欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (4): 1005-1016.doi: 10.3724/SP.J.1006.2022.12006

• 耕作栽培·生理生化 • 上一篇    下一篇

沿江双季稻北缘区晚稻适宜品种类型及高产群体特征

柯健1(), 陈婷婷1, 吴周2, 朱铁忠1, 孙杰1, 何海兵1, 尤翠翠1, 朱德泉1, 武立权1,3,*()   

  1. 1安徽农业大学, 安徽合肥 230036
    2安徽省庐江县农业技术推广中心, 安徽合肥 231500
    3江苏省现代作物生产协同创新中心, 江苏南京 210095
  • 收稿日期:2021-01-28 接受日期:2021-06-16 出版日期:2022-04-12 网络出版日期:2021-07-16
  • 通讯作者: 武立权
  • 作者简介:E-mail: Kej@ahau.edu.cn
  • 基金资助:
    国家重点研发计划项目(2018YFD0300904);安徽省教育厅重点项目(KJ2019A0176);安徽省教育厅重点项目(KJ2018A0158);安徽省自然科学基金项目(1808085QC70);国家自然科学基金项目资助(31801286);国家自然科学基金项目资助(32071946)

Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River

KE Jian1(), CHEN Ting-Ting1, WU Zhou2, ZHU Tie-Zhong1, SUN Jie1, HE Hai-Bing1, YOU Cui-Cui1, ZHU De-Quan1, WU Li-Quan1,3,*()   

  1. 1College of Agronomy, Anhui Agricultural University, Hefei 230036, Anhui, China
    2Lujiang Agricultural Technology Promotion Center, Hefei 231500, Anhui, China
    3Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, Jiangsu, China
  • Received:2021-01-28 Accepted:2021-06-16 Published:2022-04-12 Published online:2021-07-16
  • Contact: WU Li-Quan
  • Supported by:
    National Key Research and Development Program of China(2018YFD0300904);Key Research Fund of the Education Department of Anhui Province(KJ2019A0176);Key Research Fund of the Education Department of Anhui Province(KJ2018A0158);National Natural Science Foundation of Anhui(1808085QC70);National Natural Science Foundation of China(31801286);National Natural Science Foundation of China(32071946)

摘要:

研究沿江双季稻北缘区晚季籼稻和粳稻产量差异, 明确适宜类型品种及高产形成机制。试验于2018—2019年在安徽庐江进行, 以当地常规种植的17个籼稻和17个粳稻优质品种(系)为研究对象, 比较和分析籼稻和粳稻在产量及构成、物质积累和生育进程方面的差异。结果表明, 粳稻与籼稻总体上产量水平相当, 但粳稻产量限制因子少, 安全齐穗性有优势, 具有更高的产量稳产性和生态安全性。高产粳稻主要是通过增加移栽-抽穗期干重来增加总干物质积累, 以提高总颖花量和产量。不同穗型粳稻品种生育前中期不同阶段的干物质积累对总颖花量的影响差异较大, 其中大穗型(每穗粒数102.3~112.0)和小穗型粳稻(每穗粒数52.0~99.7)干物质优势积累期分别为移栽-穗分化期和穗分化期-抽穗期, 与总颖花量的相关系数达到0.709和0.829。进一步分析发现, 大穗型粳稻品种移栽-穗分化期干物质积累受穗分化期分蘖数显著影响, 而小穗型粳稻品种穗分化-抽穗期干物质积累由抽穗期分蘖数和单茎干重共同影响。综上所述, 本研究认为粳稻是沿江双季稻北缘区适宜的双季晚稻品种类型, 高产粳稻群体颖花量为33.8×103~41.0×103 m-2, 成熟期干物质积累为15.2~16.6 t hm-2, 日产量为58.9~64.3 kg hm-2 d-1。在品种选择上, 高产大穗型粳稻应具有较强的分蘖能力, 如嘉58、武育粳6571和常优5号; 而小穗型品种则应具有适宜的抽穗期分蘖数和单茎干重, 如宁粳7号、武育粳5745和沪香粳151。另外, 应针对不同穗型的高产粳稻品种研究其配套的优化栽培技术, 以进一步发挥品种产量潜力。

