欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (4): 1017-1026.doi: 10.3724/SP.J.1006.2022.04274

• 研究简报 • 上一篇    下一篇

甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析

周慧文1(), 丘立杭1, 黄杏, 李强2, 陈荣发1, 范业赓1, 罗含敏1, 闫海锋1, 翁梦苓1, 周忠凤1,*(), 吴建明1,*()   

  1. 1农业农村部甘蔗生物技术与遗传改良重点实验室 / 广西甘蔗遗传改良重点实验室/广西农业科学院甘蔗研究所, 广西南宁 530007
    2广东省湛江农垦科学研究所, 广东湛江 524086
  • 收稿日期:2021-04-07 接受日期:2021-09-09 出版日期:2022-04-12 网络出版日期:2021-10-18
  • 通讯作者: 周忠凤,吴建明
  • 作者简介:E-mail: windyrentmd@qq.com
  • 基金资助:
    国家重点研发计划项目(2019YFD1000503);广西自然科学基金项目(2021GXNSFAA220014);国家现代农业产业技术体系广西创新团队资助(nycytxgxcxtd-2021-03-02)

Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane

ZHOU Hui-Wen1(), QIU Li-Hang1, HUANG Xing, LI Qiang2, CHEN Rong-Fa1, FAN Ye-Geng1, LUO Han-Min1, YAN Hai-Feng1, WENG Meng-Ling1, ZHOU Zhong-Feng1,*(), WU Jian-Ming1,*()   

  1. 1Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture and Rural Affairs / Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute / Guangxi Zhuang Autonomous Region Academy of Agri-cultural Sciences, Nanning 530007, Guangxi, China
    2Scientific Research Institute of Zhanjiang State Farms, Zhanjiang 524086, Guangdong, China
  • Received:2021-04-07 Accepted:2021-09-09 Published:2022-04-12 Published online:2021-10-18
  • Contact: ZHOU Zhong-Feng,WU Jian-Ming
  • Supported by:
    Sub-project of the National Key Research and Development Program of China(2019YFD1000503);Natural Science Foundation of Guangxi, China(2021GXNSFAA220014);Guangxi Innovation Team of China Agricultural Research System(nycytxgxcxtd-2021-03-02)

摘要:

GA20-氧化酶(GA20-oxidase, GA20ox)是赤霉素(gibberellic acid, GA)合成过程中的关键限速酶, 但甘蔗GA20ox1基因(ScGA20ox1)的功能及其表达模式尚未明确。本研究利用RT-PCR和RACE技术克隆了甘蔗GA20-氧化酶基因(ScGA20ox1), ScGA20ox1基因全长1574 bp, 含有一个1125 bp的完整开放阅读框(open reading frame, ORF), 编码375个氨基酸。ScGA20ox1蛋白分子量为42.3 kD, 理论等电点为5.95, 不含信号肽, 不含跨膜结构域, 为可溶性蛋白。实时荧光定量PCR结果表明该基因在甘蔗幼苗中茎秆的表达量最高, 叶片次之, 根的表达量最低; 干旱、低温和赤霉素处理均会改变该基因在不同组织的表达模式。利用农杆菌介导法转化拟南芥, 获得过表达ScGA20ox1的转基因拟南芥植株, 转基因拟南芥植株存在株高增高, 节间长度增长的表型变异。本研究结果表明, ScGA20ox1参与甘蔗的生长发育并在响应非生物逆境中发挥重要调控作用, 过表达转基因拟南芥形态发生变化, 这为深入探究ScGA20ox1生物学功能, 解析甘蔗株型调控分子机制提供理论依据。

关键词: 甘蔗, 赤霉素氧化酶, 基因克隆, 表达水平

Abstract:

