欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (2): 396-409.doi: 10.3724/SP.J.1006.2022.14026

• 耕作栽培·生理生化 • 上一篇    下一篇

滴施缩节胺与氮肥对棉花生长发育及产量的影响

张特(), 王蜜蜂, 赵强*()   

  1. 新疆农业大学农学院 / 棉花教育部工程研究中心, 新疆乌鲁木齐 830052
  • 收稿日期:2021-02-13 接受日期:2021-04-26 出版日期:2022-02-12 网络出版日期:2021-06-15
  • 通讯作者: 赵强
  • 作者简介:E-mail: 18240968114@163.com
  • 基金资助:
    本研究由新疆维吾尔自治区重大科技专项(2020A01002-2);新疆生产建设兵团科技攻关项目(2018AB039);新疆维吾尔自治区科技支疆项目资助(2018E02030)

Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton

ZHANG Te(), WANG Mi-Feng, ZHAO Qiang*()   

  1. College of Agriculture, Xinjiang Agricultural University / Engineering Research Centre of Cotton, Ministry of Education, Urumqi 830052, Xinjiang, China
  • Received:2021-02-13 Accepted:2021-04-26 Published:2022-02-12 Published online:2021-06-15
  • Contact: ZHAO Qiang
  • Supported by:
    This study was supported by the Major Science and Technology Special Project of Xinjiang Uygur Autonomous Region(2020A01002-2);the Science and Technology Research Project of the Corps(2018AB039);the Science and Technology Project of Xinjiang Uygur Autonomous Region(2018E02030)

摘要:

为探明缩节胺与氮肥对棉花农艺性状的互作效应, 试验采用双因素随机区组设计, 设置150 (N1)、300 (N2)、450 kg hm -2 (N3) 3个施氮(纯N)水平, 525 (D1)、1050 (D2)、2100 g hm -2 (D3) 3个缩节胺水平, 交互共9个处理。研究滴施不同剂量氮肥与缩节胺对棉花农艺性状、棉铃时空分布、干物质积累及分配、产量及纤维品质的影响。结果表明, 缩节胺与氮肥互作效应对棉花农艺性状影响显著, 在低氮状态下缩节胺对棉花生长的延缓作用减弱甚至消失。N1处理下, D3处理相比D1处理棉株的株高、果枝始节高、第4果枝长、第7果枝长分别增加12.07、1.54、1.28和1.20 cm。在正常或高氮状态下缩节胺对棉花生长产生一定的延缓作用, 其控制效果并不随缩节胺剂量增加而增强, N3处理下, D3处理相比D1处理棉株的株高、第1果枝长、第2果节间平均长度分别降低1.05、1.68和1.52 cm。棉株的株高、茎粗与果枝数随施氮量增加而增加, N3处理相比N1处理分别增加3.30 cm、0.75 mm与0.29台; 其果枝长与果节间长在不同施氮量间无明显差异。D2处理相比D1与D3处理有利于干物质积累及向生殖器官的转运, 促进伏前桃与伏桃的生长, 但滴施缩节胺不同剂量对棉花的产量及纤维品质等方面无明显影响。N1处理下干物质积累量高于其他处理13.14%~44.50%; 生殖器官占比较N3处理增长2.05%~6.30%。D3处理与N1处理下棉花纤维品质较好, 籽棉产量、单株铃数与单铃重最高、增产效果较好。因此, 北疆棉区推荐随水滴施用量为1050~2100 g hm -2缩节胺与150 kg hm -2氮肥。

关键词: 棉花, 缩节胺, 氮肥, 果枝长度, 干物质, 产量

Abstract:

In order to explore the effects of DPC (1,1-dimethyl-piperidinium chloride) and nitrogen fertilizer on agronomic traits and clarify the interaction effect of DPC and nitrogen fertilizer through drip irrigation in cotton, we performed a two-factor randomized block design with three nitrogen levels (pure N, N1: 150 kg hm -2, N2: 300 kg hm -2, and N3: 450 kg hm -2) and three DPC levels (D1: 525 g hm -2, D2: 1050 g hm -2, and D3: 2100 g hm -2). These groups interacted with each other and formed nine treatments. The effects of different groups on agronomic traits, the spatial and temporal distribution of boll, the accumulation and distribution of dry matter, yield, and fiber quality were investigated in cotton. The results showed that the interaction between DPC and nitrogen fertilizer had a significant impact on the agronomic traits of cotton; The retarding effect of DPC on cotton growth was weakened or even disappeared under the low nitrogen condition. Under N1 treatment, compared to D1 treatment, plant height, initial node height of fruit branch, length of fourth, and seventh fruit branch of D3 treatment increased by 12.07, 1.54, 1.28, and 1.20 cm, respectively. Under normal or high nitrogen conditions, DPC had a certain retarded effect on cotton growth, but the control effect did not increase with the increasing DPC doses. Under N3 treatment, compared with D1 treatment, the plant height, first fruit branch length, and the average internode length of the second fruit of D3 treatment decreased by 1.05, 1.68, and 1.52 cm, respectively. Plant height, stem diameter, and fruit branch number of cottons increased with the increase of nitrogen application rate. Compared with N1 treatment, N3 treatment increased 3.30 cm, 0.75 mm and 0.29 sets, respectively. There were no significant differences in the length of fruit branch and internode among the different nitrogen application rates. The drip application of D2 treatment was beneficial for dry matter accumulation and translocation to reproductive organs. It promoted pre-ambient and ambient peaches growth, but there was not significant effect on cotton yield and fiber quality. The total dry matter accumulation was 13.14%-44.50% higher in N1 than that in other treatments. The percentage of reproductive organs increased by 2.05%-6.30% compared with N3 treatment. When applying 2100 g hm -2 DPC and 150 kg hm -2 nitrogen fertilizer with water drop, the cotton fiber quality, seed cotton yield, boll number per plant, and boll weight per plant were the highest; and the effect of yield increase was better. In conclusion, we recommended to apply 1050-2100 g hm -2DPC and 150 kg hm -2 nitrogen fertilizer with drip irrigation in the cotton area of northern Xinjiang.

