欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (6): 1197-1202.doi: 10.3724/SP.J.1006.2021.03037

• 研究简报 • 上一篇    

玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定

马燕斌1(), 王霞2, 李换丽1, 王平3, 张建诚1, 文晋1, 王新胜1, 宋梅芳3, 吴霞1,*(), 杨建平4,*()   

  1. 1山西农业大学(山西省农业科学院)棉花研究所, 山西运城 044000
    2运城学院生命科学系, 山西运城 044000
    3北京市辐射中心, 北京 100875
    4河南农业大学农学院, 河南郑州 450002
  • 收稿日期:2020-06-15 接受日期:2020-11-13 出版日期:2021-06-12 网络出版日期:2020-12-28
  • 通讯作者: 吴霞,杨建平
  • 作者简介:马燕斌, E-mail:myb0517@163.com
  • 基金资助:
    山西省重点研发计划子课题(201703D211007-3);国家自然科学基金项目(31201253);国家自然科学基金项目(31871709);国家转基因生物新品种培育重大专项(2016ZX08010-003);山西省农业科学院应用基础研究计划(YGJPY2007);运城学院博士科研启动项目(YQ-2017 008)

Transformation and molecular identification of maize phytochrome A1 gene (ZmPHYA1) in cotton

MA Yan-Bin1(), WANG Xia2, LI Huan-Li1, WANG Pin3, ZHANG Jian-Cheng1, WEN Jin1, WANG Xin-Sheng1, SONG Mei-Fang3, WU Xia1,*(), YANG Jian-Ping4,*()   

  1. 1Institute of Cotton Research, Shanxi Agricultural University (Shanxi Academy of Agricultural Sciences), Yuncheng 044000, Shanxi, China
    2Department of Life Science, Yuncheng University, Yuncheng 044000, Shanxi, China
    3Beijing Radiation Center, Beijing 100875, China
    4College of Agronomy, Henan Agriculture University, Zhengzhou 450002, Henan, China
  • Received:2020-06-15 Accepted:2020-11-13 Published:2021-06-12 Published online:2020-12-28
  • Contact: WU Xia,YANG Jian-Ping
  • Supported by:
    The Shanxi Province Key Research and Development Program(201703D211007-3);The National Natural Science Foundation of China(31201253);The National Natural Science Foundation of China(31871709);The National Major Project for Developing New GM Crops(2016ZX08010-003);The Basic Research Program of Agricultural Sciences of Shanxi Academy(YGJPY2007);The Doctoral Research Project of Yuncheng College(YQ-2017 008)

摘要:

为评价玉米ZmPHYA1基因在棉花种质资源改良中的价值, 本研究利用农杆菌介导法在陆地棉(Gossypium hirsutum) R15材料中进行了玉米ZmPHYA1基因的遗传转化。经过愈伤组织诱导、抗性愈伤筛选、体细胞分化诱导后获得棉花转基因再生植株。通过田间草铵膦除草剂筛选鉴定抗性植株, 并利用PCR扩增其草铵膦抗性基因和目的基因ZmPHYA1进行分子鉴定, 发现阳性植株对草铵膦除草剂具较好抗性, 并可扩增到256 bp的草铵膦抗性基因和217 bp ZmPHYA1基因的特异条带。进一步通过免疫印迹检测表明, 3个不同转基因株系中外源ZmPHYA1基因可正常表达约170 kD大小的蛋白, 且在不同组织中该外源蛋白均可正常表达。此外, 对转基因植株的不同农艺性状分析表明, 转基因株系株高明显低于受体对照, 而铃重和纤维长度等性状无明显差异。本研究成功获得具有草铵膦抗性和外源ZmPHYA1基因的棉花新种质材料, 为进一步利用光敏色素基因创新种质资源提供了材料来源。

关键词: 陆地棉, 玉米光敏色素A1, 蛋白表达, 草铵膦抗性

Abstract:

