欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (11): 2163-2172.doi: 10.3724/SP.J.1006.2021.04236

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发

郭青青1,2**(), 周蓉1,2**(), 陈雪1,2, 陈蕾1,2, 李加纳1,2, 王瑞1,2,*()   

  1. 1西南大学农学与生物科技学院, 重庆 400715
    2重庆市油菜工程技术研究中心, 重庆 400715
  • 收稿日期:2020-10-31 接受日期:2021-01-13 出版日期:2021-11-12 网络出版日期:2021-02-18
  • 通讯作者: 王瑞
  • 作者简介:郭青青, E-mail: 1833266719@qq.com
    周蓉, E-mail: 1822701415@qq.com第一联系人:**同等贡献
  • 基金资助:
    西南大学校创项目(X202010635478);国家重点研发计划项目“七大作物育种”(2016YFD0101300)

Location and InDel markers for candidate interval of the orange petal gene in Brassica napus L. by next generation sequencing

GUO Qing-Qing1,2**(), ZHOU Rong1,2**(), CHEN Xue1,2, CHEN Lei1,2, LI Jia-Na1,2, WANG Rui1,2,*()   

  1. 1College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
    2Chongqing Engineering Research Center for Rapeseed, Chongqing 400715, China
  • Received:2020-10-31 Accepted:2021-01-13 Published:2021-11-12 Published online:2021-02-18
  • Contact: WANG Rui
  • About author:First author contact:** Contributed equally to this work
  • Supported by:
    Innovation Project of Southwest University Students(X202010635478);National Key Research and Development Program of China(2016YFD0101300)

摘要:

甘蓝型油菜花色的选育和改良已成为种质资源鉴定和材料创制的重要研究方向。目前为止, 甘蓝型油菜桔红花显性基因定位的研究还未见报道。本研究以甘蓝型油菜双单倍体(doubled haploid, DH)纯系黄花Y05和桔红花R08杂交, 分析桔红花性状遗传模式。在F2群体中选取30株极端桔红花和30株极端纯黄花构建叶片DNA子代池和花瓣RNA子代池, 对亲本和DNA子代池进行30×重测序, 对RNA子代池进行6G测序。以法国甘蓝型油菜Darmor-bzh为参考序列, QTL-seq流程和MMAPPR流程相互结合鉴定桔红花基因候选区间。利用IGV软件可视化分析候选区间内插入缺失(InDel)变异位点, 根据候选区间信息设计InDel引物。结果表明, 桔红花性状受1对显性主效基因控制, 全基因组重测序定位桔红花性状基因候选区间结果与转录组测序定位结果高度一致, 均位于法国甘蓝型油菜Darmor-bzh A07染色体18~19 Mb。聚丙烯酰胺凝胶电泳筛选到3个与桔红花性状紧密连锁共分离的InDel标记。这些研究为精细定位桔红花显性候选基因以及分子标记辅助选育甘蓝型油菜桔红花新材料提供新思路。

关键词: 甘蓝型油菜, 桔红花性状, 基因定位, 测序, 分子标记

Abstract:

The petal color has been one of the major goals of breeding and genetic research in Brassica napus L. To date, there have been no reports about interval location of dominant orange petal gene trait in B. napus L. In this study, we constructed an F2 mapping population with 458 individuals from the cross between DH Y05 (yellow petal) and DH R08 (orange petal). Whole-genome re-sequencing of DNAs and transcriptome sequencing of RNAs were from two populations each composed of 30 individuals showing extreme opposite trait for a given phenotype in a segregating progeny. Then we performed 30× and 6G of sequencing. Darmor-bzh as the reference genome was aligned to sequence data from the two bulks and parents. QTL-seq and Mutation Mapping Analysis Pipeline for Pooled RNA-seq (MMAPPR) workflow were applied to identify the candidate region of the orange petal gene. The insertion-deletion (InDel) sites can be visualized in candidate interval by Integrative Genomics Viewer (IGV). Based on these Indel variations, we used Vector and Blast to design InDel primers. The results indicated that the orange petal trait was controlled by a dominant major gene. A major candidate region was identified on chromosome A07 (18-19 Mb) of Darmor-bzh. Three InDel markers linked to the orange petal gene were screened by Polyacrylamide gel electrophoresis (PAGE). This study may provide a novel idea for fine mapping dominant orange petal gene as well as marker assisted selection.