Key words: cotton, DPC, nitrogen fertilizer, fruit branch length, dry matter, yield

表1

滴施缩节胺时间及剂量"

处理
Treatment
剂量 Dose 总量
Total
6月10日Jun. 10 6月18日Jun. 18 6月30日Jun. 30 7月10日Jul. 10
D1 60 120 120 225 525
D2 120 240 240 450 1050
D3 240 480 480 900 2100

表2

滴施氮肥时间及剂量"

处理
Treatment
剂量 Dose 总量
Total
6月10日Jun. 10 6月18日Jun. 18 6月30日Jun. 30 7月10日Jul. 10 7月21日Jul. 21 8月1日Aug. 1 8月9日Aug. 9 8月26日Aug. 26
N1 7.5 22.5 22.5 22.5 22.5 22.5 22.5 7.5 150
N2 15.0 45.0 45.0 45.0 45.0 45.0 45.0 15.0 300
N3 22.5 67.5 67.5 67.5 67.5 67.5 67.5 22.5 450

表3

不同处理对棉花主茎农艺性状的影响"

年份
Year
处理
Treatment
株高
Plant height
(cm)
茎粗
Stem diameter
(mm)
主茎叶片数
No. of stem leaf
果枝台数
No. of fruit branch
果枝始节高
Height of the first branch (cm)
2018 D1 N1 68.10±6.13 a 10.35±1.19 ab 15.50±0.97 b 10.4±1.07 a 22.65±2.49 a
N2 76.70±4.39 cd 10.90±0.79 bc 15.60±1.26 b 11.7±0.94 b 24.10±5.02 abc
N3 80.10±3.81 d 11.48±1.09 c 16.90±1.12 c 11.9±1.28 b 22.84±2.44 ab
D2 N1 69.70±8.15 ab 9.45±1.17 a 15.40±1.50 b 10.5±1.26 a 25.95±2.62 c
N2 71.10±8.58 abc 10.14±1.17 ab 14.00±0.94 a 11.5±1.08 b 25.75±3.36 abc
N3 75.80±7.16 bcd 10.85±0.22 bc 14.70±1.15 ab 11.6±0.84 b 26.95±2.16 c
D3 N1 78.70±4.24 d 10.35±0.77 ab 15.50±0.84 b 12.4±1.17 b 23.23±4.04 abc
N2 78.80±4.26 d 10.81±0.69 bc 14.50±0.97 ab 11.6±0.69 b 25.14±3.23 b
N3 72.00±7.90 abc 11.05±1.02 bc 15.50±1.90 b 11.6±1.26 b 26.52±3.87 c
D1 74.97±6.97 ab 10.70±0.89 a 15.16±1.36 a 11.33±1.26 a 22.51±3.59 a
D2 72.20±8.15 a 10.56±1.21 a 14.70±1.31 a 11.20±1.15 a 25.55±2.99 b
D3 76.50±6.41 b 11.43±1.20 b 16.00±1.25 b 12.10±1.21 b 25.26±3.72 b
N1 72.16±7.77 a 10.41±1.24 a 15.93±1.63 b 11.33±1.66 a 24.26±3.74 a
N2 75.53±6.74 a 10.97±0.86 ab 14.70±1.23 a 11.60±0.89 a 24.31±3.86 a
N3 75.96±7.51 a 11.31±1.20 b 15.23±1.04 a 11.70±1.11 a 24.75±3.53 a
D 3.546* 6.267** 8.653** 6.198** 7.422**
N 3.231* 5.930** 7.633** 0.944 0.187
D×N 6.306** 2.325 0.950 7.336** 2.510*
2017 D1 N1 65.90±6.81 a 8.13±0.64 a 15.50±1.90 a 11.20±1.87 a 21.70±2.55 b
N2 66.90±5.72 a 9.21±0.60 bcd 14.50±0.97 a 10.00±1.24 a 24.10±5.02 ab
N3 67.00±6.59 a 8.48±0.86 ab 15.62±0.74 a 11.12±0.64 a 21.50±2.67 ab
D2 N1 64.65±7.51 a 8.69±1.02 abc 15.40±1.50 a 11.10±1.37 a 25.95±2.16 ab
N2 67.95±5.89 a 9.31±0.61 bcd 14.00±0.94 a 9.40±1.17 a 23.75±3.36 a
N3 69.15±6.28 ab 9.53±0.97 cd 14.70±1.15 a 10.60±1.26 a 26.95±2.62 ab
D3 N1 79.45±6.48 c 9.69±1.11 d 15.30±3.45 a 10.80±3.48 a 24.20±4.04 ab
N2 66.38±5.79 a 9.39±0.62 cd 15.67±1.32 a 11.22±1.09 a 24.72±3.19 b
N3 69.50±8.78 ab 9.57±0.99 cd 15.50±0.97 a 11.40±1.26 a 26.50±3.87 b
D1 66.58±6.15 a 8.62±0.82 a 15.17±1.38 a 10.75±1.45 a 22.50±3.72 a
D2 70.58±7.02 b 9.18±0.93 b 14.70±1.31 a 10.36±1.42 a 25.55±2.99 b
D3 71.95±8.94 b 9.56±0.91 b 15.48±2.16 a 11.13±2.19 a 25.15±3.74 b
N1 73.35±8.79 b 8.84±1.12 a 15.40±2.35 a 11.03±2.34 a 23.95±3.41 a
N2 67.10±5.63 a 9.30±0.59 a 14.68±1.25 a 10.17±1.36 a 24.17±3.84 a
N3 68.66±7.16 a 8.66±7.16 a 15.25±1.04 a 11.03±1.13 a 25.23±3.86 a
D 4.542* 8.661** 1.705 1.527 7.007**
N 7.003** 2.425 1.368 2.293 0.717
D×N 2.946* 2.198 0.880 1.035 2.189

