欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (6): 1188-1196.doi: 10.3724/SP.J.1006.2021.01053

• 研究简报 • 上一篇    下一篇

小麦株高QTL Qph.nau-5B的效应评价

韩玉洲1(), 张勇*(), 杨阳1, 顾正中2, 吴科3, 谢全1,*(), 孔忠新1,*(), 贾海燕1, 马正强1   

  1. 1南京农业大学作物遗传与种质创新国家重点实验室, 江苏南京 210095
    2淮安市农业科学研究院, 江苏淮安 223001
    3泰安市农业科学研究院, 山东泰安 271000
  • 收稿日期:2020-06-27 接受日期:2020-12-01 出版日期:2021-06-12 网络出版日期:2020-12-31
  • 通讯作者: 张勇,谢全,孔忠新
  • 作者简介:韩玉洲, E-mail: 2016101115@njau.edu.cn;|张勇, E-mail: 2017101102@njau.edu.cn
  • 基金资助:
    国家重点研发计划项目(2016YFD0100402);国家自然科学基金项目(31801354);国家自然科学基金项目(31871620);江苏省“双创计划”资助

Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat

HAN Yu-Zhou1(), ZHANG Yong*(), YANG Yang1, GU Zheng-Zhong2, WU Ke3, XIE Quan1,*(), KONG Zhong-Xin1,*(), JIA Hai-Yan1, MA Zheng-Qiang1   

  1. 1State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
    2Huai’an Academy of Agricultural Sciences, Huai’an 223001, Jiangsu, China
    3Tai’an Academy of Agricultural Sciences, Tai’an 271000, Shandong, China
  • Received:2020-06-27 Accepted:2020-12-01 Published:2021-06-12 Published online:2020-12-31
  • Contact: ZHANG Yong,XIE Quan,KONG Zhong-Xin
  • Supported by:
    The National Key Research and Development Program of China(2016YFD0100402);The National Natural Science Foundation of China(31801354);The National Natural Science Foundation of China(31871620);The Innovation and Entrepreneurship Talents Program of Jiangsu

摘要:

株高直接影响小麦的产量潜力, 也是植株抗倒伏性的重要组成部分。目前虽有大量株高相关QTL被鉴定到, 但大多QTL的遗传效应仍不清楚。本研究前期利用小麦品种群体, 通过关联分析鉴定到一个小麦株高主效QTL Qph.nau-5B。为了评价该QTL的效应, 通过分子标记辅助选择分别构建了以南大2419、吉春1016和郑麦9023为供体亲本, 中优9507为背景的3种等位变异的近等基因系, 背景回复率均高于93%。在7个独立的试验环境中, 所有近等基因系的株高较轮回亲本均显著降低, 平均降幅为11.1 cm (10.3%)。Qph.nau-5B不同等位变异效应强弱不同, 其中来源于吉春1016和郑麦9023的等位变异平均降秆效应相似(12.4 cm), 显著大于南大2419的等位变异(8.6 cm), 但各等位变异相对降秆效应大小受环境影响。此外, Qph.nau-5B对单株穗数、穗长、千粒重等农艺性状无明显负效应。本研究结果表明Qph.nau-5B具有重要的育种价值, 可为小麦的株型分子设计育种提供基因资源。

关键词: 小麦, 株高, QTL, Qph.nau-5B, 近等基因系, 分子标记辅助选择

Abstract:

Plant height affects directly the yield potential of wheat, and constitutes an important component of plant resistance to lodging. Although a large number of QTLs for plant height were detected, most of them have not been evaluated for their genetic effects yet. In the previous study, a major QTL Qph.nau-5B controlling wheat plant height was identified through association mapping in wheat variety collection. To evaluate the dwarfing effect of this QTL, three near-isogenic lines (NILs) with different alleles of Qph.nau-5B were developed using marker-assisted selection with Nanda 2419, Jichun 1016, and Zhengmai 9023 as donor and Zhongyou 9507 as receptor. The recipient genome compositions of these NILs were higher than 93%. Seven independent field trials were conducted and revealed that, compared with the recurrent parent, all NILs indicated a significant decrease in plant height (11.1 cm or 10.3% on average). Three alleles of Qph.nau-5B showed different degrees of dwarfing effects. The alleles coming from Jichun 1016 and Zhengmai 9023 displayed a similar effect on plant height (12.4 cm) in all environments, stronger than that of Nanda 2419 (8.6 cm). However, the relative dwarfism effects of different alleles were affected by different environments. Further analysis elucidated that this QTL had little detrimental influence on other agronomical traits such as spike number per plant, spike length and 1000-grain weight. These results suggested the breeding value of Qph.nau-5B that would be utilized for molecular design breeding of plant architecture in wheat.

Key words: wheat (Triticum aestivum), plant height, QTL, Qph.nau-5B, near-isogenic lines (NILs), marker-assisted selection

表1

Qph.nau-5B近等基因系的亲本、世代与背景回复率"

近等基因系
NILs
供体亲本
Donor parents
轮回亲本
Recurrent parent
世代
Generation
背景回复率
Recipient genome composition (%)
NIL-ND 南大2419 Nanda 2419 中优9507 Zhongyou 9507 BC4F2 96.8
NIL-JC 吉春1016 Jichun 1016 中优9507 Zhongyou 9507 BC4F2 93.3
NIL-ZM 郑麦9023 Zhengmai 9023 中优9507 Zhongyou 9507 BC4F2 98.4

表2

不同变异因子对株高的影响"

变异因子 Variation factors FF-value PP-value
基因型 Genotype 113.95 <0.0001
环境 Environment 218.02 <0.0001
基因型 × 环境 Genotype × Environment 5.58 <0.0001

图1

Qph.nau-5B不同等位变异近等基因系及其轮回亲本的株高 A: 7个环境株高平均表现; B~H: 单环境株高表现; ZY: 轮回亲本中优9507。柱形图上方不同小写字母表示在P = 0.05水平上差异显著。"

表3

Qph.nau-5B不同等位变异近等基因系及其轮回亲本的单株穗数"

株系Line 2017HA 2018HA 2019HA 2018JP 2019LH 2017TA 2018TA
中优9507 Zhongyou 9507 9.2±0.5 6.3±0.7 6.8±0.3 6.3±0.4 6.9±0.4 22.9±1.0 14.6±0.1
NIL-ND 8.7±0.3 6.0±0.7 7.8±2.4 5.2±0.4 21.4±0.9 15.6±1.3
NIL-JC 9.0±0.5 5.8±0.4 6.2±0.1 5.8±0.1 14.8±0.4
NIL-ZM 8.1±0.4 5.7±1.5 7.4±0.7 6.3±0.4 6.6±0.0 19.5±0.8* 15.6±0.4

表4

Qph.nau-5B不同等位变异近等基因系及其轮回亲本的穗长"

株系Line 2017HA 2018HA 2019HA 2018JP 2019LH 2017TA 2018TA
中优9507 Zhongyou 9507 9.7±0.1 9.1±0.1 10.5±0.1 9.7±0.1 10.8±0.2 11.3±0.2 9.9±0.1
NIL-ND 9.8±0.1 9.1±0.1 10.8±0.1 9.9±0.5 10.8±0.0 11.6±0.2 9.6±0.3
NIL-JC 10.3±0.2** 10.7±0.1** 10.4±0.9 11.9±0.3* 10.0±0.3
NIL-ZM 9.4±0.2 10.8±0.4 9.6±0.2 10.8±0.5 11.7±0.2 9.9±0.3

表5

Qph.nau-5B不同等位变异近等基因系及其轮回亲本的千粒重"