Key words: Brassica napus L., orange petal, gene mapping, sequencing, molecular marker

图1

甘蓝型油菜黄花Y05和桔红花R08花瓣形态比较 A1与A2: 黄花Y05; B1与B2: 桔红花R08。"

表1

黄花Y05与桔红花R08杂交F2群体花色分离比例"

群体
Population
总株数
Total plants
桔红花
Orange petal
黄花
Yellow petal
期望比
Expected ratio
χ2 P
2019 149 108 41 3:1 0.37 > 0.05
2020 458 333 125 3:1 1.16 > 0.05

图2

甘蓝型油菜19条染色体上重测序平均深度和覆盖度 黑线: 利用滑动窗口计算得到的平均测序深度曲线。"

图3

甘蓝型油菜19条染色体上delta (SNP-index)分布 蓝点: delta (SNP-index)位点; 红线: 利用滑动窗口数计算的delta (SNP-index)的变化趋势; 绿线: 显著性为95%的阈值; 橘线: 显著性为99%的阈值。"

图4

甘蓝型油菜19条染色体上ED4 (Loess fit)和A07染色体上ED4 (Loess fit)"

图5

IGV可视化候选区间InDel变异"

表2

基于候选区间设计的InDel引物序列"

引物名称
Primer name
InDel位点
InDel site
InDel 正向引物序列
Positive Primer sequence (5′-3′)
反向引物序列
Reverse primer sequence (5′-3′)
InDel-65 18,968,634-18,968,641 D7 GGGTCGAGATACGGTTACGG CGTCGGTAAGTCTTCTTCACC
InDel-69 18,949,999-18,950,007 D8 TACCGAGCTCCAGGTCTCTC TGCGCAACTGTAACCATTCT
InDel-56 18,789,060-18,789,066 D6 ACAAGCAAGGCCTATATTTTGC TCGGGTGAAGCAAATGTGGA

图6

黄花和桔红花亲本及F2代单株电泳 M: 20 bp ladder; A: InDel-65; B: InDel-69; C: InDel-56; 1: 黄花亲本; 2: 桔红花亲本; 3~13: F2群体11个黄花单株; 14~24: F2群体11个桔红花单株。"