关键词: 沿江双季稻北缘区, 双季晚稻, 品种类型, 产量, 群体特征

Abstract:

To clarify the suitable types of rice varieties and the mechanism of high yield formation, we mainly analyzed the yield difference between indica and japonica rice in late season in the northern margin of the double-cropping rice along the Yangtze River. The experiment was conducted from 2018 to 2019 in Lujiang, Anhui province. The differences of yield and yield components, dry matter accumulation, and growth period between indica and japonica rice were compared and analyzed through 17 indica rice and 17 japonica rice varieties (strains) which were cultivated in this local area. The results showed that the overall yield level of japonical rice was similar to that of indica rice. However, compared with indica rice, the japonica rice had the characteristics of fewer yield-limiting factors, superior safety of panicle fullness, higher yield stability, and ecological safety. High-yield japonica rice mainly increased the total dry matter accumulation from transplanting to heading stage so as to improve total spikelets and yield. The effects of dry matter accumulation at different stage with different panicle types on total spikelets were quite different. Among them, the dominance period of dry matter accumulation of medium-large panicle (102.3-112.0 grains per panicle) and small panicle japonica rice (52.0-99.7 grains per panicle) are transplanting to panicle differentiation and panicle differentiation to heading stage respectively and the correlation coefficients with total spikelets were 0.709 and 0.829, respectively. Further analysis revealed that dry matter accumulation during transplanting to panicle differentiation stage of large panicle japonica rice was significantly affected by the number of tillers at tillering stage, while the dry matter accumulation during panicle differentiation to heading stage of small panicle japonica rice was affected by the number of tillers and dry weight of single stem at heading stage. In summary, this study suggested that japonica rice was a suitable late season rice variety in the northern margin area of double-cropping rice along the Yangtze River. The number of spikelets in the high-yielding japonica rice was 33.8×103-41.0×103 m-2, the dry matter accumulation at maturity was 15.2-16.6 t hm-2, and the daily yield was 58.9-64.3 kg hm-2 d-1. Regarding the selection of varieties, high-yield large-panicle japonica rice, such as Jia 58, Wuyujing 6571, and Changyou 5, should have strong tillering ability; while small-panicle rice varieties, such as Ningjing 7, Wuyujing 5745 and Huxiangjing 151, should have a suitable number of tillers at heading stage and dry weight of single stem. In addition, it was necessary to study the optimized cultivation techniques for high-yielding japonica rice varieties with different panicle types in order to further develop the yield potential.

Key words: the northern margin area of Yangtze River, double-cropping late rice, variety types, grain yield, group characteristics

图1

2018-2019年晚稻生长季气象数据"

表1

品种和年份对水稻产量影响的方差分析"

品种类型
Cultivar type
变异来源
Source of variation
自由度
DF
平方和
Sum of square
均方
Mean square
F
F-value
P
P-value
籼稻 年份 Year 1 1.76 1.76 43.27 0
Indica rice 品种 Cultivar 16 157.87 9.87 242.51 0
年份 × 品种 Year × Cultivar 16 0.30 0.02 0.46 0.96
粳稻 年份 Year 1 1.23 1.23 30.97 0
Japonica rice 品种 Cultivar 16 112.12 7.01 176.49 0
年份 × 品种 Year × Cultivar 16 0.50 0.03 0.79 0.69

图2

不同类型水稻品种的产量差异"

图3

不同类型水稻产量的系统聚类分析"

表2

不同类型水稻品种各产量水平下的产量及构成因素"