图1

2017年与2018年不同处理对棉花第1、第4、第7果枝长度的影响 处理同表3。柱上不同小写字母分别表示同部位果枝处理间在0.05水平差异显著。"

表4

不同处理对棉花不同果枝第1、第2果节长的影响"

年份
Year
处理
Treatment
第1果枝
The first fruit branch
第4果枝
The fourth fruit branch
第7果枝
The seventh fruit branch
第1果节间长
Length of first fruit node
第2果节间长
Length of second fruit node
第1果节间长
Length of first fruit node
第2果节间长
Length of second fruit node
第1果节间长
Length of first fruit node
第2果节间长
Length of second fruit node
2018 D1 N1 9.50±2.39 a 2.00±0.54 a 13.00±2.32 a 7.50±2.35 b 5.00±1.02 ab 3.50±0.24 ab
N2 10.50±3.66 a 5.91±1.46 a 14.75±2.90 a 5.62±1.88 ab 5.80±3.56 ab 4.40±2.38 bc
N3 9.62±3.30 a 5.37±3.90 a 10.66±5.25 a 9.00±5.29 b 5.16±0.28 ab 2.83±0.57 ab
D2 N1 8.83±1.15 a 2.66±0.28 a 9.16±3.17 a 7.33±3.75 ab 5.00±0.77 ab 3.50±0.81 ab
N2 8.68±3.61 a 6.25±2.26 a 11.37±3.54 a 5.00±1.82 ab 3.83±1.44 a 3.16±2.02 ab
N3 10.41±2.20 a 6.33±4.93 a 12.08±4.74 a 4.33±2.20 a 2.50±0.72 a 3.00±1.21 ab
D3 N1 9.67±0.57 a 4.50±0.58 a 11.16±0.28 a 5.50±1.40 ab 4.33±2.30 ab 3.00±1.04 ab
N2 8.50±2.19 a 6.35±3.71 a 12.70±4.38 a 3.60±1.19 a 4.50±1.57 ab 6.00±2.57 c
N3 9.50±1.50 a 4.50±1.50 a 12.50±1.50 a 3.50±0.50 a 8.00±2.54 b 1.00±0.11 a
D1 10.00±2.92 a 4.84±2.71 a 13.00±3.48 a 7.20±3.10 b 5.40±2.28 a 3.72±1.67 a
D2 9.32±2.84 a 5.64±3.44 a 11.19±3.95 a 5.23±2.59 ab 3.77±1.30 a 3.22±1.03 a
2018 D3 9.00±1.77 a 5.53±2.86 a 12.22±2.93 a 4.09±1.20 a 5.61±2.13 a 3.33±2.17 a
N1 9.33±0.75 a 3.11±1.24 a 11.11±2.30 a 6.77±2.10 a 4.77±1.20 a 3.33±0.25 ab
N2 9.14±3.18 a 6.19±2.55 b 12.92±3.68 a 4.65±1.73 a 4.90±2.50 a 4.50±2.07 b
N3 9.96±2.30 a 5.61±3.86 b 11.83±4.02 a 5.29±3.53 a 5.22±2.38 a 2.27±1.00 a
D 0.385 2.454 0.419 1.812 2.308 0.152
N 0.183 3.746* 0.443 0.665 0.453 10.119**
D×N 1.123 0.581 0.150 1.451 2.762 7.561**
2017 D1 N1 6.37±2.49 a 4.50±2.38 b 4.83±2.84 ab 3.16±0.28 ab 3.16±1.04 ab 3.13±0.80 a
N2 6.25±2.22 a 2.75±0.82 ab 4.45±1.52 ab 2.38±0.78 a 3.00±0.50 a 2.25±0.35 a
N3 6.00±1.22 a 3.50±1.32 ab 3.30±0.26 a 3.00±1.00 ab 4.83±0.28 bc 3.33±1.15 a
D2 N1 8.75±1.76 a 3.75±0.35 ab 6.20±2.81 b 3.75±1.72 ab 4.50±0.70 bc 3.12±1.03 a
N2 5.62±2.21 a 3.12±0.62 ab 5.41±1.80 ab 2.75±1.29 ab 3.66±1.04 ab 3.00±1.32 a
N3 5.87±2.83 a 2.00±0.54 a 5.06±1.32 ab 2.92±0.83 ab 2.66±0.57 a 3.00±1.00 a
D3 N1 6.58±2.10 a 3.41±1.80 ab 6.33±2.54 b 4.50±1.54 b 4.66±0.57 bc 3.83±1.25 a
N2 5.20±1.82 a 2.70±0.75 ab 5.33±1.77 ab 3.75±2.04 ab 5.73±1.07 c 2.16±0.28 a
N3 6.33±3.05 a 2.33±1.44 a 6.35±1.67 b 2.42±0.98 a 2.66±0.57 a 4.16±2.02 a
D1 6.23±1.95 a 3.29±1.49 a 4.31±1.65 a 2.66±0.79 a 3.66±1.06 a 2.98±0.89 a
D2 6.31±2.37 a 2.80±0.82 a 5.51±1.95 ab 3.13±1.31 a 3.70±1.05 a 3.05±0.98 a
D3 6.03±2.14 a 2.92±1.39 a 6.02±1.96 b 3.50±1.71 a 4.35±1.58 a 3.38±1.51 a
N1 6.80±2.10 a 3.83±1.81 b 5.98±2.57 a 3.93±1.48 b 4.15±0.97 a 3.34±0.98 a
N2 5.79±2.03 a 2.81±0.74 a 4.93±1.65 a 2.88±1.43 a 4.13±1.46 a 2.50±0.84 a
N3 6.05±2.19 a 2.55±1.14 a 5.27±1.70 a 2.73±0.90 a 3.38±1.26 a 3.50±1.36 a
D 0.788 0.914 3.664* 0.477 2.060 0.362
N 0.836 3.297 0.436 0.383 2.116 1.854
D×N 1.440 0.164 0.441 0.710 6.284** 0.573