GA20-oxidase (GA20ox) is a key rate-limiting enzyme in the synthesis of gibberellic acid (GA), but the biological function and expression pattern of gene GA20ox1 in sugarcane remain unknown. In this study, we cloned GA20-oxidase gene (ScGA20ox1) from the sugarcane variety ROC22 sequence by RT-PCR and RACE, which had a total length of 1574 bp and a complete open reading frame (ORF) of 1125 bp that encoded 375 amino acids. The ScGA20ox1 protein is a hydrophilic protein with a molecular weight of 42.3 kD, an iscelectric point (pI) of 5.95, and no transmembrane structure or signal peptide. Real-time fluorescence quantitative analysis revealed that ScGA20ox1 had the highest expression levels in stems, medium in the leaves, and the lowest in roots of sugarcane seedlings. Drought stress, low temperature stress, and GA3 treatment change the expression patterns of ScGA20ox1 in different tissues. ScGA20ox1 was transformed into Arabidopsis via Agrobacterium-mediated transformation. Transgenic Arabidopsis thaliana plants with overexpressed ScGA20ox1 were obtained from the transformed Arabidopsis thaliana via Agrobacterium-mediated transformation, which showed a phenotypic variation of plant height and internode length increase. In conclusion, ScGA20ox1 was involved in sugarcane’s growth as a crucial regulator in response to abiotic stress and the phenotypic variation of overexpressed transgenic Arabidopsis thaliana changed, which would lay a theoretical basis for future in-depth studies on ScGA20ox1’s biological function and analysis of the molecular mechanism of sugarcane plant shape regulation.

Key words: sugarcane, gibberellin oxidase, gene cloning, expression level

表1

ScGA20ox1基因克隆与表达分析中使用的引物"

引物
Primer
引物序列
Primer sequences (5'-3')
用途
Function
F1 CATCCCGC(T)A(C)GCAGTTCATCT 中间片段 Intermediate fragment
R1 CAACATCGGCGACACCTTCAT
5R1 CCTCAACTACTACCCGCCGT 5' RACE
5R2 ACTTCCGCCGCTTCTTCCAG
3F1 TTCTTCACGCTCCCGCTGTC 3' RACE
3F2 ACTTCCGCCGCTTCTTCCAG
F2 ATGGTGCAGCAGGCTGCGC 编码区 Coding region
R2 GGCCTCATCACCTCCATGA
GA20-qF CGGCTTCTTCCAGGTGGTCAA RT-qPCR
GA20-qR TGGAAGGAGACGCTGTCGTTC
25S rRNA-qF GCAGCCAAGCGTTCATAGC RT-qPCR
25S rRNA-qR GGATTGTTCACCCACCAATAGG
knpGA20-F GGGGTACCATGGTGCAGCAGGCTGCGC 载体构建 Vector construction
bamGA20-R CGGGATCCTCATGGAGGTGATGAGGCC 载体构建 Vector construction

图1

PCR检测ScGA20ox1克隆产物电泳图 M: DL2000 marker; A: 中间片段; B: 3′端片段; C: 5′端片段; D: 开放阅读框。"

图2

ScGA20ox1基因的保守功能结构域分析"

图3

ScGA20ox1 蛋白的三级结构"

图4

不同植物的GA20ox蛋白序列比对分析 CBX45610: 小麦; NP 001241783: 玉米; AAB48239: 水稻; AAT49058: 大麦; KY416517: 甘蔗; XP-002463483: 高粱。黑色方框依次为GA20ox蛋白的LPWKET和NYYPPCQRP的保守结构域。"

图5

ScGA20ox1与其他植物GA20ox氨基酸序列的进化树分析"

图6

ScGA20ox基因在不同组织和不同处理下的差异表达 A: 不同组织; B: 干旱胁迫; C: 低温胁迫; D: 赤霉素处理。不同小写字母表示同一组织在处理0 h、24 h、48 h后表达水平的差异显著性(P < 0.05)。"

图7

抗性植株的PCR检测 M: DL2000 marker; 1: 纯水对照; 2: pEASY-ScGA20ox1质粒; 3: 野生型拟南芥; 4~13: 转基因拟南芥。"

图8

ScGA20ox1在野生型(WT)和转基因拟南芥(ga20-1~ga20-10)中的表达水平 不同小写字母表示处理间差异显著(P < 0.05)。"