类型
Cultivar type
产量水平
Yield level
有效穗数
Panicles
(m-2)
穗粒数
Spikelets per panicle
总颖花量
Spikelets
(×103 m-2)
结实率
Grain filling percentage (%)
千粒重
1000-grain weight (g)
产量
Grain yield
(t hm-2)
IR HY 440.8±47.2 a 107.8±13.1 a 47.0±1.8 a 81.8±4.0 a 24.5±0.8 a 9.4±0.1 a
MY 405.8±53.4 a 122.0±18.4 a 49.0±6.3 a 65.0±10.3 b 24.4±1.5 a 7.6±0.4 b
LY 401.7±47.7 a 81.7±12.8 b 33.0±7.4 b 75.1±6.3 ab 25.6±5.8 a 6.1±0.6 c
JR HY 373.2±33.0 a 100.8±10.5 ab 37.4±3.6 a 87.6±7.0 a 27.1±1.1 a 8.8±0.3 a
MY 317.5±17.8 a 102.2±4.2 a 32.6±2.6 b 87.0±5.6 a 27.6±1.5 a 7.8±0.3 b
LY 371.0±93.0 a 82.3±24.6 b 29.0±3.8 b 83.6±7.3 a 26.3±1.6 a 6.3±0.4 c
Cultivar type (C) ** ns ** ** * ns
Yield level (Y) ns ** ** * ns **
C×Y ns ns * * ns *

图5

晚粳稻总颖花量与产量和干物质积累与总颖花量的关系 缩写同表3。"

表3

不同类型水稻品种各产量水平下的干物质积累和收获指数"

品种类型
Cultivar type
产量水平
Yield level
干物质积累 DMA (t hm-2) 收获指数
Harvest index
移栽-穗分化期
TP-PI
穗分化-抽穗期
PI-HS
抽穗-成熟期
HS-MS
移栽-成熟期
TP-MS
IR HY 5.1±0.7 a 7.4±1.4 a 5.1±1.6 ab 17.6±0.6 a 0.53±0.02 a
MY 4.8±0.7 a 5.5±1.0 b 5.7±1.4 a 16.0±1.0 b 0.48±0.04 b
LY 5.0±0.4 a 7.4±1.3 a 3.5±1.2 b 15.8±1.7 b 0.39±0.04 c
JR HY 2.9±0.6 a 8.1±1.8 a 4.8±1.3 a 15.9±0.7 a 0.56±0.04 a
MY 2.1±0.3 a 6.2±1.1 b 5.5±2.8 a 13.8±2.3 ab 0.58±0.10 a
LY 2.7±0.8 a 4.5±1.1 b 4.6±1.9 a 11.8±1.7 b 0.54±0.10 a
Cultivar type (C) ** ns ns ** **
Yield level (Y) ns ** ns ** *
C×Y ns ** ns ns ns

图4

不同类型水稻品种各产量水平下生育期和日产量 缩写同表2。"

图6

不同穗型晚粳稻总颖花量与干物质积累的关系 缩写同表3。"

图7

不同穗型晚粳稻各产量水平下的分蘖数和单茎干重 缩写同表2和表3。"

图8

晚粳稻阶段干物质积累与分蘖数和单茎干重的关系 缩写同表3。"

表4

沿江地区近20年籼稻的安全齐穗期"