表5

不同处理下棉花“三桃”占比"

处理
Treatment
2018 2017
伏前桃
Pre-summer bolls
伏桃
Summer bolls
秋桃
Autumn bolls
伏前桃
Pre-summer bolls
伏桃
Summer bolls
秋桃
Autumn bolls
D1 N1 35.18 56.09 8.73 47.45 45.64 6.91
N2 36.19 58.93 4.88 43.64 45.45 10.91
N3 39.91 48.40 11.69 49.54 41.20 9.26
D2 N1 25.70 65.49 8.80 58.05 39.57 2.38
N2 29.89 63.81 6.30 50.00 45.24 4.76
N3 30.15 60.31 9.54 58.33 35.90 5.77
D3 N1 26.20 64.52 9.27 51.72 43.43 4.84
N2 28.90 61.69 9.40 53.33 43.89 2.78
N3 38.76 51.30 9.94 38.68 54.72 6.60
D1 37.09 54.48 8.43 46.88 44.10 9.03
D2 28.58 63.21 8.21 55.46 40.24 4.30
D3 31.29 58.84 9.87 47.91 47.35 4.74
N1 29.03 62.04 8.94 52.41 42.88 4.71
N2 31.66 61.15 7.20 48.99 44.86 6.15
N3 36.27 53.34 10.39 48.85 43.94 7.21

表6

不同处理下棉铃的内外围铃分布占比"

处理
Treatment
2018 2017
内围铃
Boll closer to steam
外围铃
Boll from to steam
内围铃
Boll closer to steam
外围铃
Boll from to steam
D1 N1 90.00 10.00 81.71 18.29
N2 88.29 11.71 77.90 22.10
N3 82.40 17.60 76.05 23.95
D2 N1 85.85 14.15 76.49 23.51
N2 84.48 15.52 73.90 26.10
N3 79.03 20.97 78.18 21.82
D3 N1 80.18 19.82 78.61 21.39
N2 77.52 22.48 73.67 26.33
N3 87.10 12.90 75.65 24.35
D1 86.90 13.10 78.55 21.45
D2 83.12 16.88 76.19 23.81
D3 81.60 18.40 75.98 24.02
N1 85.34 14.66 78.94 21.06
N2 83.43 16.57 75.16 24.84
N3 82.84 17.16 76.63 23.37

图2

2017年与2018年不同处理对棉花干物质积累量的影响 处理同表3。"

表7

不同处理对棉花产量与产量构成因素的影响"

年份
Year
处理
Treatment
收获株数
Harvest plant of land
(×104 plant hm-2)
单株结铃数
Boll number
per plant
单铃重
Boll weight
(g)
衣分
Lint percentage (%)
籽棉产量
Seed cotton yield (kg hm-2)
皮棉产量
Lint cotton yield (kg hm-2)
2018 D1 N1 17.98 a 5.51 ab 5.42 a 38.94 a 5341.50 a 2082.82 a
N2 20.68 a 5.38 ab 5.58 a 39.98 ab 6262.42 a 2503.12 a
N3 18.85 a 5.49 ab 5.48 a 39.99 ab 5667.97 a 2260.91 a
D2 N1 20.49 a 5.13 a 5.75 a 39.93 ab 5966.88 a 2383.76 a
N2 20.49 a 5.25 ab 5.59 a 40.01 ab 5977.68 a 2401.98 a
N3 20.01 a 4.92 a 5.77 a 40.35 ab 5556.93 a 2243.58 a
D3 N1 16.50 a 6.46 bc 5.72 a 41.07 b 6074.88 a 2495.81 a
N2 18.07 a 5.96 ab 5.71 a 39.91 ab 6181.65 a 2468.81 a
N3 16.09 a 6.99 c 5.38 a 40.36 ab 6269.28 a 2529.67 a
2018 D1 19.17 b 5.46 a 5.49 a 39.63 a 5757.29 a 2282.28 a
D2 20.33 b 5.10 a 5.70 a 40.09 a 5833.83 a 2343.10 a
D3 16.88 a 6.47 b 5.60 a 40.44 a 6175.27 a 2498.09 a
N1 18.32 a 5.70 a 5.63 a 39.98 a 5794.42 a 2320.79 a
N2 19.74 a 5.53 a 5.62 a 39.96 a 6140.58 a 2457.97 a
N3 18.31 a 5.80 a 5.54 a 40.23 a 5831.39 a 2344.72 a
D 4.24 11.80** 0.40 2.09 0.37 0.58
N 0.91 0.44 0.005 0.25 0.43 0.37
D×N 0.26 0.93 0.12 1.45 0.25 0.33
2017 D1 N1 14.71 a 8.07 b 4.98 abc 43.64 a 5533.08 abc 2413.38 abc
N2 16.03 a 7.18 ab 4.95 abc 43.54 a 5716.70 bc 2490.64 abc
N3 14.63 a 7.64 ab 4.85 ab 43.49 a 5413.91 abc 2355.77 abc
D2 N1 15.09 a 7.80 ab 5.04 bc 42.70 a 5916.87 bc 2526.50 bc
N2 15.41 a 7.16 ab 4.91 abc 43.45 a 5330.52 ab 2315.60 ab
N3 16.90 a 6.33 a 4.62 a 43.51 a 4894.31 a 2130.53 a
D3 N1 14.37 a 8.43 b 5.11 c 43.68 a 6171.38 c 2696.66 c
N2 15.64 a 7.39 ab 4.92 abc 42.97 a 5640.65 abc 2426.84 abc
N3 16.76 a 7.03 ab 4.67 ab 42.98 a 5500.64 abc 2363.34 abc
D1 15.12 a 7.63 a 4.92 a 43.55 a 5554.56 a 2419.93 a
D2 15.80 a 7.09 a 4.85 a 43.22 a 5380.56 a 2324.21 a
D3 15.59 a 7.61 a 4.90 a 43.21 a 5770.89 a 2495.61 a
N1 14.72 a 8.10 b 5.04 b 43.34 a 5873.77 b 2545.51 b
N2 15.69 a 7.24 a 4.92 b 43.32 a 5562.62 ab 2411.02 ab
N3 16.09 a 7.00 a 4.71 a 43.32 a 5269.62 a 2283.21 a
D 0.40 1.39 0.33 0.27 2.15 1.83
N 1.67 5.04* 6.82** 0.01 5.14* 4.26*
D×N 0.83 0.68 0.62 0.43 1.29 0.97