In order to evaluate the potential value of maize phytochrome A1 gene (ZmPHYA1) in the improvement of cotton germplasm resources, we transferred it into upland cotton (Gossypium hirsutum L.) R15 via Agrobacterium tumefaciens-mediated transformation with glufosinate-resistance gene as selection marker. The regenerated cotton plants were obtained through callus induction, antibiotic resistance screening and differentiation induction. After screening the regenerated plants by the herbicide glufosinate ammonium in the field, PCR detection confirmed that both the target bands, including 256 bp of the glufosinate gene and 217 bp band of ZmPHYA1 gene, were detected in the homozygous transgenic plants. In addition, the exogenous ZmPHYA1 protein of about 170 kD was also checked by immuno-blot in three transgenic cotton lines. The results showed that the specific proteins could be detected in different tissues, including leaves, flowers and stems in the transgenic Line 9. The plant height of transgenic Line 9, Line 14, Line 41 were significantly shorter than that of the wild type, while the differences of other yield-related agronomic traits were not observed between the transgenic lines and the wild type. In this study, new cotton germplasms with glufosinate resistance and ZmPHYA1 gene were successfully obtained, which provided a material source for further utilization of phytochrome gene to innovate germplasm resources.

Key words: Gossypium hirsutum, maize phytochrome A1, protein expression, glufosinate resistance

表1

转基因棉花植株中用于目标基因的检测引物"

引物
Primers
序列
Primer sequences (5′-3′)
片段长度
Expected size (bp)
Basta-F ACCATCGTCAACCACTACATC 256
Basta-R GCTGCCAGAAA CCCACGTCAT
ZmPHYA1-1641F CAGCAGAAGGATGCACCCTAGGCTG 217
ZmPHYA1-1857R CGCTTGCAGTTCGGCGAGCCCATCA

图1

外源ZmPHYA1 基因的棉花转化与再生植株的草铵膦抗性基因检测 A: 农杆菌侵染后的愈伤筛选及诱导; B: 愈伤诱导增殖; C: 胚型愈伤分化形成的体细胞胚胎; D: 再生的幼苗; E: 再生的嫁接植株; F: 部分再生株草铵膦抗性基因的检测, 其中1、2、4分别为株系Line 9、Line 14和Line 41, 3为非转基因的再生株, “-”为受体对照, “+”为质粒阳性扩增, M: DNA marker。"

图2

转外源基因ZmPHYA1棉花草铵膦抗性株系的鉴定与PCR分子检测 A, B: 抗除草剂检测的不同阳性植株后代; C: 分离的非抗性植株后代; D: 部分抗性植株的ZmPHYA1 基因的PCR检测, 其中“+”为质粒阳性扩增, 1和2为Line 9株系的不同后代单株, 3和4为Line 14株系的不同后代单株, 5和6为Line 41株系的不同后代单株。“-”为受体对照; M: DNA marker。"

图3

不同棉花转基因株系中外源ZmPHYA1蛋白表达的免疫印迹检测 M: 蛋白marker; WT: 转基因棉花受体R15; Isolated non-transgenic line: 转基因株系分离的非抗性株; #9、#14、#41分别为转外源ZmphyA1基因的不同株系Line 9、Line 14和Line 41。“+”为检测中利用转玉米中同源基因ZmPHYA2 (3393 bp)的阳性棉花植株。"

图4

转基因植株不同农艺性状的分析比较 A: 转基因株系的株高表型, 标尺为10 cm; B依次为WT、#9 (Line 9), #14 (Line 14), #41 (Line 41)株系纤维长度图, 标尺为1 cm; C、D、E和F分别为WT、#9 (Line 9)、#14 (Line 14)、#41 (Line 41)的株系平均株高、平均单铃籽棉重、衣分以及纤维长度。*表示P < 0.05差异显著。"

