44] |
Bengyella L, Waikhom S D, Allie F, Rey C. Virus tolerance and recovery from viral induced-symptoms in plants are associated with transcriptome reprograming. Plant Mol Biol, 2015,89:243-252.
doi: 10.1007/s11103-015-0362-6 pmid: 26358043 |
[45] | Dong M, Cheng G Y, Peng L, Xu Q, Yang Y Q, Xu J S. Transcriptome analysis of sugarcane response to the infection by Sugarcane streak mosaic virus (SCSMV). Trop Plant Biol, 2017,10:45-55. |
[46] |
Akbar S, Yao W, Yu K, Qin L F, Ruan M H, Powell C A, Chen B S, Zhang M Q. Photosynthetic characterization and expression profiles of sugarcane infected by Sugarcane mosaic virus (SCMV). Photosynth Res, 2020. doi: 10.1007/s11120-019-00706-w.
doi: 10.1007/s11120-020-00784-1 pmid: 32979144 |
[47] |
Verchot J. How does the stressed out ER find relief during virus infection. Curr Opin Virol, 2016,17:74-79.
doi: 10.1016/j.coviro.2016.01.018 pmid: 26871502 |
[48] |
Fraile A, García-Arenal F. The coevolution of plants and viruses: resistance and pathogenicity. Adv Virus Res, 2010,76:1-32.
doi: 10.1016/S0065-3527(10)76001-2 pmid: 20965070 |
[49] |
Wang A. Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. Annu Rev Phytopathol, 2015,53:45-66.
doi: 10.1146/annurev-phyto-080614-120001 pmid: 25938276 |
[50] |
Aidemark M, Andersson C J, Rasmusson A G, Widell S. Regulation of callose synthase activity in situ in alamethicin-permeabilized Arabidopsis and tobacco suspension cells. BMC Plant Biol, 2009,9:27.
pmid: 19284621 |
[51] |
Sivaguru M, Fujiwara T, Šamaj J, Baluška F, Yang Z, Osawa H, Maeda T, Mori T, Volkmann D, Matsumoto H. Aluminum- induced 1→3-β-d-glucan inhibits cell-to-cell trafficking of molecules through plasmodesmata. A new mechanism of aluminum toxicity in plants. Plant Physiol, 2000,124:991-1006.
doi: 10.1104/pp.124.3.991 pmid: 11080277 |
[52] |
Sujkowska-Rybkowska M, Znojek E. Localization of calreticulin and calcium ions in mycorrhizal roots of Medicago truncatula in response to aluminum stress. J Plant Physiol, 2018,229:22-31.
doi: 10.1016/j.jplph.2018.05.014 pmid: 30025219 |
[53] |
Li F F, Zhang C W, Tang Z W, Zhang L R, Dai Z J, Lyu S W, Li Y Z, Hou X L, Bernards M, Wang A M. A plant RNA virus activates selective autophagy in a UPR-dependent manner to promote virus infection. New Phytol, 2020. doi: 10.1111/nph.16716.
doi: 10.1111/nph.17123 pmid: 33259640 |
[54] |
Wei T Y, Zhang C W, Hong J, Xiong R Y, Kasschau K D, Zhou X P, Carrington J C, Wang A M. Formation of complexes at plasmodesmata for potyvirus intercellular movement is mediated by the viral protein P3N-PIPO. PLoS Pathog, 2010,6:e1000962.
doi: 10.1371/journal.ppat.1000962 pmid: 20585568 |
[55] |
Chai M, Wu X, Liu J, Fang Y, Luan Y M, Cui X Y, Zhou X P, Wang A M, Cheng X F. P3N-PIPO interacts with P3 via the shared N-terminal domain to recruit viral replication vesicles for cell-to-cell movement. J Virol, 2020,94:e01898-19.
pmid: 31969439 |
[1] | 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234. |
[2] | 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026. |
[3] | 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872. |
[4] | 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341. |
[5] | 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530. |
[6] | 傅华英, 张婷, 彭文静, 段瑶瑶, 许哲昕, 林艺华, 高三基. 甘蔗新品种(系)苗期白条病人工接种抗性鉴定与评价[J]. 作物学报, 2021, 47(8): 1531-1539. |
[7] | 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析[J]. 作物学报, 2021, 47(7): 1275-1296. |
[8] | 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893. |
[9] | 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586. |
[10] | 张荣跃, 王晓燕, 杨昆, 单红丽, 仓晓燕, 李婕, 王长秘, 尹炯, 罗志明, 李文凤, 黄应昆. 甘蔗新品种及主栽品种对褐锈病抗性与Bru1基因分子检测[J]. 作物学报, 2021, 47(2): 376-382. |
[11] | 仓晓燕, 夏红明, 李文凤, 王晓燕, 单红丽, 王长秘, 李婕, 张荣跃, 黄应昆. 甘蔗优良品种(系)对黑穗病的抗性评价[J]. 作物学报, 2021, 47(11): 2290-2296. |
[12] | 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857. |
[13] | 罗俊,林兆里,李诗燕,阙友雄,张才芳,杨仔奇,姚坤存,冯景芳,陈建峰,张华. 不同土壤改良措施对机械压实酸化蔗地土壤理化性质及微生物群落结构的影响[J]. 作物学报, 2020, 46(4): 596-613. |
[14] | 王恒波,祁舒婷,陈姝琦,郭晋隆,阙友雄. 甘蔗栽培种单倍体基因组SSR位点的发掘与应用[J]. 作物学报, 2020, 46(4): 631-642. |
[15] | 张海, 刘淑娴, 杨宗桃, 王彤, 程光远, 商贺阳, 徐景升. 甘蔗PsbS亚基应答甘蔗花叶病毒侵染及其与6K2蛋白的互作研究[J]. 作物学报, 2020, 46(11): 1722-1733. |
|