株系Line 2017HA 2018HA 2019HA 2018JP 2019LH 2017TA 2018TA
中优9507 Zhongyou 9507 52.4±0.4 51.7±1.1 49.2±0.0 51.4±3.0 51.1±0.6 59.1±0.8 53.7±1.1
NIL-ND 51.9±0.4 50.4±0.9 49.1±4.8 52.0±3.0 50.6±1.3 57.1±0.7 50.6±0.4*
NIL-JC 53.3±0.8 52.8±1.7* 54.6±1.7 53.9±0.4 54.4±0.9* 49.1±2.1**
NIL-ZM 52.9±0.8 54.8±1.7* 50.6±1.1 53.7±1.4 52.6±0.6 56.9±0.4 51.4±1.2
[1] 李杏普, 兰素缺, 李孟军. 小麦矮秆基因. 北京: 中国农业出版社, 2009. pp 1-3.
Li X P, Lan S Q, Li M J. Wheat Dwarfing Genes. Beijing: China Agriculture Press, 2009. pp 1-3(in Chinese).
[2] Wang Z, Wu X, Ren Q, Chang X, Li R, Jing R. QTL mapping for developmental behavior of plant height in wheat (Triticum aestivum L.). Euphytica, 2010,174:447-458.
[3] Wu X, Wang Z, Chang X, Jing R. Genetic dissection of the developmental behaviours of plant height in wheat under diverse water regimes. J Exp Bot, 2010,61:2923-2937.
pmid: 20497970
[4] Cui F, Li J, Ding A, Zhao C, Wang L, Wang X, Li S, Bao Y, Li X, Feng D, Kong L, Wang H. Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat. Theor Appl Genet, 2011,122:1517-1536.
[5] Yang T, Zhang X, Liu H, Wang Z. Chromosomal arm location of a dominant dwarfing gene Rht21 in common wheat variety- XN0004. Acta Univ Agric Boreali-Occident, 1993,21:13-17.
[6] McIntosh R A, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Appels R, Xia X C. Catalogue of gene symbols for wheat. In: Ogihara Y, Takumi S, Handa H, eds. Proceedings of the 12th International Wheat Genetics Symposium. Yokohama, Japan, 2013. pp 8-13.
[7] Chen S, Gao R, Wang H, Wen M, Xiao J, Bian N, Zhang R, Hu W, Cheng S, Bie T, Wang X. Characterization of a novel reduced height gene (Rht23) regulating panicle morphology and plant architecture in bread wheat. Euphytica, 2015,203:583-594.
[8] Tian X, Wen W, Xie L, Fu L, Xu D, Fu C, Wang D, Chen X, Xia X, Chen Q, He Z, Cao S. Molecular mapping of reduced plant height gene Rht24 in bread wheat. Front Plant Sci, 2017,8:1379-1379.
[9] Mo Y, Vanzetti L S, Hale I, Spagnolo E J, Guidobaldi F, Al-Oboudi J, Odle N, Pearce S, Helguera M, Dubcovsky J. Identification and characterization of Rht25, a locus on chromosome arm 6AS affecting wheat plant height, heading time, and spike development. Theor Appl Genet, 2018,131:2021-2035.
[10] Ellis M H, Rebetzke G J, Azanza F, Richards R A, Spielmeyer W. Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theor Appl Genet, 2005,111:423-430.
[11] Hai L, Guo H, Wagner C, Xiao S, Friedt W. Genomic regions for yield and yield parameters in Chinese winter wheat (Triticum aestivum L.) genotypes tested under varying environments correspond to QTL in widely different wheat materials. Plant Sci, 2008,175:226-232.
[12] McIntyre C L, Mathews K L, Rattey A, Chapman S C, Drenth J, Ghaderi M, Reynolds M, Shorter R. Molecular detection of genomic regions associated with grain yield and yield-related components in an elite bread wheat cross evaluated under irrigated and rainfed conditions. Theor Appl Genet, 2010,120:527-541.
pmid: 19865806