[1] Schepens I, Duek P, Fankhauser C. Phytochrome-mediated light signalling in Arabidopsis. Curr Opin Plant Biol, 2004,7:564-569.
doi: 10.1016/j.pbi.2004.07.004 pmid: 15337099
[2] Wang H Y, Deng X W. Dissecting the phytochrome A-dependent signaling network in higher plants. Trends Plant Sci, 2003,8:172-178.
doi: 10.1016/S1360-1385(03)00049-9 pmid: 12711229
[3] Basu D, Dehesh K Schneider-Poetsch H J, Harrington S E, McCouch S R, Quail P H. Rice PHYC gene: structure, expression, map position and evolution. Plant Mol Biol, 2000,44:27-42.
doi: 10.1023/a:1006488119301 pmid: 11094977
[4] Dehesh K, Tepperman J, Christensen A H, Quail P H. phyB is evolutionarily conserved and constitutively expressed in rice seedling shoots. Mol Gen Genet, 1991,225:305-313.
doi: 10.1007/BF00269863 pmid: 2005872
[5] Takano M, Inagaki N, Xie X Z, Yuzurihara N, Hihara F, Ishizuka T, Yano M, Nishimura M, Miyao A, Hirochika H, Shinomura T. Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. Plant Cell, 2005,17:3311-3325.
pmid: 16278346
[6] Takano M, Kanegae H, Shinomura T, Miyao A, Hirochika H, Furuya M. Isolation and characterization of rice phytochrome a mutants. Plant Cell, 2001,13:521-534.
doi: 10.1105/tpc.13.3.521 pmid: 11251094
[7] Ogihara Y, Shimizu H, Hasegawa K, Tsujimoto H, Sasakuma T. Chromosome assignment of four photosynthesis-related genes and their variability in wheat species. Theor Appl Genet, 1994,88:383-394.
doi: 10.1007/BF00223649 pmid: 24186023
[8] 王霞, 马燕斌, 宋梅芳, 孟凡华, 李秀全, 杨丽, 吴霞, 杨克诚, 杨建平. 小麦TaPHYA基因亚家族的克隆及表达分析. 作物学报, 2012,38:1354-1360.
Wang X, Ma Y B, Song M F, Meng F H, Li X Q, Yang L, Wu X, Yang K C, Yang J P. Isolation and expression patterns of TaPHYA gene subfamily in common wheat. Acta Agron Sin, 2012,38:1354-1360 (in Chinese with English abstract).
[9] Sheehan M J, Farmer P R, Brutnell T P. Structure and expression of maize phytochrome family homeologs. Genetics, 2004,167:1395-1405.
doi: 10.1534/genetics.103.026096 pmid: 15280251
[10] Gaut B S, Doebley J F. DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci USA, 1997,94:6809-6814.
pmid: 11038553
[11] 马燕斌, 李壮, 蔡应繁, 周朋, 肖阳, 黄玉碧, 付凤玲, 潘光堂, 杨克诚, 杨建平. 玉米2个光敏色素A基因的克隆、蛋白结构与光诱导表达模式. 中国农业科学, 2010,43:1985-1993.
Ma Y B, Li Z, Cai Y F, Zhou P, Xiao Y, Huang Y B, Fu F L, Pan G T, Yang K C, Yang J P. Isolation and primary analysis of protein structures and expression patterns responding to different light treatments of two phytochrome A genes in maize (Zea mays L.). Sci Agric Sin, 2010,43:1985-1993 (in Chinese with English abstract).
[12] Boylan M T, Quil P H. Oat phytochrome is biologically active in transgenic tomatoes. Plant Cell, 1989,8:765-773.
