欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (06): 935-939.doi: 10.3724/SP.J.1006.2017.00935

• 研究简报 • 上一篇    下一篇

陆地棉高秆突变体的激素变化与Tp基因的染色体定位

陈旭升,狄佳春,周向阳,赵亮   

  1. 江苏省农业科学院经济作物研究所 / 农业部长江下游棉花与油菜重点实验室, 江苏南京 210014
  • 收稿日期:2016-09-13 修回日期:2017-03-02 出版日期:2017-06-12 网络出版日期:2017-03-19
  • 基金资助:

    本研究由国家转基因生物新品种培育重大专项(2016ZX08005001-008, 2016ZX08005-005)资助。

Hormone Expression and Tp Gene Chromosomal Localization of Tall Plant Mutant from Upland Cotton

CHEN Xu-Sheng,DI Jia-Chun,ZHOU Xiang-Yang,ZHAO Liang   

  1. Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rape in the Lower Reaches of the Yangtze River, Ministry of Agriculture, Nanjing 210014, China
  • Received:2016-09-13 Revised:2017-03-02 Published:2017-06-12 Published online:2017-03-19
  • Supported by:

    This study was supported by the National Major Project for Developing New GM Crops (2016ZX08005001-008, 2016ZX08005-005).

摘要:

以高秆突变体高秆1号为试验材料,常规品种N099为对照,利用酶联免疫法测定突变体种子浸泡24 h后种胚中激素含量。结果表明, 高秆1号的3种激素GA3、ZR、IAA的含量均高于对照, 其中GA3的含量显著高于对照。杂交F1表现为:GA3含量显著高于两亲本, 但ZR、IAA含量比正常株高亲本还要低。这暗示高秆1号是一种GA3富集型突变体;而与ZR、IAA关联不大。采用陆陆杂交群体对高秆基因进行染色体定位, 有4个SSR分子标记与Tp基因连锁, 分别是NAU2083、NAU4045、NAU2419和NAU4044,位于Tp基因两侧的分子标记为NAU4045和NAU2419, 其遗传距离分别为7.4 cM和41.2 cM。由此, 将陆地棉的一个高秆突变体基因Tp定位在棉花Chr.1上。

关键词: 陆地棉, 高秆突变体, 激素, Tp基因, 染色体定位

Abstract:

Taking a tall plant mutant Gaogan 1 as test material, and a common variety N099 as control, three hormones from soaked seed embryos were determined with enzyme linked immunosorbent assay. The contests of GA3, ZR, and IAA in the mutant were respectively higher than those in the normal plant, especially; the GA3 content was significantly higher. GA3 contents in F1 individuals were significantly higher than those in two parents, but ZR and IAA contests were even lower than those in normal plant parents, which showed that the mutant is a GA3 enrichment-type mutant. F2 plants from a cross of Gaogan 1 ? N099 were used to map the mutant gene Tp, showing four molecular markers including NAU2083, NAU4045, NAU2419, and NAU4044 linked with Tp gene. The Tp gene flanked with molecular markers NAU4045 and NAU2419, with the genetic distance of 7.4 cM and 41.2 cM, respectively. Thus, Tp gene is located in cotton Chr. 1.

Key words: Upland cotton, Tall plant mutant, Hormone, Tp gene, Chromosomal localization