图9

过表达转基因拟南芥株系的表型鉴定 A: 表型观察; B: 株高测量; C: 节间长度测量; D: 节间数测量; WT: 野生型拟南芥; ga20-3、ga20-5、ga20-6为过表达转基因拟南芥株系。不同小写字母表示处理间差异显著(P < 0.05)。"

[1] 刘晓雪, 田冰, 白晨. 我国糖料产业发展特点、问题与趋势. 中国糖料, 2019, 41(2):47-51.
Liu X X, Tian B, Bai C. Characteristics, problems and development trends of sugar crop industry in China. Sugar Crops China, 2019, 41(2):47-51 (in Chinese with English abstract).
[2] 刘燕群, 李玉萍, 梁伟红, 宋启道, 秦小立, 叶露. 国外甘蔗产业发展现状. 世界农业, 2015, (8):147-152.
Liu Y Q, Li Y P, Liang W H, Song Q D, Qin X L, Ye L. Current situation of sugarcane industry in the world. World Agric, 2015, (8):147-152 (in Chinese with English abstract).
[3] Nguyen C T, Dang L H, Nguyen D T, Tran K P, Giang B L, Tran N Q. Effect of GA3 and Gly plant growth regulators on productivity and sugar content of sugarcane. Agriculture, 2019, 9:1-13.
doi: 10.3390/agriculture9010001
[4] Praharaj S, Singh D, Guru S K, Meena B R. Effect of plant growth regulators on tiller dynamics and yield of sugarcane (Saccharum officinarum L.). Int J Bio-Resour Stress Manage, 2017, 8:75-78.
doi: 10.23910/IJBSM
[5] Qiu L H, Chen R F, Luo H M, Fan Y G, Huang X, Liu J X, Xiong F Q, Zhou H W, Gan C K, Wu J M. Effects of exogenous GA3 and DPC treatments on levels of endogenous hormone and expression of key gibberellin biosynthesis pathway genes during stem elongation in sugarcane. Sugar Technol, 2019, 21:936-948.
doi: 10.1007/s12355-019-00728-7
[6] Shomeili M, Nabipour M, Meskarbashee M, Memari H R. Effects of gibberellic acid on sugarcane plants exposed to salinity under a hydroponic system. Afr J Plant Sci, 2011, 5:609-616.
[7] 吴建明, 李杨瑞, 王爱勤, 杨丽涛, 杨柳. 甘蔗GA20氧化酶基因片段克隆及序列分析. 热带作物学报, 2009, 30:817-821.
Wu J M, Li Y R, Wang A Q, Yang L T, Yang L. Cloning and Sequence Analysis of Sugarcane GA20-oxidase Gene. Chin J Trop Crop, 30:817-821 (in Chinese with English abstract).
[8] Lu J J, Lei C Y, Zha L S. Study on the application and residues of plant growth regulators in the fruit sugarcane grown in the sub-suitable region. J Agric Sci, 2010, 2:254-256.
[9] 山雨思, 辛正琦, 何潇, 代欢欢, 吴能表. 外源茉莉酸甲酯对UV-B胁迫下颠茄生物碱积累及TAs代谢途径调控的机制探究. 作物学报, 2020, 46:1894-1904.
doi: 10.3724/SP.J.1006.2020.04050
Shan Y S, Xin Z Q, He X, Dai H H, Wu N B. Mechanism exploration on alkaloids accumulation and TAs metabolic pathways regulationB in Atropa belladonna L. treated with exogenous methyl jasmonate under UV-B stress. Acta Agron Sin, 2020, 46:1894-1904 (in Chinese with English abstract).
[10] Li J, Zhao C, Zhang M, Yuan F, Chen M. Exogenous melatonin improves seed germination in Limonium bicolor under salt stress. Plant Signal Behav, 2019, 14:1659705.
[11] 常博文, 钟鹏, 刘杰, 唐中华, 高亚冰, 于洪久, 郭炜. 低温胁迫和赤霉素对花生种子萌发和幼苗生理响应的影响. 作物学报, 2019, 45:118-130.
doi: 10.3724/SP.J.1006.2019.84043
Chang B W, Zhong P, Liu J, Tang Z H, Gao Y B, Yu H J, Guo W. Effect of low-temperature stress and gibberellin on seed germination and seed-ling physiological responses in peanut. Acta Agron Sin, 2019, 45:118-130 (in Chinese with English abstract).