[13] Jordan E T, Hatfield P M, Hondred D, Talon M, Zeevaart J A, Vierstra R D. Phytochrome A overexpression in transgenic tobacco: correlation of dwarf phenotype with high concentrations of phytochrome in vascular tissue and attenuated gibberellin levels. Plant Physiol, 1995,107:797-805.
doi: 10.1104/pp.107.3.797 pmid: 7716243
[14] Yang T, Lv R, Li J H, Lin H H, Xi D. Phytochrome A and B negatively regulate salt stress tolerance of nicotiana tobacum via ABA-jasmonic acid synergisticc ross-talk. Plant Cell Physiol, 2018,59:2381-2393.
doi: 10.1093/pcp/pcy164 pmid: 30124925
[15] Thiele A, Herold M, Lenk I, Quail P H, Gatz C. Heterologous expression of Arabidopsis phytochrome B in transgenic potato influences photosynthetic performance and tuber development. Plant Physiol, 1999,120:73-82.
pmid: 10318685
[16] Garg A K, Sawers R J H, Wang H, Kim J K, Walker J M, Brutnell T P, Parthasarathy M V, Vierstra R D, Wu R J. Light-regulated overexpression of an Arabidopsis phytochrome a gene in rice alters plant architecture and increases grain yield. Planta, 2006,223:627-636.
doi: 10.1007/s00425-005-0101-3 pmid: 16136335
[17] Kong S G, Lee D S, Kwak S N, Kim J K, Sohn J K, Kim I S. Characterization of sunlight-grown transgenic rice plants expressing Arabidopsis phytochrome A. Mol Breed, 2004,14:35-46.
[18] Iwamoto M, Kiyota S, Hanada A, Yamaguchi S, Takano M. The multiple contributions of phytochromes to the control of internode elongation in rice. Plant Physiol, 2011,157:1187-1195.
doi: 10.1104/pp.111.184861 pmid: 21911595
[19] 李燕娥, 朱祯, 陈志贤, 吴霞, 王伟, 李淑君, 朱玉, 焦改丽, 吴家和, 徐鸿林, 范小平, 孟晋红, 肖桂芳, 李向辉. 豇豆胰蛋白酶抑制剂转基因棉花的获得. 棉花学报, 1998,10(5):3-5.
Li Y E, Zhu Z, Chen Z X, Wu X, Wang W, Li S J, Zhu Y, Jiao G L, Wu J H, Xu H L, Fan X P, Meng J H, Xiao G F, Li X H. Obtaining transgenic cotton plants with cowpea trypsin inhibitor gene. Cotton Sci, 1998,10(5):3-5 (in Chinese with English abstract).
[20] Paterson A H, Brubaker C L, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 1993,11:122-127.
[21] 王霞, 马燕斌, 吴霞, 沈志成, 林朝阳, 李朋波, 孙璇, 王新胜, 李燕娥, 李贵全. 转G10aroA棉花株系的获得及分子生物学鉴定. 中国农业科学, 2014,47:1051-1057.
Wang X, Ma Y B, Wu X, Shen Z C, Lin C Y, Li P B, Sun X, Wang X S, Li Y E, Li G Q. Molecular biology identification of transgenic cotton lines expressing exogenous G10aroA gene. Sci Agric Sin, 2014,47:1051-1057 (in Chinese with English abstract).
[22] Christ B, Hochstrasser R, Guyer L, Francisco R, Aubry S, Hörtensteiner S, Weng J K. Non-specific activities of the major herbicide-resistance gene BAR. Nat Plants, 2017,3:937-945.
doi: 10.1038/s41477-017-0061-1 pmid: 29180815