[13] Wüerschum T, Langer S M, Longin C F H. Genetic control of plant height in European winter wheat cultivars. Theor Appl Genet, 2015,128:865-874.
[14] Chai L, Chen Z, Bian R, Zhai H, Cheng X, Peng H, Yao Y, Hu Z, Xin M, Guo W, Sun Q, Zhao A, Ni Z. Dissection of two quantitative trait loci with pleiotropic effects on plant height and spike length linked in coupling phase on the short arm of chromosome 2D of common wheat (Triticum aestivum L.). Theor Appl Genet, 2018,131:2621-2637.
[15] Zhou C, Xiong H, Li Y, Guo H, Xie Y, Zhao L, Gu J, Zhao S, Ding Y, Song X, Liu L. Genetic analysis and QTL mapping of a novel reduced height gene in common wheat (Triticum aestivum L.). J Integr Agric, 2020,19:1721-1730.
[16] Schnurbusch T, Paillard S, Fossati D, Messmer M, Schachermayr G, Winzeler M, Keller B. Detection of QTLs for Stagonospora glume blotch resistance in Swiss winter wheat. Theor Appl Genet, 2003,107:1226-1234.
[17] Liu G, Jia L, Lu L, Qin D, Zhang J, Guan P, Ni Z, Yao Y, Sun Q, Peng H. Mapping QTLs of yield-related traits using RIL population derived from common wheat and Tibetan semi-wild wheat. Theor Appl Genet, 2014,127:2415-2432.
[18] Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Snape J. Meta-QTL analysis of the genetic control of crop height in elite European winter wheat germplasm. Mol Breed, 2012,29:159-171.
[19] Peng J R, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature, 1999,400:256-261.
[20] Wen W, Deng Q, Jia H, Wei L, Wei J, Wan H, Yang L, Cao W, Ma Z. Sequence variations of the partially dominant DELLA gene Rht-B1c in wheat and their functional impacts. J Exp Bot, 2013,64:3299-3312.
pmid: 23918966
[21] Bazhenov M S, Divashuk M G, Amagai Y, Watanabe N, Karlov G I. Isolation of the dwarfing Rht-B1p (Rht17) gene from wheat and the development of an allele-specific PCR marker. Mol Breed, 2015,35:213.
[22] Li A, Yang W, Guo X, Liu D, Sun J, Zhang A. Isolation of a gibberellin-insensitive dwarfing gene,Rht-B1e, and development of an allele-specific PCR marker. Mol Breed, 2012,30:1443-1451.
[23] Pearce S, Saville R, Vaughan S P, Chandler P M, Wilhelm E P, Sparks C A, Al-Kaff N, Korolev A, Boulton M I, Phillips A L, Hedden P, Nicholson P, Thomas S G. Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat. Plant Physiol, 2011,157:1820-1831.
[24] Li Y, Xiao J, Wu J, Duan J, Liu Y, Ye X, Zhang X, Guo X, Gu Y, Zhang L, Jia J, Kong X. A tandem segmental duplication (TSD) in green revolution gene Rht-D1b region underlies plant height variation. New Phytol, 2012,196:282-291.
[25] Fischer R A, Quail K J. The effect of major dwarfing genes on yield potential in spring wheats. Euphytica, 1990,46:51-56.
[26] Flintham J E, Borner A, Worland A J, Gale M D. Optimizing wheat grain yield: effects of Rht (gibberellin-insensitive) dwarfing genes. J Agric Sci, 1997,128:11-25.
[27] Evans L T. Feeding the Ten Billion: Plants and Population Growth. Cambridge UK: Cambridge University Press, 1998. pp 20-137.