[12] 温福平, 张檀, 张朝晖, 潘映红. 赤霉素对盐胁迫抑制水稻种子萌发的缓解作用的蛋白质组分析. 作物学报, 2009, 35:483-489.
Wen F P, Zhang T, Zhang Z H, Pan Y H. Proteome analysis of relieving effect of gibberellin on the inhibition of rice seed germination by salt stress. Acta Agron Sin, 2009, 35:483-489 (in Chinese with English abstract).
[13] 虞慧芳, 曹家树, 王永勤. 植物矮化突变体的激素调控. 生命科学, 2002, 14(2):85-88.
Yu H F, Cao J S, Wang Y Q. Hormones regulation in plant dwarfing mutants. Chin Bull Life Sci, 2002, 14(2):85-88 (in Chinese).
[14] Nam Y J, Herman D, Blomme J, Chae E, Kojima M, Coppens F, Storme V, Van Daele T, Dhondt S, Sakakibara H. Natural variation of molecular and morphological gibberellin responses. Plant Physiol, 2016, 173:703-714.
doi: 10.1104/pp.16.01626
[15] Qin X, Liu J H, Zhao W S, Chen X J, Peng Y L. Gibberellin 20-oxidase gene OsGA20ox3 regulates plant stature and disease development in rice. Mol Plant Microbe Interact, 2013, 26:227-239.
doi: 10.1094/MPMI-05-12-0138-R
[16] Lange T, Hedden P, Graebe J E. Expression cloning of a gibberellin 20-oxidase, a multifunctional enzyme involved in gibberellin biosynthesis. Proc Natl Acad Sci USA, 1994, 91:8552-8556.
doi: 10.1073/pnas.91.18.8552
[17] 石建斌, 杨永智, 王舰. 马铃薯突变体赤霉素代谢关键酶基因差异表达分析. 生物技术通报, 2016, 32(1):1-6.
Shi J B, Yang Y Z, Wang J. Differential expression analysis of key enzymes of metabolic gibberellin in potatomutants. Biotechnol Bull, 2016, 32(1):124-130 (in Chinese with English abstract).
[18] Plackett A R, Thomas S G, Wilson Z A, Hedden P. Gibberellin control of stamen development a fertile field. Trends Plant Sci, 2011, 16:568-578.
doi: 10.1016/j.tplants.2011.06.007 pmid: 21824801
[19] Appleford N E J, Evans D J, Lenton J R, Gaskin P, Croker S J, Devos K M, Phillips A L, Hedden G P. Function and transcript analysis of gibberellin-biosynthetic enzymes in wheat. Planta, 2006, 223:568-582.
pmid: 16160850
[20] Wang Y L, Sun J Z, Sameh S A, Gao L, Ni X N, Li X, Wu Y F, Jiang J X. Identification and expression analysis of Sorghum bicolor gibberellin oxidase genes with varied gibberellin levels involved in regulation of stem biomass. Ind Crops Prod, 2020, 145:111951.
[21] Voorend W, Nelissen H, Vanholme R, De Vliegher A, Van Breusegem F, Boerjan W, Roldán-Ruiz I, Muylle H, Inzé D. Overexpression of GA20-Oxidase 1 impacts plant height, biomass allocation and saccharification efficiency in maize. Plant Biotechnol J, 2016, 14:997-1007.
doi: 10.1111/pbi.12458 pmid: 26903034
[22] Wang Y J, Deng D X, Ding H D, Xu X M, Zhang R, Wang S X, Bian Y L, Yin Z R, Chen Y, Xu M L. Gibberellin biosynthetic deficiency is responsible for maize dominant Dwarf11 (D11) mutant phenotype: physiological and transcriptomic evidence. PLoS One, 2013, 8:e66466.
[23] Maurer A, Draba V, Pillen K. Genomic dissection of plant development and its impact on thousand grain weight in barley through nested association mapping. J Exp Bot, 2016, 67:2507-2518.
doi: 10.1093/jxb/erw070