起止年份
Beginning and ending years
安全齐穗期
Safe dates of full heading
(month/day)
平均安全
齐穗期
The average of the safe dates of full heading (month/day)
齐穗期变异
的标准差
Standard
deviation of
dates of full
heading (d)
50%保证率下的安全齐穗期
50% of the safe dates of full heading (month/day)
80%保证率下的安全齐穗期
80% of the safe dates of full heading (month/day)
90%保证率下的安全齐穗期
90% of the safe dates of full heading (month/day)
最早年
The earliest year
最晚年
The latest year
1998-2017 9/13 10/7 9/24 5.8 9/24 9/18 9/16
1998-2007 9/13 10/7 9/24 7.4 9/24 9/21 9/20
2008-2017 9/17 9/28 9/23 4.0 9/23 9/20 9/19
[1] Li P F, Lu J W, Hou W F, Pan Y H, Wang Y, Khan M R, Ren T, Cong R H, Li X K. Reducing nitrogen losses through ammonia volatilization and surface runoff to improve apparent nitrogen recovery of double cropping of late rice using controlled release urea. Environ Sci Pollut Res Int, 2017, 24:11722-11733.
[2] Peng S B, Buresh R J, Huang J L, Zhong X H, Zou Y B, Yang J C, Wang G H, Liu Y Y, Hu R F, Tang Q Y, Cui K H, Zhang F S, Dobermann A. Improving nitrogen fertilization in rice by site- specific N management. a review. Agron Sustain Dev, 2010, 30:649-656.
doi: 10.1051/agro/2010002
[3] Zhou Y J, Li X X, Cao J, Li Y, Huang J L, Peng S B. High nitrogen input reduces yield loss from low temperature during the seedling stage in early-season rice. Field Crops Res, 2018, 228:68-75.
doi: 10.1016/j.fcr.2018.08.018
[4] Wu W, Nie L X, Liao Y C, Shah F, Cui K H, Wang Q, Lian Y, Huang J L. Toward yield improvement of early-season rice: other options under double rice-cropping system in central China. Eur J Agron, 2013, 45:75-86.
doi: 10.1016/j.eja.2012.10.009
[5] 花劲, 周年兵, 张军, 张洪程, 霍中洋, 周培建, 程飞虎, 李国业, 黄大山, 陈忠平, 陈国梁, 戴其根, 许轲, 魏海燕, 高辉, 郭保卫. 双季稻区晚稻“籼改粳”品种筛选. 中国农业科学, 2014, 47:4582-4594.
Hua J, Zhou N B, Zhang J, Zhang H C, Huo Z Y, Zhou P J, Cheng F H, Li G Y, Huang D S, Chen Z P, Chen G L, Dai Q G, Xu K, Wei H Y, Gao H, Guo B W. Selection of late rice cultivars of japonica rice switched from indica rice in double cropping rice area. Sci Agric Sin, 2014, 47:4582-4594 (in Chinese with English abstract).
[6] 黄大山, 曹开蔚, 程飞虎, 张洪程, 张军, 张强. 一季粳稻作双季晚稻高产栽培技术. 中国稻米, 2010, 16(4):40-42.
Huang D S, Cao K W, Cheng F H, Zhang H C, Zhang J, Zhang Q. High-yield cultivation techniques of one-crop japonica rice as double cropping late rice. China Rice, 2010, 16(4):40-42 (in Chinese).
[7] 吴文革, 张四海, 赵决建, 吴桂成, 李泽福, 夏加发. 氮肥运筹模式对双季稻北缘水稻氮素吸收利用及产量的影响. 植物营养与肥料学报, 2007, 13:757-764.
Wu W G, Zhang S H, Zhao J J, Wu G C, Li Z F, Xia J F. Nitrogen uptake, utilization and rice yield in the north rimland of double-cropping rice region as affected by different nitrogen management strategies. Plant Nutr Fert Sci, 2007, 13:757-764 (in Chinese with English abstract).
[8] 龚金龙, 邢志鹏, 胡雅杰, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 籼、粳超级稻产量构成特征的差异研究. 核农学报, 2014, 28:500-511.