[28] Yan J, Zhang S. Effects of dwarfing genes on water use efficiency of bread wheat. Front Agric Sci Eng, 2017,4:126-134.
[29] Fick G N, Qualset C O. Seedling emergence, coleoptile length, and plant height relationships in crosses of dwarf and standard-height wheats. Euphytica, 1976,25:679-684.
[30] Allan R E. Agronomic comparisons between Rht1 and Rht2 semidwarf genes in winter wheat. Crop Sci, 1989,29:1103-1108.
[31] Li S, Tian Y, Wu K, Ye Y, Yu J, Zhang J, Liu Q, Hu M, Li H, Tong Y, Harberd N P, Fu X. Modulating plant growth-metabolism coordination for sustainable agriculture. Nature, 2018,560:595-600.
[32] Flintham J E, Gale M D. The Tom Thumb dwarfing gene Rht3 in wheat: 2. Effects on height, yield and grain quality. Theor Appl Genet, 1983,66:249-256.
doi: 10.1007/BF00251155 pmid: 24263924
[33] 贾继增, 丁寿康, 李月华, 张辉. 中国小麦的主要矮秆基因及矮源的研究. 中国农业科学, 1992,25(1):1-5.
Jia J Z, Ding S K, Li Y H, Zhang H. Studies of main dwarf genes and dwarf resources on Chinese wheat. Sci Agric Sin, 1992,25(1):1-5 (in Chinese with English abstract).
[34] Tang N, Jiang Y, He B, Hu Y. The effects of dwarfing genes (Rht-B1b, Rht-D1b, and Rht8) with different sensitivity to GA3 on the coleoptile length and plant height of wheat. Agric Sci China, 2009,8:1028-1038.
[35] 周阳, 何中虎, 张改生, 夏兰琴, 陈新民, 张立平, 陈锋. 用微卫星标记鉴定中国小麦品种中Rht8矮秆基因的分布. 作物学报, 2003,29:810-814.
Zhou Y, He Z H, Zhang G S, Xia L Q, Chen X M, Zhang L P, Chen F. Rht8 dwarf gene distribution in Chinese wheats identified by microsatellite marker. Acta Agron Sin, 2003,29:810-814 (in Chinese with English abstract).
[36] 王玉叶, 张海萍, 来得娥, 赵秋霞, 常成, 马传喜. 257 份小麦品种资源中矮秆基因的分子检测. 安徽农业大学学报, 2013,40:860-866.
Wang Y Y, Zhang H P, Lai D E, Zhao Q X, Chang C, Ma C X. Detection of dwarf genes in 257 wheat variety resources using molecular markers. J Anhui Agric Univ, 40:860-866 (in Chinese with English abstract).
[37] 马东钦, 王晓伟, 许兰杰, 朱有朋, 詹克慧, 王冬梅. 黄淮麦区部分小麦种质资源中矮秆基因的分布. 河南农业大学学报, 2009,43(2):118-125.
Ma D Q, Wang X W, Xu L J, Zhu Y P, Zhan K H, Wang D M. Distribution of dwarfing genes derived from some wheat germplasms in Huang-Huai wheat area. J Henan Agric Univ, 2009,43(2):118-125 (in Chinese with English abstract).
[38] Zhang X, Yang S, Zhou Y, He Z, Xia X. Distribution of the Rht-B1b, Rht-D1b and Rht8 reduced height genes in autumn- sown Chinese wheats detected by molecular markers. Euphytica, 2006,152:109-116.
[39] 张德强, 宋晓朋, 冯洁, 马文洁, 武炳瑾, 张传量, 崔紫霞, 冯毅, 孙道杰. 黄淮麦区小麦品种矮秆基因Rht-B1bRht-D1bRht8的检测及其对农艺性状的影响. 麦类作物学报, 2016,36:975-981.
Zhang D Q, Song X P, Feng J, Ma W J, Wu B J, Zhang C L, Cui Z X, Feng Y, Sun D J. Detection of dwarf genes Rht-B1b, Rht-D1b and Rht8 in Huang-Huai Valley winter wheat areas and their influences on agronomic characteristics. J Triticeae Crop, 2016,36:975-981 (in Chinese with English abstract).
[40] 周晓变, 赵磊, 陈建辉, 阳霞, 王永彦, 张香粉, 闫雪芳, 董中东, 崔党群, 陈锋. 黄淮麦区小麦种质资源矮秆基因分布及其与农艺性状的关系. 麦类作物学报, 2017,37:997-1007.