[24] Maurer A, Draba V, Jiang Y, Schnaithmann F, Sharma R, Schumann E, Kilian B, Reif J C, Pillen K. Modelling the geneticarchitecture of flowering time control in barley through nested association mapping. Biomed Central Genomics, 2015, 16:290.
[25] Jia Q, Zhang J, Westcott S, Zhang X Q, Bellgard M, Lance R, Li C. GA-20 oxidase as a candidate for the semidwarf gene sdw1/denso in barley. Funct Integr Genom, 2009, 9:255-262.
doi: 10.1007/s10142-009-0120-4
[26] Jia Q J, Li D, Shang Y, Zhu J H, Hua W, Wang J M, Yang J M, Zhang G P. Molecular characterization and functional analysis of barley semi-dwarf mutant Riso no. 9265. BMC Genomics, 2015, 16:927.
doi: 10.1186/s12864-015-2116-x
[27] 范业赓, 丘立杭, 黄杏, 周慧文, 甘崇琨, 李杨瑞, 杨荣仲, 吴建明, 陈荣发. 甘蔗节间伸长过程赤霉素生物合成关键基因的表达及相关植物激素动态变化. 植物学报, 2019, 54:486-496.
doi: 10.11983/CBB18139
Fan Y G, Qiu L H, Huang X, Zhou H W, Gan C K, Li Y R, Yang R Z, Wu J M, Chen R F. Expression analysis of key genes in gibberellin biosynthesis and related phytohormonal dynamics during sugarcane inter-node elongation. Bull Bot, 2019, 54:486-496 (in Chinese with English abstract).
[28] 沈姣, 王凯, 张文盼, 董广蕊, 石岩, 张积森. 甘蔗染色体研究近况. 热带作物学报, 2016, 37:1430-1436.
Shen J, Wang K, Zhang W P, Dong G R, Shi Y, Zhang J S. A review for the chromosome of sugarcane. Chin J Trop Crop, 2016, 37:1430-1436 (in Chinese with English abstract)
[29] Tan X, Yang H, Qiao D J, Ma X. Construction of siRNA plant expression vector interfered with GA20-oxidase and production of dwarf tobacco. Chin J Appl Environ Biol, 2008, 14:48-52.
[30] Laura H, Andres G L, Jose L G M. Characterization of gibberellin 20-oxidases in the citrus hybrid Carrizocit range. Tree Physiol, 2009, 29:569-577.
doi: 10.1093/treephys/tpn049
[31] 黄桃鹏, 李媚娟, 王睿, 李玲. 赤霉素生物合成及信号转导途径研究进展. 植物生理学报, 2015, 51:1241-1247.
Huang T P, Li M J, Wang R, Li L. Progress in study of gibberellins biosynthesis and signaling transduction pathway. Plant Physiol J, 2015, 51:1241-1247 (in Chinese with English abstract).
[32] Dai X M, Cheng X X, Li Y X. Differential expression of gibberellin 20 oxidase gene induced by abiotic stresses in Zoysiagrass (Zoysia japonica). Biologia, 2012, 67:681-688.
doi: 10.2478/s11756-012-0048-3
[33] Rieu I, Uiz-Rivero O, Ernandez-Garcia N, Griffiths J, Powers S J, Gong F, Linhartova T, Eriksson S, Nilsson O, Thomas S G. The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development through-out the Arabidopsis life cycle. Plant J, 2008, 3:488-504.
[34] 谭彬, 王婷, 郝鹏博, 郑先波, 程钧, 王伟, 冯建灿. 外源GA3和PBZ对桃枝条生长及其GA相关基因表达的影响. 华北农学报, 2019, 34(2):25-34.
Tan B, Wang T, Hao P B, Zheng X B, Cheng J, Wang W, Feng J C. Effects of GA3 and PBZ on shoot growth and expression of GA-related genes in peach. Acta Agric Boreali-Sin, 2019, 34(2):25-34 (in Chinese with English abstract).
[35] 叶家其, 张毓婷, 傅鹰, 周明兵, 汤定钦. 毛竹茎秆伸长过程中赤霉素生物合成、降解和信号转导关键基因的鉴定及表达分析. 生物工程学报, 2019, 35:647-666.