[1] 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40: 613-617.
Wang H Z. New-demand oriented oilseed rape industry developing strategy. Chin J Oil Crop Sci, 2018, 40: 613-617 (in Chinese with English abstract).
[2] 刘后利. 油菜的遗传和育种. 上海: 上海科学技术出版社, 1985. pp 76-77.
Liu H L. Heredity and Breeding of Rape. Shanghai: Shanghai Scientific and Technical Publishers, 1985. pp 76-77(in Chinese).
[3] Chen B Y, Heneen W K, Jonsson R. Independent inheritance of erucic acid content and flower colour in the C-genome of Brassica napus L. Plant Breed, 1988, 100: 147-149.
doi: 10.1111/pbr.1988.100.issue-2
[4] 戚存扣, 傅寿仲. 甘蓝型油菜白花性状的遗传. 中国油料作物学报, 1992, 1(3):60-62.
Qi C K, Fu S Z. Genetic studies of white petals in Brassica napus L. Chin J Oil Crop Sci, 1992, 1(3):60-62 (in Chinese with English abstract).
[5] Pearson O H. A dominant white-flowered mutant of Brassica oleracea L. Am Nat, 1929, 63: 561-565.
doi: 10.1086/280291
[6] 张豹. 甘蓝型油菜导入系构建、重要农艺性状QTL分析和白花基因克隆. 华中农业大学博士学位论文, 湖北武汉, 2015.
Zhang B. Development of Chromosome Segment Substitution Lines for QTL Analysis of Important Agronomic Traits and Cloning the White-flowered Gene in Brassica napus L. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2015 (in Chinese with English abstract).
[7] 王翊, 景尚友, 吴刚, 任丽杰. 甘蓝型油菜白花性状在杂交油菜育种中的应用. 黑龙江农业科学, 2003, (6):13-14.
Wang Y, Jing S Y, Wu G, Ren L J. Application of the character of white flower of Brassica napus L. in hybrid breeding. Heilongjiang Agric Sci, 2003, (6):13-14 (in Chinese with English abstract).
[8] 文雁成, 张书芬, 王建平, 朱家成, 赵磊. 甘蓝型油菜白花性状的遗传学研究和白花胞质雄性不育系的选育. 中国农学通报, 2010, 26(1):95-97.
Wen Y C, Zhang S F, Wang J P, Zhu J C, Zhao L. Genetic studies of white petals and selection of cytoplasmic male sterile line with white petals in Brassica napus L. Chin Agric Sci Bull, 2010, 26(1):95-97 (in Chinese with English abstract).
[9] 黄镇, 许婷, 班元元, 刘欢, 范胜栩, 杨丽, 徐爱遐. 甘蓝型油菜白花性状的遗传及AFLP标记. 华北农学报, 2012, 27(1):98-101.
Huang Z, Xu T, Ban Y Y, Liu H, Fan S X, Yang L, Xu A X. Genetic studies of white petals and AFLP markers linked to white petal gene in Brassica napus L. Acta Agric Boreali-Sin, 2012, 27(1):98-101 (in Chinese with English abstract).
[10] 邓昌蓉, 赵志刚, 余青兰. 人工合成甘蓝型油菜花色变异后代的遗传研究. 北方园艺, 2014, (18):14-17.
Deng C R, Zhao Z G, Yu Q L. The genetic studies of the flower color variation’s offsprings in artificial synthesis of Brassica napus. Northern Hortic, 2014, (18):14-17 (in Chinese with English abstract).
[11] 董育红, 田建华, 李殿荣, 郭蔼光, 孔建, 赵小萍. 甘蓝型油菜白花基因的RAPD标记. 西北农林科技大学学报, 2005, 33(10):57-61.
Dong Y H, Tian J H, Li D R, Guo A G, Kong J, Zhao X P. RAPD markers linked to white-petal gene in Brassica napus L. J Northwest A&F Univ, 2005, 33(10):57-61 (in Chinese with English abstract).
[12] 黄萌, 张建栋, 陈培峰, 宋英, 孙华. 甘蓝型油菜白花性状的遗传规律. 江苏农业科学, 2017, 45(20):83-84.
Huang M, Zhang J D, Chen P F, Song Y, Sun H. Genetic law of white flower traits in Brassica napus L. Jiangsu Agric Sci, 2017, 45(20):83-84 (in Chinese with English abstract).
[13] 田露申, 牛应泽, 余青青, 郭世星, 柳丽. 甘蓝型油菜白花性状的主基因+多基因遗传分析. 中国农业科学, 2009, 42: 3987-3995.
Tian L S, Niu Y Z, Yu Q Q, Guo S X, Liu L. Genetic analysis of white flower color with mixed model of major gene plus polygene in Brassica napus L. Sci Agric Sin, 2009, 42: 3987-3995 (in Chinese with English abstract).
[14] 田露申, 闫朝选, 余青青, 郭世星, 牛应泽. 花瓣色素定量法对甘蓝型油菜白花性状的质量-数量遗传模型分析. 中国油料作物学报, 2010, 32: 337-344.
Tian L S, Yan C X, Yu Q Q, Guo S X, Niu Y Z. Analysis of the qualitative-quantitative genetic models of white flower color with petal pigments quantification in Brassica napus L. Chin J Oil Crop Sci, 2010, 32: 337-344 (in Chinese with English abstract).
[15] 柳丽. 甘蓝型油菜遗传连锁图谱的构建及花色基因的QTL初步定位. 四川农业大学硕士学位论文, 四川雅安, 2009.