Zhou X B, Zhao L, Chen J H, Yang X, Wang Y Y, Zhang X F, Yan X F, Dong Z D, Cui D Q, Chen F. Distribution of dwarf genes and their association with agronomic traits in bread wheat from the Yellow and Huai wheat region. J Triticeae Crop, 2017,37:997-1007 (in Chinese with English abstract).
[41] 周强, 袁中伟, 欧俊梅, 任勇, 杜小英, 陶军, 李生荣, 刘登才. 四川小麦主要矮秆基因的分子鉴定. 麦类作物学报, 2015,35:1624-1630.
Zhou Q, Yuan Z W, Ou J M, Ren Y, Du X Y, Tao J, Li S R, Liu D C. Molecular identification of the main dwarfing genes in wheat varieties in Sichuan. J Triticeae Crop, 2015,35:1624-1630 (in Chinese with English abstract).
[42] 杨松杰. 我国小麦品种(系)矮秆基因的分子检测. 新疆农业大学硕士学位论文,新疆乌鲁木齐, 2004.
Yang S J. Molecular Detection of Dwarfing Genes in Chinese Bread Wheat. MS Thesis of Xinjiang Agricultural University, Urumqi, Xinjiang,China, 2004 (in Chinese with English abstract).
[43] 刘秉华, 杨丽, 王山荭. 小麦4D染色体上基因Ms2Rht10和着丝点的连锁关系图. 国外农学——麦类作物, 1995, ( 5):36-38.
Liu B H, Yang L, Wang S H. Linkage map of the genes Ms2, Rht10 and centromere on chromosome 4D of wheat. Agron Abroad: Wheat Barley Triticale, 1995, ( 5):36-38 (in Chinese).
[44] Chen L, Phillips A L, Condon A G, Parry M A J, Hu Y. GA-responsive dwarfing gene Rht12 affects the developmental and agronomic traits in common bread wheat. PLoS One, 2013,8:e62285.
[45] Worland A J, Sayers E J, Börner A. The genetics and breeding potential of Rht12, a dominant dwarfing gene in wheat. Plant Breed, 1994,113:187-196.
[46] 万洪深. 小麦骨干亲本南大2419产量相关基因组区段的定位及其等位变异的效应. 南京农业大学博士学位论文,江苏南京, 2013.
Wan H S. Yield-related Genomic Regions of Founder Wheat Parent Nanda 2419 and the Effects of Their Allelic Variations. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu,China, 2013 (in Chinese with English abstract).
[47] Wu Y, Li M, He Z, Dreisigacker S, Wen W, Jin H, Zhai S, Li F, Gao F, Liu J, Wang R, Zhang P, Wan Y, Cao S, Xia X. Development and validation of high-throughput and low-cost STARP assays for genes underpinning economically important traits in wheat. Theor Appl Genet, 2020,133:2431-2450.
[48] Zhao J, Wang Z, Liu H, Zhao J, Li T, Hou J, Zhang X, Hao C. Global status of 47 major wheat loci controlling yield, quality, adaptation and stress resistance selected over the last century. BMC Plant Biol, 2019,19:5.
[49] Li A, Yang W, Lou X, Liu D, Sun J, Guo X, Wang J, Li Y, Zhan K, Ling H, Zhang A. Novel natural allelic variations at the Rht-1 loci in wheat. J Integr Plant Biol, 2013,55:1026-1037.
doi: 10.1111/jipb.12103 pmid: 23992198
[50] Xue S, Zhang Z, Lin F, Kong Z, Cao Y, Li C, Yi H, Mei M, Zhu H, Wu J, Xu H, Zhao D, Tian D, Zhang C, Ma Z. A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theor Appl Genet, 2008,117:181-189.
pmid: 18437345
[51] Haque M A, Martinek P, Watanabe N, Kuboyama T. Genetic mapping of gibberellic acid-sensitive genes for semi-dwarfism in durum wheat. Cereal Res Commun, 2011,39:171-178.
[52] Ma Z, Sorrells M E. Genetic analysis of fertility restoration in wheat using restriction fragment length polymorphisms. Crop Sci, 1995,35:1137-1143.
[53] 赵广才, 何中虎, 田奇卓, 刘利华, 李振华, 张文彪, 张全良. 农艺措施对中优9507小麦蛋白组分和加工品质的调节效应. 作物学报, 2003,29:408-412.