Gong J L, Xing Z P, Hu Y J, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H. Studies on the difference of yield components characteristics between indica and japonica super rice. J Nucl Agric Sci, 2014, 28:500-511 (in Chinese with English abstract).
[9] 张洪程, 张军, 龚金龙, 常勇, 李敏, 高辉, 戴其根, 霍中洋, 许轲, 魏海燕. “籼改粳”的生产优势及其形成机理. 中国农业科学, 2013, 46:686-704.
Zhang H C, Zhang J, Gong J L, Chang Y, Li M, Gao H, Dai Q G, Huo Z Y, Xu K, Wei H Y. The productive advantages and formation mechanisms of “ indica rice to japonica rice”. Sci Agric Sin, 2013, 46:686-704 (in Chinese with English abstract).
[10] 陈波, 周年兵, 郭保卫, 舒鹏, 张洪程, 霍中洋, 程飞虎, 花劲, 黄大山, 陈忠平, 陈恒, 刘云发, 廖世亮. 江西双季晚稻不同纬度产量、生育期及温光资源利用的差异. 中国农业科学, 2017, 50:1403-1415.
Chen B, Zhou N B, Guo B W, Shu P, Zhang H C, Huo Z Y, Cheng F H, Hua J, Huang D S, Chen Z P, Chen H, Liu Y F, Liao S L. Differences of double-cropping late rice in yield, growth stage and utilization of temperature and illumination in different latitudes of Jiangxi province. Sci Agric Sin, 2017, 50:1403-1415 (in Chinese with English abstract).
[11] 张洪程, 许轲, 张军, 李国业, 董啸波, 花劲, 周培建, 程飞虎, 黄大山, 陈忠平, 陈国梁, 方明珍, 戴其根, 霍中洋, 魏海燕, 高辉. 双季晚粳生产力及相关生态生理特征. 作物学报, 2014, 40:283-300.
Zhang H C, Xu L, Zhang J, Li G Y, Dong X B, Hua J, Zhou P J, Cheng F H, Huang D S, Chen Z P, Chen G L, Fang M Z, Dai Q G, Huo Z Y, Wei H Y, Gao H. Productivity and eco-physiological characteristics of late japonica rice in double-cropping system. Acta Agron Sin, 2014, 40:283-300 (in Chinese with English abstract).
[12] 殷敏, 刘少文, 褚光, 徐春梅, 王丹英, 章秀福, 陈松. 长江下游稻区不同类型双季晚粳稻产量与生育特性差异. 中国农业科学, 2020, 53:890-903.
Yin M, Liu S W, Chu G, Xu C M, Wang D Y, Zhang X F, Chen S. Differences in yield and growth traits of different japonica varieties in the double cropping late season in the lower reaches of the Yangtze River. Sci Agric Sin, 2020, 53:890-903 (in Chinese with English abstract).
[13] 徐春梅, 袁立伦, 陈松, 褚光, 叶为发, 丁玉华, 王丹英, 章秀福. 长江下游不同生态区双季优质晚稻生长特性和温光利用差异. 中国水稻科学, 2020, 34:457-469.
Xu C M, Yuan L L, Chen S, Chu G, Ye W F, Ding Y H, Wang D Y, Zhang X F. Difference in growth characteristics, utilization of temperature and illumination of double-cropping high quality late rice in different ecological regions of the lower reaches of the Yangtze River. Chin J Rice Sci, 2020, 34:457-469 (in Chinese with English abstract).
[14] 岳伟, 陈金华, 阮新民, 陈曦, 陈砚涛, 王珍. 安徽省沿江地区双季稻光热资源利用效率变化特征及对气象产量的影响. 中国生态农业学报, 2019, 27:929-940.
Yue W, Chen J H, Ruan X M, Chen X, Chen Y T, Wang Z. Variation in characteristics of light and heat resource utilization efficiency of double-season rice and its impact on meteorological yield along the Yangtze River in Anhui province. Chin J Eco-Agric, 2019, 27:929-940 (in Chinese with English abstract).
[15] Xu L, Zhan X W, Yu T T, Nie L X, Huang J L, Cui K H, Wang F, Li Y, Peng S B. Yield performance of direct-seeded, double-season rice using varieties with short growth durations in central China. Field Crops Res, 2018, 227:49-55.
doi: 10.1016/j.fcr.2018.08.002