表8

不同处理对棉花纤维品质的影响"

年份
Year
处理
Treatment
纤维长度
Fiber length (mm)
断裂比强度
Specific strength
长度整齐度
Fiber uniformity (%)
纺织一致性
Textile consistency
成熟度
Maturity index
马克隆值
MIC
2018 D1 N1 28.97 a 31.63 a 84.30 a 136.33 a 0.86 a 4.97 a
N2 30.60 b 31.50 a 86.73 b 151.00 b 0.85 a 4.80 a
N3 29.43 ab 31.63 a 85.50 ab 143.33 ab 0.86 a 4.87 a
D2 N1 30.03 ab 32.43 a 85.93 ab 147.67 b 0.86 a 4.96 a
N2 29.77 ab 31.73 a 84.73 a 141.00 ab 0.85 a 4.89 a
N3 29.77 ab 32.10 a 85.53 ab 145.00 ab 0.86 a 4.89 a
D3 N1 30.37 ab 32.00 a 86.50 b 150.00 b 0.86 a 4.91 a
N2 30.33 ab 31.47 a 85.83 ab 147.00 b 0.85 a 4.75 a
N3 29.80 ab 31.60 a 85.47 ab 143.33 ab 0.86 a 4.93 a
D1 29.60 a 31.58 a 85.51 a 143.55 a 0.85 a 4.88 a
D2 29.85 a 32.08 a 85.39 a 144.55 a 0.85 a 4.91 a
D3 30.16 a 31.69 a 85.93 a 146.77 a 0.85 a 4.86 a
N1 29.79 a 32.02 a 85.57 a 144.66 a 0.86 a 4.94 b
N2 30.23 a 31.56 a 85.76 a 146.33 a 0.85 a 4.81 a
N3 29.66 a 31.77 a 85.50 a 143.88 a 0.86 a 4.89 ab
2017 D1 N1 29.00 a 29.70 a 84.07 a 129.33 a 0.88 b 5.06 bc
N2 28.62 a 29.97 a 84.17 a 129.33 a 0.88 ab 5.08 c
N3 28.85 a 29.23 a 84.57 a 130.67 a 0.88 ab 4.94 abc
D2 N1 28.90 a 29.10 a 84.33 a 130.00 a 0.88 ab 4.89 abc
N2 28.67 a 30.00 a 83.40 a 128.67 a 0.87 a 4.81 ab
N3 28.45 a 29.53 a 83.03 a 125.33 a 0.88 ab 4.84 abc
D3 N1 29.41 a 29.90 a 85.13 a 138.00 a 0.87 a 4.72 a
N2 29.05 a 29.43 a 83.67 a 127.33 a 0.88 ab 5.01 bc
N3 27.93 a 28.13 a 83.43 a 121.67 a 0.88 ab 4.85 abc
D1 28.82 a 29.63 a 84.27 a 129.77 a 0.88 a 5.02 a
D2 28.67 a 29.54 a 83.58 a 128.00 a 0.87 a 4.84 a
D3 28.79 a 29.15 a 84.07 a 129.00 a 0.87 a 4.86 a
N1 29.10 a 29.56 a 84.51 a 132.44 a 0.87 a 4.89 a
N2 28.78 a 29.80 a 83.74 a 128.44 a 0.87 a 4.96 a
N3 28.41 a 28.96 a 83.67 a 125.89 a 0.88 a 4.87 a
[1] 李雪源, 王俊铎, 郑巨云, 梁亚军, 龚照龙, 艾先涛, 张泽良, 买买提·莫明, 郭江平. 探索建立新疆全产业链增值的棉花产业发展模式. 棉花科学, 2020,42(5):20-25.
Li X Y, Wang J D, Zheng J Y, Liang Y J, Gong Z L, Ai X T, Zhang Z L, Maimaiti M, Guo J P. Explore to establish the cotton industry development pattern that the whole industry chain adds value in Xinjiang. Cotton Sci, 2020,42(5):20-25 (in Chinese with English abstract).
[2] 董合忠, 杨国正, 李亚兵, 田立文, 代建龙, 孔祥强. 棉花轻简化栽培关键技术及其生理生态学机制. 作物学报, 2017,43:631-639.
Dong H Z, Yang G Z, Li Y B, Tian L W, Dai J L, Kong X Q. Key technologies for light and simplified cultivation of cotton and their eco-physiological mechanisms. Acta Agron Sin, 2017,43:631-639 (in Chinese with English abstract).
[3] 李勇, 王峰, 孙景生, 刘浩, 杨建强, 咸丰, 苏和. 内蒙古西部旱区机采棉膜下滴灌水氮耦合效应. 应用生态学报, 2016,27:845-854.
Li Y, Wang F, Sun J S, Liu H, Yang J Q, Xian F, Su H. Coupling effect of water and nitrogen on mechanically harvested cotton with drip irrigation under plastic film in arid area of western Inner Mongolia, China. Chin J Appl Ecol, 2016,27:845-854 (in Chinese with English abstract).
[4] 李颖, 杨宁, 孙占祥, 冯良山, 王耀生, 王平. 农田水药一体化技术研究与应用进展. 农药, 2019,58:553-560.
Li Y, Yang N, Sun Z X, Feng L S, Wang Y S, Wang P. Progress on researching and application of chemigation. Agrochemicals, 2019,58:553-560 (in Chinese with English abstract).
[5] 古斌权, 李林章, 邢乃林, 严蕾艳, 付玉婧, 王毓洪, 黄芸萍. 水肥药一体化对西瓜生长发育和果实品质的影响. 浙江农业科学, 2020,61(1):67-69.
Gu B Q, Li L Z, Xing N L, Yan L Y, Fu Y J, Wang Y H, Huang Y P. Effect of the integration of water, fertilizer and medicine on growth, development and fruit quality of watermelon. J Zhejiang Agric Sci, 2020,61(1):67-69 (in Chinese with English abstract).