Zhao G C, He Z H, Tian Q Z, Liu L H, Li Z H, Zhang W B, Zhang Q L. Regulating effect of the treatment of agronomic practice on protein component and bread making quality in Zhongyou 9507 wheat. Acta Agron Sin, 2003,29:408-412 (in Chinese with English abstract).
[54] 冯洁, 许小宛, 李小东, 张传量, 崔紫霞, 冯毅, 孙道杰. 黄淮麦区小麦品种和CIMMYT材料的矮秆基因型及其对株高和胚芽鞘的影响. 麦类作物学报, 2018,38:668-673.
Feng J, Xu X W, Li X D, Zhang C L, Cui Z X, Feng Y, Sun D J. Dwarf genotype of wheat from Huang-Huai River wheat area and CIMMYT and their effects on plant height and coleoptile length. J Triticeae Crop, 2018,38:668-673 (in Chinese with English abstract).
[55] 许琦, 杨娜, 柴永峰, 杨淑巧, 赵智勇, 裴蕾, 郭文治, 刘跃鹏. 中国小麦主要矮秆基因的分布及其对株高的影响. 西北农业学报, 2014,23(5):59-64.
Xu Q, Yang N, Chai Y F, Yang S Q, Zhao Z Y, Pei L, Guo W Z, Liu Y P. Distribution and impact on plant height of major wheat dwarfing genes in China. Acta Agric Boreali-Occident Sin, 2014,23(5):59-64 (in Chinese with English abstract).
[56] Watson A, Ghosh S, Williams M J, Cuddy W S, Simmonds J, Rey M, Asyraf Md Hatta M, Hinchliffe A, Steed A, Reynolds D, Adamski N M, Breakspear A, Korolev A, Rayner T, Dixon L E, Riaz A, Martin W, Ryan M, Edwards D, Batley J, Raman H, Carter J, Rogers C, Domoney C, Moore G, Harwood W, Nicholson P, Dieters M J, DeLacy I H, Zhou J, Uauy C, Boden S A, Park R F, Wulff B B H, Hickey L T. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants, 2018,4:23-29.
pmid: 29292376
[57] Wang S, Wong D, Forrest K, Allen A, Chao S, Huang B E, Maccaferri M, Salvi S, Milner S G, Cattivelli L, Mastrangelo A M, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova A R, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards K J, Hayden M, Akhunov E. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J, 2014,12:787-796.
pmid: 24646323
[58] Röder M S, Huang X Q, Börner A. Fine mapping of the region on wheat chromosome 7D controlling grain weight. Funct Integr Genomics, 2008,8:79-86.
doi: 10.1007/s10142-007-0053-8 pmid: 17554574
[59] Wu X, Cheng R, Xue S, Kong Z, Wan H, Li G, Huang Y, Jia H, Jia J, Zhang L, Ma Z. Precise mapping of a quantitative trait locus interval for spike length and grain weight in bread wheat (Triticum aestivum L.). Mol Breed, 2014,33:129-138.
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[4] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[5] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[6] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[7] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[8] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[9] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[10] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[11] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[12] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[13] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[14] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[15] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!