[16] 张洪程, 赵品恒, 孙菊英, 吴桂成, 徐军, 端木银熙, 戴其根, 霍中洋, 许轲, 魏海燕. 机插杂交粳稻超高产形成群体特征. 农业工程学报, 2012, 28(2):39-44.
Zhang H C, Zhao P H, Sun J Y, Wu G C, Xu J, Duan-Mu Y X, Dai Q G, Huo Z Y, Xu K, Wei H Y. Population characteristics of super high yield formation of mechanical transplanted japonica hybrid rice. Trans CSAE, 2012, 28(2):39-44 (in Chinese with English abstract).
[17] 李成荃. 安徽稻作学. 北京: 中国农业出版社, 2008.
Li C Q. Anhui Rice Research. Beijing: China Agriculture Press, 2008 (in Chinese).
[18] 艾治勇, 郭夏宇, 刘文祥, 马国辉, 青先国. 长江中游地区双季稻安全生产日期的变化. 作物学报, 2014, 40:1320-1329.
Ai Z Y, Guo X Y, Liu W X, Ma G H, Qing X G. Changes of safe production dates of double-season rice in the middle reaches of the Yangtze River. Acta Agron Sin, 2014, 40:1320-1329 (in Chinese with English abstract).
[19] 张祖建, 张洪熙, 杨建昌, 宋云生, 赵步洪, 季红娟, 朱庆森. 江苏近50年粳稻安全齐穗期的变化. 作物学报, 2011, 37:146-151.
doi: 10.3724/SP.J.1006.2011.00146
Zhang Z J, Zhang H X, Yang J C, Song Y S, Zhao B H, Ji H J, Zhu Q S. Changes of safe dates for full heading in japonica rice over past 50 years in Jiangsu province. Acta Agron Sin, 2011, 37:146-151 (in Chinese with English abstract).
[20] Wang D Y, Li X Y, Ye C, Xu C M, Chen S, Chu G, Zhang Y B, Zhang X F. Geographic variation in the yield formation of single-season highyielding hybrid rice in southern China. J Integr Agric, 2020, 19:2-13.
[21] 殷春渊, 魏海燕, 张庆, 戴其根, 霍中洋, 许轲, 张胜飞, 杭杰, 马群. 不同氮肥水平下中熟籼稻和粳稻产量、氮素吸收利用差异及相互关系. 作物学报, 2009, 35:348-355.
Yin C Y, Wei H Y, Zhang Q, Dai Q G, Huo Z Y, Xu K, Zhang S F, Hang J, Ma Q. Differences and correlations in grain yield, N uptake and utilization between medium-maturing indica and japonica rice under different N fertilizer levels. Acta Agron Sin, 2009, 35:348-355 (in Chinese with English abstract).
[22] 莫惠栋. 种稻原理与技术. 南京: 江苏科学技术出版社, 1981: 142-145.
Mo H D. Principle and Technology of Rice Planting. Nanjing: Jiangsu Scientific & Technical Publishers, 1981. pp 142-145(in Chinese).
[23] Ding C, Luo X K, Wu Q, Lu B, Ding Y F, Song J Z, Li G H. Compact plant type rice has higher lodging and N resistance under machine transplanting. J Integr Agric, 2021, 20:65-77.
doi: 10.1016/S2095-3119(20)63229-4
[24] 魏树和, 陈温福, 徐正进, 王建林. 水稻收获指数研究的回顾与展望. 北方水稻, 2001, (增刊):1-3.
Wei S H, Chen W F, Xu Z J, Wang J L. Review and prospect of Research on rice harvest index. North Rice, 2001, (S1):1-3 (in Chinese).
[25] Ke J, Xing X M, Li G H, Ding Y F, Dou F G, Wang S H, Liu Z H, Tang S, Ding C Q, Chen L. Effects of different controlled-release nitrogen fertilisers on ammonia volatilisation, nitrogen use efficiency and yield of blanket-seedling machine-transplanted rice. Field Crops Res, 2017, 205:147-156.
doi: 10.1016/j.fcr.2016.12.027
[26] Sui B, Feng X M, Tian G L, Hu X Y, Shen Q R, Guo S W. Optimizing nitrogen supply increases rice yield and nitrogen use efficiency by regulating yield formation factors. Field Crops Res, 2013, 150:99-107.
doi: 10.1016/j.fcr.2013.06.012