[6] 李秋捷, 黄金玲, 陆秀红, 张禹, 曾东强, 刘志明. 滴灌法施药防治农作物根结线虫病的研究进展. 中国植保导刊, 2018,38(6):62-66.
Li Q J, Huang J L, Lu X H, Zhang Y, Zeng D Q, Liu Z M. Research progress on pesticide applying with drip irrigation system against root knot nematode. China Plant Prot, 2018,38(6):62-66 (in Chinese with English abstract).
[7] 李强, 付步礼, 邱海燕, 夏西亚, 唐良德, 刘奎, 曾东强. 滴灌施药技术防治香蕉黄胸蓟马应用展望. 农学学报, 2018,8(4):14-18.
Li Q, Fu B L, Qiu H Y, Xia X Y, Tang L D, Liu K, Zeng D Q. Controlling thrips hawaiiensis of banana: application prospect of pesticides through drip irrigation. J Agric, 2018,8(4):14-18 (in Chinese with English abstract).
[8] 王晓坤. 吡唑醚菌酯水药一体化防治番茄颈腐根腐病应用技术研究. 山东农业大学硕士学位论文, 山东泰安, 2017.
Wang X K. Study on the Application of Pyraclostrobin Integrated with Water to Control the Root Rot of Tomato. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2017 (in Chinese with English abstract).
[9] 石文鹏, 王文娥, 胡笑涛, 徐茹. 微喷带随水施用除草剂除草效果及均匀度研究. 中国农村水利水电, 2020, ( 2):122-127.
Shi W P, Wang W E, Hu X T, Xu R. Research on the herbicidal effect and uniformity of microspray strip with water application herbicide. China Rural Water Hydropower, 2020, ( 2):122-127 (in Chinese with English abstract).
[10] Thiyagarajan G, Kannan B, Manikandan M, Nagarajan M. Influence of chemigation on root knot nematodes in drip irrigated rice. J Entomol Zool Stud, 2020,8:641-643.
[11] Li J Z, Wang C C, Bangash S H, Lin H O, Zeng D Q, Tang W W. Efficacy of fluopyram applied by chemigation on controlling eggplant root-knot nematodes (Meloidogyne spp.) and its effects on soil properties. PLoS One, 2020,15:e0235423.
[12] 吕宁, 石磊, 刘海燕, 司爱君, 李全胜, 张国丽, 陈云. 生物药剂滴施对棉花黄萎病及根际土壤微生物数量和多样性的影响. 应用生态学报, 2019,30:602-614.
Lyu N, Shi L, Liu H Y, Si A J, Li Q S, Zhang G L, Chen Y. Effects of biological agent dripping on cotton verticillium wilt and rhizosphere soil microorganism. Chin J Appl Ecol, 2019,30:602-614 (in Chinese with English abstract).
[13] 罗燕娜, 杜娟, 李俊华, 闫豫君, 赵思峰. 滴灌条件下枯草芽胞杆菌S37和S44对棉花黄萎病的防治效果. 植物保护, 2011,37(2):174-176.
Luo Y N, Du J, Li J H, Yan Y J, Zhao S F. Control efficacy of bacillus subtilis S37 and S44 against cotton Verticillium wilt by under-mulch-drip irrigation. Plant Prot, 2011,37(2):174-176 (in Chinese with English abstract).
[14] 娄善伟, 王大光, 张鹏忠, 鹿秀云, 边洋, 张晓东, 马腾飞, 张怀军. 枯草芽孢杆菌随水滴施防治棉花黄萎病的应用研究. 中国棉花, 2015,42(7):25-28.
Lou S W, Wang D G, Zhang P Z, Lu X Y, Bian Y, Zhang X D, Ma T F, Zhang H J. The study of Bacillus subtilis with water application to control of cotton Verticiilium wilt. China Cotton, 2015,42(7):25-28 (in Chinese with English abstract).
[15] 罗静静, 刘小龙, 李克梅, 罗明, 麦迪尼也提·麦麦提, 吐尼沙古丽, 阿衣努尔, 管吉钊, 马建江. 几种微生物菌剂对连作棉田枯黄萎病的防病效应. 西北农业学报, 2015,24(7):136-143.
Luo J J, Liu X L, Li K M, Luo M, Maidiniyeti M, Tunishaguli, Ayinuer, Guan J Z, Ma J J,. Effects of microbial agent inoculations on controlling Fusarium oxysporum and Verticillium dahliae in cotton fields of continuous cropping. Acta Agric Boreali-occident Sin, 2015,24(7):136-143 (in Chinese with English abstract).
[16] 张亚林, 周吉辉, 王兰, 王喆, 冯宏祖, 黄群. 无人机和滴灌施药对棉蚜及其天敌的影响. 中国棉花, 2018,45(9):26-29.
Zhang Y L, Zhou J H, Wang L, Wang Z, Feng H Z, Huang Q. Effects of drone and drip irrigation on cotton aphid and its natural enemies. China Cotton, 2018,45(9):26-29 (in Chinese with English abstract).
[17] 李号宾, 潘洪生, 丁瑞丰, 李海强, 刘建, 徐遥, 阿克旦·吾外士, 王冬梅. 一种棉蚜的防治方法. 中国专利: CN109618772A, 2019-04-16.