Ye J Q, Zhang Y T, Fu Y, Zhou M B, Tang D Q. Genome-wide identification and expression analysis of gibberellin biosynthesis, metabolism and signaling family genes inPhyllostachys edulis. Chin J Biotechnol, 35:647-666 (in Chinese with English abstract).
[36] He H, Liang G, Lu S, Wang P, Liu T, Ma Z, Zuo C, Sun X, Chen B, Mao J. Genome-wide identification and expression analysis of GA2ox, GA3ox, and GA20ox are related to gibberellin oxidase genes in grape(Vitis vinifera L.). Genes, 2019, 10:680.
doi: 10.3390/genes10090680
[37] Hedden P. The genes of the green revolution. Trends Genet, 2003, 19:5-9.
pmid: 12493241
[38] 李飞鸿, 侯应军, 李雪涵, 余心怡, 渠慎春. 苹果赤霉素氧化酶基因MdGA2ox8的克隆功能分析. 中国农业科学, 2018, 51:4339-4351.
Li F H, Hou Y J, Li X H, Yu X Y, Qu S C. Cloning and function analysis of apple gibberellin oxidase gene MdGA2ox8. Sci Agric Sin, 2018, 51:4339-4351 (in Chinese with English abstract).
[39] 李军, 赵爱春, Umuhoza D, 王茜龄, 刘长英, 鲁成, 余茂德. 桑树MaDFR的克隆及功能分析. 中国农业科学, 2014, 47:4524-453.
Li J, Zhao A C, Umuhoza D, Wang Q L, Liu C Y, Lu C, Yu M D. Cloning and function analysis of aMadfr gene from mulberry. Sci Agric Sin, 47:4524-4532 (in Chinese with English abstract).
[40] Spielmeyer W, Ellis M H, Chandler P M. Semidwarf (sd-1), ‘Green Revolution’ rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA, 2001, 99:9043-9048.
doi: 10.1073/pnas.132266399
[41] Do P T, Tar J R D, Lee H, Folta M K, Zhang Z Y J. Expression of ZmGA20ox cDNA alters plant morphology and increases biomass production of switchgrass(Panicum virgatum L.). Plant Biotechnol J, 2016, 1532-1540.
[42] Huang S, Raman A S, Ream J E, Fujiwara H R, Cerny E, Brown S M. Overexpression of 20-oxidase confers a gibberellin- overproduction phenotype in Arabidopsis. Plant Physiol, 1998, 118:7739-7781.
[43] Coles A L, Phillips J P, Croker S J, Garcia-Lepe R, Hedden P. Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes. Plant J, 1999, 17:5479-5556.
[44] Eriksson M E, Israelsson M, Olsson O, Moritz T. Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat Biotechnol, 2001, 18:7849-7788.
[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[3] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[4] 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341.
[5] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[6] 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530.
[7] 傅华英, 张婷, 彭文静, 段瑶瑶, 许哲昕, 林艺华, 高三基. 甘蔗新品种(系)苗期白条病人工接种抗性鉴定与评价[J]. 作物学报, 2021, 47(8): 1531-1539.
[8] 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析[J]. 作物学报, 2021, 47(7): 1275-1296.
[9] 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893.
[10] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[11] 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586.
[12] 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415.
[13] 张荣跃, 王晓燕, 杨昆, 单红丽, 仓晓燕, 李婕, 王长秘, 尹炯, 罗志明, 李文凤, 黄应昆. 甘蔗新品种及主栽品种对褐锈病抗性与Bru1基因分子检测[J]. 作物学报, 2021, 47(2): 376-382.
[14] 仓晓燕, 夏红明, 李文凤, 王晓燕, 单红丽, 王长秘, 李婕, 张荣跃, 黄应昆. 甘蔗优良品种(系)对黑穗病的抗性评价[J]. 作物学报, 2021, 47(11): 2290-2296.
[15] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!