[27] Zhu X C, Zhang J, Zhang Z P, Deng A X, Zhang W J. Dense planting with less basal nitrogen fertilization might benefit rice cropping for high yield with less environmental impacts. Eur J Agron, 2016, 75:50-59.
doi: 10.1016/j.eja.2016.01.003
[28] 曾勇军, 石庆华, 潘晓华, 韩涛. 长江中下游双季稻高产株型特征初步研究. 作物学报, 2009, 35:546-551.
Zeng Y J, Shi Q H, Pan X H, Han T. Preliminary study on the plant type characteristic of double cropping rice in middle and lower reaches of Changjiang River. Acta Agron Sin, 2009, 35:546-551 (in Chinese with English abstract).
[29] 吕伟生, 肖国滨, 叶川, 李亚贞, 陈明, 肖小军, 赖诗盛, 郑伟, 吴艳, 黄天宝. 油-稻-稻三熟制下双季稻高产品种特征研究. 中国农业科学, 2018, 51:37-48.
Lyu W S, Xiao G B, Ye C, Li Y Z, Chen M, Xiao X J, Lai S S, Zheng W, Wu Y, Huang T B. Characteristics of high-yield double rice varieties in rice-rice-rapeseed cropping system. Sci Agric Sin, 2018, 51:37-48 (in Chinese with English abstract).
[30] 吴汉, 张津, 时强强, 何海兵, 柯健, 尤翠翠, 朱德泉, 武立权. 钵苗摆栽籼粳杂交稻和常规粳稻丰产优质适宜施氮量分析. 农业工程学报, 2020, 36(11):110-118.
Wu H, Zhang J, Shi Q Q, He H B, Ke J, You C C, Zhu D Q, Wu L Q. Appropriate fertilizer-N application rate for high yield and premium quality of pot-seedling transplanted indica-japonica hybrid rice and conventional japonica rice. Trans CSAE, 2020, 36(11):110-118 (in Chinese with English abstract).
[31] 柯健, 陈婷婷, 徐浩聪, 朱铁忠, 吴汉, 何海兵, 尤翠翠, 朱德泉, 武立权. 控释氮肥运筹对钵苗摆栽籼粳杂交稻甬优1540产量及氮肥利用的影响. 作物学报, 2021, 47:1372-1382.
doi: 10.3724/SP.J.1006.2021.02055
Ke J, Chen T T, Xu H C, Zhu T Z, Wu H, He H H, You C C, Zhu D Q, Wu L Q. Effects of different application methods of controlled-release nitrogen fertilizer on grain yield and nitrogen utilization of indica-japonica hybrid rice in pot-seedling mechanically transplanted. Acta Agron Sin, 2021, 47:1372-1382 (in Chinese with English abstract).
[32] Wei H H, Meng T Y, Li C, Xu K, Huo Z Y, Wei H Y, Guo B W, Zhang H C, Dai Q G. Comparisons of grain yield and nutrient accumulation and translocation in high-yielding japonica/indica hybrids, indica hybrids, and japonica conventional varieties. Field Crops Res, 2017, 204:101-109.
doi: 10.1016/j.fcr.2017.01.001
[33] Wei H Y, Hu L, Zhu Y, Xu D, Zheng L M, Chen Z F, Hu Y J, Cui P Y, Guo B W, Dai Q G, Zhang H C. Different characteristics of nutrient absorption and utilization between inbred japonica super rice and inter-sub-specific hybrid super rice. Field Crops Res, 2018, 218:88-96.
doi: 10.1016/j.fcr.2018.01.012
[34] Ye Y S, Liang X Q, Chen Y X, Liu J, Gu J T, Guo R, Li L. Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation, yield, water and nitrogen use. Field Crops Res, 2013, 144:212-224.
doi: 10.1016/j.fcr.2012.12.003
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[10] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[11] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[12] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[13] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[14] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[15] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!