[1] 徐庆章, 王庆成, 牛玉贞, 王忠孝, 张军. 玉米株型与群体光合作用的关系研究. 作物学报, 1995, 21: 492–496 Xu Q Z, Wang Q H, Niu Y Z, Wang Z X, Zhang J. Studies on relationship between plant type and canopy photosynthesis in maize. Acta Agron Sin, 1995, 21: 492–496 (in Chinese with English abstract) [2] Duvick D N, Cassman K G. Post-green revolution trends in yield potential of temperate maize in the North-Central United States. Crop Sci, 1999, 39: 1622–1630 [3] 李新裕, 陈玉娟, 闫志顺, 王瑞清. 棉花丰产株型、株高、茎粗与单株成铃的关系. 塔里木农垦大学学报, 1998, 10(1): 34–36 Li X Y, Chen Y J, Yan Z S, Wang R Q. The relation between plant type, height, stem diameter of high-yielding cotton, and boll number per plant. J Talimu Univ Agric Reclamat, 1998, 10(1): 34–36 (in Chinese) [4] 葛瑞华, 兰孟焦, 石玉真, 李俊文, 刘爱英, 王涛, 袁有禄. 陆海BC4F3和BC4F4代主要农艺性状的相关和通径分析. 中国农学通报, 2012, 28(3): 127–130 Ge R H, Lan M J, Shi Y Z, Lin J W, Liu A Y, Wang T, Yuan Y L. Correlation and path coefficient analysis of main agronomic characters in BC4F3 and BC4F4 generations from Gossypium hirsutum L. × Gossypium barbadense L Chin Agric Sci Bull, 2012, 28(3): 127–130 (in Chinese with English abstract) [5] 汤飞宇, 程锦, 黄文新, 肖小红, 肖文俊. 高品质陆地棉数量性状的典型相关研究. 安徽农业科学, 2008, 36: 6725–6726 Tang F Y, Cheng J, Huang W X, Xiao X H, Xiao W J. Study on canonical correlation of quantitative traits in upland cotton with high quality. J Anhui Agric Sci, 2008, 36: 6725–6726 (in Chinese with English abstract) [6] Okuno K, Kawfi T. Gentic analysis of induced long-culm mutants in rice. Jpn J Breed, 1978, 28: 336–342 [7] 杨伟光, 顾德峰, 牟金明, 赵仁贵, 怀凤涛, 贾恩吉, 王奇, 李惠芬. 中国高粱地方品种株高的遗传研究, 吉林农业大学学报, 1993, 15(4): 28–31 Yang W G, Gu D F, Mou J M, Zhao R G, Huai F T, Jia E J, Wang Q, Li H F. Genetic study on plant height of local variety of Chinese sorgurm. J Jilin Agric Univ, 1993, 15(4): 28–31 (in Chinese) [8] 高树仁, 刘文研, 张玉胡. 玉米株高的遗传分析. 黑龙江八一农垦大学学报, 2010, 22(6): 1–3 Gao S R, Liu W Y, Zhang Y H. Genetic analysis of plant height of maize. J Heilongjiang Bayi Agric Univ, 2010, 22(6): 1–3 (in Chinese with English abstract) [9] 沈季孟, 韩敬花, 樊路, 李军辉, 邓景杨. 一个与高秆基因连锁的太谷核不育硬粒小麦的发现. 北京农业科学, 1997, 15(1): 9–10 Shen J M, Han J H, Fan L, Li J H, Deng J Y. Discovery of a hard wheat with Taigu nuclear male sterility linking to a high stem gene. Beijing Agric Sci, 1997, 15(1): 9–10 (in Chinese) [10] 朱旭东, 张晓惠, 钱前, 严学强, 闵绍楷, 熊振民. 高秆突变体Mh-1的株高遗传研究, 遗传学报, 2000, 27: 311–316 Zhu X D, Zhang X H, Qian Q, Yan X Q, Min S K, Xiong Z M. Genetic study of plant height of tall plant mutant Mh-1 in rice (Oryza sativa L.). Acta Genet Sin, 2000, 27: 311–316 (in Chinese with English abstract) [11] 王才林, 赵凌, 朱镇, 张亚东. 籼稻9311 HR显性高秆突变体的遗传分析. 江苏农业学报, 2008, 24(1): 1–4 Wang C L, Zhao L, Zhu Z, Zhang Y D. Inheritance of dominant tall mutant of indica rice 9311HR. Jiangsu J Agric Sci, 2008, 24(1): 1–4 (in Chinese) [12] 陈廷文. 高秆隐性水稻Grlc株高的遗传研究. 四川农业大学学报, 1982, 10: 509–521 Chen T W. Studies on the Grlc recessive high type rice in genetics. J Sichuan Agric Uinv, 1982, 10: 509–521 (in Chinese) [13] 马玉银, 李磊, 李育红, 左示敏, 殷跃军, 张亚芳, 陈宗祥, 潘学彪. 一个新的水稻隐性高秆突变体的遗传分析和基因定位. 中国农业科学, 2008, 41: 3967–3973 Ma Y Y, Li L, Li Y H, Zuo S M, Yin Y J, Zhang Y F, Chen Z X, Pan X B. Genetic analysis and gene mapping of a new recessive long-culm mutant in rice. Sci Agric Sin, 2008, 41: 3967–3973 (in Chinese with English abstract) [14] 陈旭升, 张丽萍, 狄佳春, 马晓杰. 陆地棉高秆突变体的质量遗传规律研究. 