Liu L. Construction of a SSR Genetic Linkage Map and Primary Location of the QTLs for the Petal Color Trait in Brassica napus L. MS Thesis of Sichuan Agricultural University, Ya’an, Sichuan, China, 2009 (in Chinese with English abstract).
[16] 赵君伟. 白菜型油菜花色遗传及花色基因精细定位. 华中农业大学硕士学位论文, 湖北武汉, 2017.
Zhao J W. Genetic Analysis and Fine Mapping of the Flower Color Gene in Brassica napus L. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2017 (in Chinese with English abstract).
[17] 张向向. 荠菜型油菜白花基因的定位及候选基因分析. 华中农业大学博士学位论文, 湖北武汉, 2017.
Zhang X X. Mapping and Candidate Gene Analysis of the White-flowered Gene in Brassica juncea. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2017 (in Chinese with English abstract).
[18] 李莓, 陈卫江, 易冬莲. 甘蓝型油菜桔红花色恢复系R18的遗传分析. 作物研究, 1999, (4):14-16.
Li M, Chen W J, Yi D L. Inheritance of orange flower colour in restore line R18 of rapeseed (Brassica napus L). Crop Res, 1999, (4):14-16 (in Chinese with English abstract).
[19] 淡亚彬. 甘蓝型油菜桔红花色基因和心叶紫色基因的初步定位. 青海大学农林科学院硕士学位论文, 青海西宁, 2016.
Dan Y B. Primary Mapping of the Orange Flower Gene and Central Leaf Color Gene in Brassica napus L. MS Thesis of Qinghai Academy of Agriculture and Forestry, Xining, Qinghai, China, 2016 (in Chinese with English abstract).
[20] Yao Y M, Li K X, Liu H D, Duncan R W, Guo S M, Xiao L, Du D Z. Whole-genome re-sequencing and fine mapping of an orange petal color gene (Bnpc 1) in spring Brassica napus L. to a 151-kb region. Euphytica, 2017, 213: 165.
doi: 10.1007/s10681-017-1959-4
[21] Zhang N, Zhang H M, Ren Y J, Chen L, Zhang J, Zhang L G. Genetic analysis and gene mapping of the orange flower trait in Chinese cabbage (Brassica rapa L.). Mol Breed, 2019, 39: 76.
doi: 10.1007/s11032-019-0984-5
[22] 刘雪平, 涂金星, 陈宝元, 傅廷栋. 人工合成甘蓝型油菜中花色与芥酸含量的遗传连锁分析. 遗传学报, 2004, 31: 357-362.
Liu X P, Tu J X, Chen B Y, Fu T D. Identification of the linkage relationship between the flower colour and the content of erucic acid in the resynthesized Brassica napus L. Acta Genet Sin, 2004, 31: 357-362 (in English with Chinese abstract).
[23] Huang Z, Ban Y Y, Bao R, Zhang X X, Xu A X, Ding J. Inheritance and gene mapping of the white flower in Brassica napus L. New Zealand J Crop Hortic Sci, 2014, 111: 117.
[24] 陈雪, 王瑞, 井付钰, 张胜森, 贾乐东, 段谋正, 吴宇. 基于二代测序的甘蓝型油菜白花基因候选区间定位及连锁标记验证. 中国农业科学, 2020, 53: 1108-1117.
Chen X, Wang R, Jing F Y, Zhang S S, Jia L D, Duan M Z, Wu Y. Location and linkage markers for candidate interval of the white petal gene in Brassica napus L. by Next Generation Sequencing. Sci Agric Sin, 2020, 53: 1108-1117 (in Chinese with English abstract).
[25] Takagi H, Abe A, Yoshid A K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takumo S, Innan H, Cano L M, Kamoun S, Terauchi R. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J, 2013, 74: 174-183.
doi: 10.1111/tpj.2013.74.issue-1
[26] Jonathon T H, Bradley L D, Brent W B, Bushra G, Yi C S, Yost H J. MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Res, 2013, 23: 687-697.
doi: 10.1101/gr.146936.112 pmid: 23299975
[27] Mithra S V A, Kar M K, Mohapatra T, Robin S, Sarla N, Seshashayee M, Singh K, Singh N K, Sharma R P. DBT propelled national effort in creating mutant resource for functional genomics in rice. Curr Sci, 2016, 110: 543-548.
doi: 10.18520/cs/v110/i4/543-548
[28] Henry I M, Nagalakshmi U, Lieberman M C, Ngo K J, Krasileva K V, Vasquez-gross H, Akhunova A, Akunov E, Dubcovsky J, Tai T H, Comai L. Efficient genome-wide detection and cataloging of EMS-induced mutations using exome capture and next- generation sequencing. Plant Cell, 2014, 26: 1382-1397.
doi: 10.1105/tpc.113.121590