Li H B, Pan H S, Ding R F, Li H Q, Liu J, Xu Y, Akedan W, Wang D M. A control method of cotton aphid. China: CN109618772A, 2019-04-16 (in Chinese).
[18] 时婷, 姚强, 王可慧, 闫河, 黄继光. 适于根区施药防治棉田二斑叶螨药剂的筛选. 农药, 2016,55:774-777.
Shi T, Yao Q, Wang K H, Yan H, Huang J G. Screening of suitable pesticids for controlling tetranychus urticae koch in cotton by root application. Agrochemicals, 2016,55:774-777 (in Chinese with English abstract).
[19] 赵冰梅, 朱玉永, 张强, 王林. 滴灌施用丙炔氟草胺防除覆膜棉田杂草药效评价. 农药, 2020,59:612-615.
Zhao B M, Zhu Y Y, Zhang Q, Wang L. Efficacy evaluation of applying flumioxazin by drip irrigation for control weeds in film covered cotton field. Agrochemicals, 2020,59:612-615 (in Chinese with English abstract).
[20] 杨建荣, 马富裕, 尹小龙, 慕志新, 朱家辉. 随水滴施缩节安和多效唑对棉花幼苗生长发育的影响. 石河子大学学报(自然科学版), 2001,5(4):284-287.
Yang J R, Ma F Y, Yin X L, Mu Z X, Zhu J H. A Study on the effect of DPC and PP333 dissolved in water during irrigation on the growth of cotton seedling. J Shihezi Univ (Nat Sci Edn), 2001,5(4):284-287 (in Chinese with English abstract).
[21] 张昊, 林涛, 尔晨, 崔建平, 郭仁松, 汤秋香. 配置模式对南疆机采棉生长发育及产量形成的调控效应. 新疆农业大学学报, 2018,41:307-313.
Zhang H, Lin T, Er C, Cui J P, Guo R S, Tang Q X. Effects of planting patterns on growth and yield formation for machine-picked cotton in southern Xinjiang. J Xinjiang Agric Univ, 2018,41:307-313 (in Chinese with English abstract).
[22] 李春艳, 张巨松, 石洪亮, 李健伟, 窦海涛, 向雁玲. 密度与氮肥对机采棉叶铃分布的影响及与产量的关系. 中国农业大学学报, 2018,23(11):47-59.
Li C Y, Zhang J S, Shi H L, Li J W, Dou H T, Xiang Y L. Effect of planting density and nitrogen application on the distribution of leaf and boll in machine picking cotton and its relationship with yield. J China Agric Univ, 2018,23(11):47-59 (in Chinese with English abstract).
[23] 赵文超, 杜明伟, 黎芳, 田晓莉, 李召虎. 应用缩节安(DPC)调控棉花株型的定位定量效应研究. 作物学报, 2019,45:1059-1069.
Zhao W C, Du M W, Li F, Tian X L, Li Z H. Location- and quantity-based effects of mepiquat chloride application on cotton plant-type. Acta Agron Sin, 2019,45:1059-1069 (in Chinese with English abstract).
[24] McConnell J S, Baker W H, Feizzell B S, Varvil J J. Response of cotton to nitrogen fertilization and early multiple applications of mepiquat chloride. J Plant Nutr, 1992,15:457-468.
[25] 秦鸿德, 荣义华, 黄晓莉, 胡爱兵, 周家华, 闫显会, 李蔚, 张贤红, 李洪菊, 杨国正. 简化施肥夏直播棉对密度和氮肥的响应. 作物杂志, 2020, ( 4):127-134.
Qin H D, Rong Y H, Huang X L, Hu A B, Zhou J H, Yan X H, Li W, Zhang X H, Li H J, Yang G Z. Responses of cotton to planting densities and nitrogen rates under direct seeding in summer with simplified fertilization. Crops, 2020, ( 4):127-134 (in Chinese with English abstract).
[26] 黎芳. 黄河流域棉区DPC+化学封顶技术及其配套措施研究. 中国农业大学博士学位论文, 北京, 2017.
Li F. Study on the Technology of Chemical Topping with DPC + and Its Supporting Measures in the Yellow River Valley Region of China. PhD Dissertation of China Agriculture University, Beijing, China, 2017 (in Chinese with English abstract).
[27] 王宁, 田晓莉, 段留生, 严根土, 黄群, 李召虎. 缩节胺浸种提高棉花幼苗根系活力中的活性氧代谢. 作物学报, 2014,40:1220-1226.
Wang N, Tian X L, Duan L S, Yan G T, Huang Q, Li Z H. Metabolism of reactive oxygen species involved in increasing root vigour of cotton seedlings by soaking seeds with mepiquat chloride. Acta Agron Sin, 2014,40:1220-1226 (in Chinese with English abstract).
[28] 金子渔, 杨秉芳, 何钟佩. 用同位素示踪研究 DPC 对棉花生理作用的影响. 北京农业大学学报, 1984,10:245-253.
Jin Z Y, Yang B F, He Z P. Study in physiological response of DPC on cotton by means of isotope. J Beijing Agric Univ, 1984,10:245-253 (in Chinese with English abstract).