江西农业学报, 2013, 25(3): 4–6 (in Chinese) Chen X S, Zhang L P, Di J C, Ma X J. Study on qualitative inheritance law of tall stem mutant in upland cotton. Acta Agric Jiangxi, 2013, 25(3): 4–6 [15] 张丽萍, 狄佳春, 赵亮, 陈旭升. 陆地棉突变系高秆1号的生物学特性. 江苏农业学报, 2014, 30: 248–252 Zhang L P, Di J C, Zhao L, Chen X S. Biological characteristics of a long-culm upland cotton mutant Gaogan 1. Jiangsu J Agric Sci, 2014, 30: 248–252 (in Chinese) [16] Parterson A H, Brubaker C, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep,1993, 11: 122–127 (in Chinese with English abstract) [17] 李峰利, 狄佳春, 赵亮, 陈旭升. 陆地棉皱缩叶突变体基因wr3的初步定位. 遗传, 2014, 36: 1256–1260 Li F L, Di J C, Zhao L, Chen X S. Mapping of a new wrinkled leaf (wr3) gene in upland cotton. Hereditas (Beijing), 2014, 36: 1256–1260 (in Chinese with English abstract) [18] 张军, 武耀廷, 郭旺珍, 张天真. 棉花微卫星标记的PAGE/银染快速检测. 棉花学报, 2000, 12: 267–269 Zhang J, Wu Y T, Guo W Z, Zhang T Z. Fast screening microsatellite markers in cotton with PAGE/silver staining. Acta Gossypii Sin, 2000, 12: 267–269 (in Chinese) [19] 潘家驹. 棉花育种学. 北京: 中国农业出版社, 1998. pp71–72 Pan J J. Cotton Breeding. Beijing: China Agriculture Press, 1998. pp71–72 (in Chinese) [20] 中国农业科学院棉花研究所主编. 中国棉花栽培学. 上海: 上海科学技术出版社, 1983. pp 115–116 Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Chinese Cotton Cultivation. Shanghai: Shanghai Science and Technology Publishers. 1983. pp 115–116 (in Chinese) [21] 陈旭升, 狄佳春, 赵亮. 一种预测转Bt基因棉花抗虫性强度的方法: 中国, ZL201410130084.0?P?, 2013-06-25 Chen X S, Di J C, Zhao L A method for predicting insect resistance strength of transgenic Bt cotton: china, ZL201410130084.0?P?, 2013-06-25 (in Chinese) [22] Shapply Z W, Jenkins J N, Zhu J, Mccarty J C Jr. Quantitative trait loci associated with agronomic and fiber traits of upland cotton. J Cotton Sci, 1998, 2: 153–163 [23] 于霁雯. 短季棉遗传多样性分析及其重要农艺和经济性状的QTL定位. 华中农业大学博士学位论文, 湖北武汉, 2006 Yu J W. Genetic Diversity Evaluation of Shorted-Season Upland Cotton Cultivars and Localization of QTLs for Important Agriculture Economic Traits. PhD Dissertation of Huazhong Agricultural University, Wuhan, China, 2006 (in Chinese with English abstract) [24] 何蕊, 石玉真, 张金凤, 梁燕, 张保才, 李俊文, 王涛, 龚举武, 刘爱英, 商海红, 巩万奎, 白志川, 袁有禄. 利用染色体片段代换系定位陆地棉株高QTL. 作物学报, 2014, 40: 457?465 (in Chinese with English abstract) He R, Shi Y Z, Zhang J F, Liang Y, Zhang B C, Li J W, Wang T, Gong J W, Liu A Y, Shang H H, Gong W K, Bai Z C, Yuan Y L. QTL Mapping for plant height using chromosome segment substitution lines in upland cotton. Acta Agron Sin, 2014, 40: 457?465 [25] Li F, Fan G, Lu C, Xiao G, Zou C, Kohel R J, Ma Z, Shang H, Ma X, Wu J, Liang X, Huang G, Percy R G, Liu K, Yang W, Chen W, Du X, Shi C, Yuan Y, Ye W, Liu X, Zhang X, Liu W, Wei H, Wei S, Huang G, Zhang X, Zhu S, Zhang H, Sun F, Wang X, Liang J, Wang J, He Q, Huang L, Wang J, Cui J, Song G, Wang K, Xu X, Yu J Z, Zhu Y, Yu S. Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotech, 2015, 33: 524?530 [26] Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski C A, Scheffler B E, Stelly D M, Hulse-Kemp A M, Wan Q, Liu B, Liu C, Wang S, Pan M, Wang Y, Wang D, Ye W, Chang L, Zhang W, Song Q, Kirkbride R C, Chen X, Dennis E, Llewellyn D J, Peterson D G, Thaxton P, Jones D C, Wang Q, Xu X, Zhang H, Wu H, Zhou L, Mei G, Chen S, Tian Y, Xiang D, Li X, Ding J, Zuo Q, Tao L, Liu Y, Li J, Lin Y, Hui Y, Cao Z, Cai C, Zhu X, Jiang Z, Zhou B, Guo W, Li R, Chen Z J. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol, 2015, 33: 531?537