[23] Siruguri V, Bharatraj D K, Vankudavath R N, Mendu V V R, Gupta V, Goodman R E. Evaluation of Bar, Barnase, and Barstar recombinant proteins expressed in genetically engineered Brassica juncea (Indian mustard) for potential risks of food allergy using bioinformatics and literature searches. Food Chem Toxicol, 2015,83:93-102.
doi: 10.1016/j.fct.2015.06.003 pmid: 26079618
[24] Carbonari C A, Latorre D O, Gomes G L G C, Velini E D, Owens D K, Pan Z Q, Dayan FD E. Resistance to glufosinate is proportional to phosphinothricin acetyltransferase expression and activity in LibertyLink and WideStrike cotton. Planta, 2016,243:925-933.
doi: 10.1007/s00425-015-2457-3 pmid: 26733464
[25] Hérouet C, Esdaile D G, Mallyon B A, Debruyne E, Schulz A, Currier T, Hendrickx K, Klis R J V D Rouan D. Safety evaluation of the phosphinothricin acetyltransferase proteins encoded by the pat and bar sequences that confer tolerance to glufosinate- ammonium herbicide in transgenic plants. Regul Toxicol Pharm, 2005,41:134-149.
[26] Li F, Fan G, Lu C, Xiao G, Zou C, Kohel R J, Ma Z, Shang H, Ma X, Wu J, Liang X, Huang G, Percy R G, Liu K, Yang W, Chen W, Du X, Shi C, Yuan Y, Ye W, Liu X, Zhang X, Liu W, Wei H, Wei S, Huang G, Zhang X, Zhu S, Zhang H, Sun F, Wang X, Liang J, Wang J, He Q, Huang L, Wang J, Cui J, Song G, Wang K, Xu X, Yu J Z, Zhu Y, Yu S. Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol, 2015,33:524-530.
doi: 10.1038/nbt.3208 pmid: 25893780
[1] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[2] 晁毛妮,胡海燕,王润豪,陈煜,付丽娜,刘庆庆,王清连. 陆地棉钾转运体基因GhHAK5启动子的克隆与功能分析[J]. 作物学报, 2020, 46(01): 40-51.
[3] 张晓红,胡根海,王寒涛,王聪聪,魏恒玲,付远志,喻树迅. 棉花中GhTFL1aGhTFL1c基因的表达及启动子分析[J]. 作物学报, 2019, 45(3): 469-476.
[4] 吴迷,汪念,沈超,黄聪,温天旺,林忠旭. 基于重测序的陆地棉InDel标记开发与评价[J]. 作物学报, 2019, 45(2): 196-203.
[5] 赵晶,李旭彤,梁学忠,王志城,崔静,陈斌,吴立强,王省芬,张桂寅,马峙英,张艳. 陆地棉漆酶基因家族鉴定及在黄萎病菌胁迫下的表达分析 *[J]. 作物学报, 2019, 45(12): 1784-1795.
[6] 王作敏,刘瑾,孙士超,张新宇,薛飞,李艳军,孙杰. 彩色棉多药和有毒化合物输出蛋白MATE家族基因的鉴定及表达分析[J]. 作物学报, 2018, 44(9): 1380-1392.
[7] 黄聪,李晓方,李定国,林忠旭. 利用陆地棉MAGIC群体定位产量、生育期和株高性状的QTL[J]. 作物学报, 2018, 44(9): 1320-1333.
[8] 李超,李志坤,谷淇深,杨君,柯会锋,吴立强,王国宁,张艳,吴金华,张桂寅,阎媛媛,马峙英,王省芬. 海岛棉CSSLs分子评价及纤维品质、产量性状QTL定位[J]. 作物学报, 2018, 44(8): 1114-1126.
[9] 朱国忠,张芳,付洁,李乐晨,牛二利,郭旺珍. 适于陆地棉品种身份鉴定的SNP核心位点筛选与评价[J]. 作物学报, 2018, 44(11): 1631-1639.
[10] 晁毛妮, 温青玉, 张志勇, 胡根海, 张金宝, 王果, 王清连. 陆地棉钾转运体基因GhHAK5的序列特征及表达分析[J]. 作物学报, 2018, 44(02): 236-244.
[11] 沈超,李定国,聂以春,林忠旭. 利用黄褐棉染色体片段导入系定位产量和纤维品质性状QTL[J]. 作物学报, 2017, 43(12): 1733-1745.
[12] 吕有军,杨卫军,赵兰杰,姚金波,陈伟,李燕,张永山. 陆地棉SRO基因家族的鉴定及表达分析[J]. 作物学报, 2017, 43(10): 1468-1479.
[13] 杨延龙,肖飞,徐守振,王宇轩,左文庆,梁福斌,张旺锋. 新疆早熟陆地棉品种更替产量提高过程中冠层结构特征的演变[J]. 作物学报, 2017, 43(10): 1518-1526.
[14] 陈旭升,狄佳春,周向阳,赵亮. 陆地棉高秆突变体的激素变化与Tp基因的染色体定位[J]. 作物学报, 2017, 43(06): 935-939.
[15] 朱守鸿,赵兰杰,刘永昌,李艳军,张新宇,孙杰. 陆地棉微管结合蛋白CLASP家族基因的鉴定及表达分析[J]. 作物学报, 2017, 43(03): 389-398.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!