[29] 姜益娟, 郑德明, 柳维扬, 秦华, 王冀平. 海岛棉氮素营养诊断指标与棉花生长发育的关系. 中国棉花, 2005,32(2):10-12.
Jiang Y J, Zheng D M, Liu W Y, Qin H, Wang Y P. The relationship between indicator of nitrogen nutrition diagnosis and growth and development of cotton. China Cotton, 2005,32(2):10-12 (in Chinese with English abstract).
[30] 赵强, 张巨松, 田晓莉, 彭小峰, 李斌, 艾买提江, 周春江. 南疆棉花种子包衣缓释缩节胺化控技术的初步研究. 新疆农业科学, 2010,47:25-30.
Zhao Q, Zhang J S, Tian X L, Peng X F, Li B, Aimaitijiang, Zhou C J. Chemical treatment of slow-release mepiquat chloride from coated cotton seed in south Xinjiang. Xinjiang Agric Sci, 2010,47:25-30 (in Chinese with English abstract).
[31] 刘燕, 原保忠, 张献龙, 聂以春, 付小勤, 柯昌煌, 叶胜池. 缩节胺和整枝打顶对棉花产量及品质的影响. 农学学报, 2013,3(6):8-12.
Liu Y, Yuan B Z, Zhang X L, Nie Y C, Fu X Q, Ke C H, Ye S C. Effects of DPC and plant pruning with topping on cotton yield and fiber quality. J Agric, 2013,3(6):8-12 (in Chinese with English abstract).
[32] 徐新霞, 苏丽丽, 魏鑫, 刘翠, 张巨松. DPC对杂交棉生长发育调控效应研究. 新疆农业科学, 2015,52:1237-1242.
Xu X X, Su L L, Wei X, Liu C, Zhang J S. Regulating effect of DPC on hybrid cotton growing development. Xinjiang Agric Sci, 2015,52:1237-1242 (in Chinese with English abstract).
[33] Zhao D, Oosterhuis D M. Pix plus and mepiquat chloride effects on physiology, growth, and yield of field-grown cotton. J Plant Growth Regul, 2000,19:415-422.
[34] 马宗斌, 严根土, 刘桂珍, 黄群, 李伶俐, 朱伟. 施氮量对黄河滩区棉花叶片生理特性、干物质积累及产量的影响. 植物营养与肥料学报, 2013,19:849-857.
Ma Z B, Yan G T, Liu G Z, Huang Q, Li L L, Zhu W. Effects of nitrogen application rates on main physiological characteristics of leaves, dry matter accumulation and yield of cotton cultivated in the Yellow River bottomlands. J Plant Nutr Fert, 2013,19:849-857 (in Chinese with English abstract).
[35] 阿丽艳·肉孜, 郭仁松, 杜强, 武辉, 张巨松. 施氮量对枣棉间作棉花干物质积累、产量与品质的影响. 植物营养与肥料学报, 2014,20:761-767.
Aliyan R, Guo R S, Du Q, Wu H, Zhang J S. Effects of nitrogen fertilization rate in jujube-cotton intercropping on dry matter accumulation and yield and quality of cotton. J Plant Nutr Fert, 2014,20:761-767 (in Chinese with English abstract).
[36] 代英男, 马一学, 阳会兵, 陈金湘, 白玉超. 施氮量、种植密度和播种期对棉花干物质积累与分配的影响. 作物研究, 2015,29:489-492.
Dai Y N, Ma Y X, Yang H B, Chen J X, Bai Y C. Effects of nitrogen application rate, planting density and planting date on dry matter accumulation and distribution in cotton. Crop Res, 2015,29:489-492 (in Chinese with English abstract).
[37] 马一学, 阳会兵, 陈金湘, 刘爱玉, 王峰. 棉花种植方式和密度效应研究. 作物研究, 2014,28:269-271.
Ma Y X, Yang H B, Chen J X, Liu A Y, Wang F. Research on cotton planting pattern and density effect. Crops Res, 2014,28:269-271 (in Chinese with English abstract).
[38] 田晓莉, 谢湘毅, 周春江, 杨培珠, 王保民, 段留生, 李松林, 恽友兰, 何钟佩, 李召虎. 植物生长调节剂甲哌鎓在土壤中的降解及其影响因子. 农业环境科学学报, 2008,27:1726-1731.
Tian X L, Xie X Y, Zhou C J, Yang P Z, Wang B M, Duan L S, Li S L, Yun Y L, He Z P, Li Z H. Factors affecting the degradation of mepiquat chloride in soil. J Agro-Environ Sci, 2008,27:1726-1731 (in Chinese with English abstract).
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[8] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[9] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[10] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[11] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[12] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[15] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!