[1] 马燕斌, 王霞, 李换丽, 王平, 张建诚, 文晋, 王新胜, 宋梅芳, 吴霞, 杨建平. 玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定[J]. 作物学报, 2021, 47(6): 1197-1202.
[2] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[3] 孟钰玉, 魏春茹, 范润侨, 于秀梅, 王逍冬, 赵伟全, 魏新燕, 康振生, 刘大群. 小麦TaPP2-A13基因的表达响应逆境胁迫并与SCF复合体接头蛋白TaSKP1相互作用[J]. 作物学报, 2021, 47(2): 224-236.
[4] 于宁宁,张吉旺,任佰朝,赵斌,刘鹏. 综合农艺管理对夏玉米叶片生长发育及内源激素含量的影响[J]. 作物学报, 2020, 46(6): 960-967.
[5] 姜仲禹, 唐丽雪, 柳洪鹃, 史春余. 不同施钾量条件下甘薯块根形成的内源激素变化及其与块根数量的关系[J]. 作物学报, 2020, 46(11): 1750-1759.
[6] 晁毛妮,胡海燕,王润豪,陈煜,付丽娜,刘庆庆,王清连. 陆地棉钾转运体基因GhHAK5启动子的克隆与功能分析[J]. 作物学报, 2020, 46(01): 40-51.
[7] 万泽花,任佰朝,赵斌,刘鹏,张吉旺. 不同熟期夏玉米品种籽粒灌浆脱水特性和激素含量变化[J]. 作物学报, 2019, 45(9): 1446-1453.
[8] 周向阳,赵亮,狄佳春,陈旭升. 2个抗虫棉的外源Bt基因分子鉴定及其染色体定位[J]. 作物学报, 2019, 45(9): 1440-1445.
[9] 张晓红,胡根海,王寒涛,王聪聪,魏恒玲,付远志,喻树迅. 棉花中GhTFL1aGhTFL1c基因的表达及启动子分析[J]. 作物学报, 2019, 45(3): 469-476.
[10] 吴迷,汪念,沈超,黄聪,温天旺,林忠旭. 基于重测序的陆地棉InDel标记开发与评价[J]. 作物学报, 2019, 45(2): 196-203.
[11] 赵晶,李旭彤,梁学忠,王志城,崔静,陈斌,吴立强,王省芬,张桂寅,马峙英,张艳. 陆地棉漆酶基因家族鉴定及在黄萎病菌胁迫下的表达分析 *[J]. 作物学报, 2019, 45(12): 1784-1795.
[12] 李艳霞,杨卫兵,尹燕枰,郑孟静,陈金,杨东清,骆永丽,庞党伟,李勇,王振林. 小麦小穗不同粒位粒重形成的生理特性差异[J]. 作物学报, 2019, 45(11): 1715-1724.
[13] 黄聪,李晓方,李定国,林忠旭. 利用陆地棉MAGIC群体定位产量、生育期和株高性状的QTL[J]. 作物学报, 2018, 44(9): 1320-1333.
[14] 王作敏,刘瑾,孙士超,张新宇,薛飞,李艳军,孙杰. 彩色棉多药和有毒化合物输出蛋白MATE家族基因的鉴定及表达分析[J]. 作物学报, 2018, 44(9): 1380-1392.
[15] 李超,李志坤,谷淇深,杨君,柯会锋,吴立强,王国宁,张艳,吴金华,张桂寅,阎媛媛,马峙英,王省芬. 海岛棉CSSLs分子评价及纤维品质、产量性状QTL定位[J]. 作物学报, 2018, 44(8): 1114-1126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!