[29] Lin T, Wang S H, Zhong Y, Gao D L, Cui Q Z, Chen H M, Zhang Z H, Shen H L, Weng Y Q, Huang S W. A truncated F-box protein confers the dwarfism in cucumber. J Genet Genomics, 2016, 43: 223-226.
doi: 10.1016/j.jgg.2016.01.007
[30] Wei F J, Droc G, Guiderdoni E, Hsing Y I C. International consortium of rice mutagenesis: resources and beyond. Rice, 2013, 6: 39.
doi: 10.1186/1939-8433-6-39
[31] Lun Y Y, Wang X, Zhang C Z, Yang L, Gao D L, Chen H M, Huang S W. A CsYcf54 variant conferring light green coloration in cucumber. Euphytica, 2016, 208: 509-517.
doi: 10.1007/s10681-015-1592-z
[32] Zhou Q, Wang S H, Hu B W, Chen H M, Zhang Z H, Huang S W. An ACCUMULATION AND REPLICATION OF CHLOROPLASTS 5 gene mutation confers light green peel in cucumber. J Integr Plant Biol, 2015, 57: 936-942.
doi: 10.1111/jipb.12355
[33] 丁戈, 陈伦林, 邹小云, 李书宇, 熊洁, 邹晓芬, 宋来强. 甘蓝型油菜桔黄花色基因的QTL-seq遗传分析及InDel分子标记开发. 分子植物育种, 2019, 17: 3983-3992.
Ding G, Chen L L, Zou X Y, Li S Y, Xiong J, Zou X F, Song L Q. QTL-seq genetic analysis and InDel marker development of orange petel color gene in Brassica napus. Mol Plant Breed, 2019, 17: 3983-3992 (in Chinese with English abstract).
[34] 杨洁, 赫佳, 王丹碧, 施恩, 杨文宇, 耿其芳, 王中生. InDel标记的研究和应用进展. 生物多样性, 2016, 24(2):237-243.
doi: 10.17520/biods.2015205
Yang J, He J, Wang D B, Shi E, Yang W Y, Geng Q F, Wang Z S. Progress in research and application of InDel markers. Biodiver Sci, 2016, 24(2):237-243 (in Chinese with English abstract).
[35] 潘存红, 王子斌, 马玉银, 殷跃军, 张亚芳, 左示敏, 陈宗祥, 潘学彪. InDel和SNP标记在水稻图位克隆中的应用. 中国水稻科学, 2007, 21: 447-453.
Pan C H, Wang Z B, Ma Y Y, Yin Y J, Zhang Y F, Zuo S M, Chen Z X, Pan X B. InDel and SNP markers and their application in map-based cloning of rice genes. Chin J Rice Sci, 2007, 21: 447-453 (in Chinese with English abstract).
[36] 胡坤. 玉米与大刍草InDel标记的开发及遗传连锁图谱的构建. 四川农业大学硕士学位论文, 四川雅安, 2014.
Hu K. The Development of Maize and Teosinte InDel Markers and Genetic Linkage Map Construction. MS Thesis of Sichuan Agricultural University, Ya’an, Sichuan, China, 2014 (in Chinese with English abstract).
[37] 吴迷, 汪念, 沈超, 黄聪, 温天旺, 林忠旭. 基于重测序的陆地棉InDel标记开发与评价. 作物学报, 2019, 45: 196-203.
Wu M, Wang N, Shen C, Huang C, Wen T W, Lin Z X. Development and evaluation of InDel markers in cotton based on whole-genome re-sequencing data. Acta Agron Sin, 2019, 45: 196-203 (in Chinese with English abstract).
[38] 徐婷婷, 汪巧玲, 邹淑琼, 狄佳春, 杨欣, 朱银, 赵涵, 颜伟. 基于高通量测序的大麦InDel标记开发及应用. 作物学报, 2020, 46: 1340-1355.
Xu T T, Wang Q L, Zou S Q, Di J C, Yang X, Zhu Y, Zhao H, Yan W. Development and application of InDel markers based on high throughput sequencing in barley. Acta Agron Sin, 2020, 46: 1340-1355 (in Chinese with English abstract).
[39] 岳晓鹏. 基于甘蓝型油菜基因组重测序开发InDel标记. 华中农业大学硕士学位论文, 湖北武汉, 2014.
Yue X P. Development of InDel Markers Based on Whole-genome Resequencing in Brassica napus. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2014 (in Chinese with English abstract).
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[4] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[5] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[6] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[7] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[8] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[9] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[10] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[11] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[12] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[13] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[14] 王音, 冯志威, 葛川, 赵佳佳, 乔玲, 武棒棒, 闫素仙, 郑军, 郑兴卫. 普通小麦-六倍体中间偃麦草易位系的抗条锈鉴定及应用评估[J]. 作物学报, 2021, 47(8): 1511-1521.
[15] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!