欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (06): 925-934.doi: 10.3724/SP.J.1006.2017.00925

• 耕作栽培·生理生化 • 上一篇    下一篇

不同耕作方式与氮肥类型对夏玉米光合性能的影响

郑宾,赵伟,徐铮,高大鹏,姜媛媛,刘鹏,李增嘉,李耕*,宁堂原*   

  1. 作物生物学国家重点实验室 / 山东农业大学农学院,山东泰安271018
  • 收稿日期:2016-07-29 修回日期:2017-03-02 出版日期:2017-06-12 网络出版日期:2017-03-17
  • 通讯作者: 李耕, E-mail: ligeng213@sina.com; Tel: 0538-8242653; 宁堂原, E-mail: ningty@163.com; Tel: 0538-8242653
  • 基金资助:

    本研究由国家自然科学基金项目(31401339, 31371576), 国家重点研发计划项目(2016YFD0300205), 国家公益性行业(农业)科研专项经费项目(201503130, 201503121), 山东省现代农业产业技术体系创新团队项目(SDAIT-02-08)和国家“十二五”科技支撑计划项目(2013BAD07B06-2)资助.

Effects of Tillage Methods and Nitrogen Fertilizer Types on Photosynthetic Performance of Summer Maize

ZHENG Bin,ZHAO Wei,XU Zheng,GAO Da-Peng,JIANG Yuan-Yuan,LIU Peng,LI Zeng-Jia,LI Geng*,NING Tang-Yuan*   

  1. State Key Laboratory of Crop Biology / Agronomy College of Shandong Agricultural University, Tai’an, Shandong 271018, China
  • Received:2016-07-29 Revised:2017-03-02 Published:2017-06-12 Published online:2017-03-17
  • Contact: 李耕, E-mail: ligeng213@sina.com; Tel: 0538-8242653; 宁堂原, E-mail: ningty@163.com; Tel: 0538-8242653
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31401339 and 31371576), the National Key Research and Development Program of China (2016YFD0300205), the China Special Fund for Agro-scientific Research in the Public Interest (201503130, 201503121), and Shandong Modern Agricultural Technology & Industry System (SDAIT-02-08), and National Key Technology Support Program of China (2013BAD07B06–2).

摘要:

为了探讨不同耕作方式与氮肥类型对夏玉米光合性能的影响及其作用机制,本试验以玉米杂交种郑单958为供试材料,通过快速叶绿素荧光诱导动力学曲线(OJIP)及820 nm光吸收等技术,深入研究了玉米叶片花后叶绿素含量、含氮量、气体交换参数、光系统II (PSII)、光系统I (PSI)及二者间的协调性。两年研究结果表明,与常规尿素相比,施用控释尿素均可显著提高玉米花后穗位叶叶绿素含量、净光合速率(Pn)及后期气孔导度(Gs),明显改善光系统间协调性。与旋耕相比,深松可进一步加强施氮对玉米叶片光合性能的促进作用。控释尿素结合深松可显著提高叶绿素含量及Pn,明显改善叶片PSII反应中心供体侧和受体侧性能,增强电子由PSII向PSI的传递,使花后叶片PSII与PSI间协调性显著增加,有利于产量形成期光合性能稳定。光合性能的提高显著增加了穗粒数和单株籽粒产量,最终提高玉米产量。因此,深松与控释尿素结合可有效地协调PSII与PSI,提高夏玉米光合性能,促进玉米增产。

关键词: 深松, 控释尿素, 光合性能, 光系统, PSI-PSII协调性

Abstract:

In order to understand the effects of different tillage methods and nitrogen fertilizer types on photosynthetic performances and their mechanism, the characteristics of photosystem II (PSII), photosystem I (PSI) and the coordination between them in ear leaves of maize (cultivar, Zhengdan 958) were studied by using fast chlorophyll fluorescence-induction kinetics and 820 nm light-absorption curves. Two-year field experiment indicated that, compared with normal urea, controlled-release urea significantly increased the chlorophyll content, net photosynthetic rate (Pn) and stomatal conductance (Gs) of ear leaves after anthesis, and significantly improved the coordination between PSII and PSI. Compared with rotary tillage, subsoiling significantly increased the photosynthetic performances in ear leaves during reproductive stage. Subsoiling method combined with controlled-release urea application could significantly increase chlorophyll content, improve the performances of electron donor and acceptor sides of electron transport chain in PSII reaction center, and enhance the distribution of electron transported from PSII to PSI as well. Consequently, the coordination between PSII and PSI after anthesis was significantly improved, which is conducive to the stability of photosynthetic performances during maize reproductive stage. The improvement of photosynthetic performances under subsoiling method and controlled-release urea treatment significantly enhanced Pn in ear leaves and increased grain number per ear and grain yield per plant, and eventually increased maize yield. Therefore, subsoiling combined with controlled-release urea could effectively improve photosynthetic performances by increasing the coordination between PSII and PSI, which is the major reason for increasing maize yield.

Key words: Subsoil tillage, Controlled-release urea, Photosynthetic performance, Photosystem, Coordination of photosystem I and II

[1]夏来坤, 陶洪斌, 许学彬, 鲁来清, 王润正, 王璞. 不同施氮时期对夏玉米干物质积累及氮肥利用的影响. 玉米科学, 2009, 17(5): 138–140 Xia L K, Tao H B, Xue X B, Lu L-Q, Wang R-Z, Wang P. Effects of nitrogen application time on dry matter accumulation and nitrogen use efficiency of summer maize. J Maize Sci, 2009, 17(5): 138–140 (in Chinese with English abstract) [2]张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45: 913–933 Zhang F S, Wang J Q, Zhang W F, Cui Z L, Ma W Q, Chen X P, Jiang R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedol Sin, 2008, 45: 913–933 (in Chinese with English abstract) [3]Miao Y X, Mulla D J, Robert P C, Hernandez J A. Within-field variation in corn yield and grain quality responses to nitrogen fertilization and hybrid selection. J Agron, 2006, 98: 129–140 [4]Ogola J B O, Wheeler T R, Harris P M. Effects of nitrogen and irrigation on water use of maize crops. Field Crops Res, 2002, 78: 105–117 [5]高焕文, 李洪文, 王兴文. 旱地深松试验研究. 干旱地区农业研究, 1995, 13(4): 126–133 Gao H W, Li H W, Wang X W. A testing study of dryland subsoiling. Agric Res Arid Areas, 1995, 13(4): 126–133 (in Chinese with English abstract) [6]李洪文, 陈君达, 李问盈. 保护性耕作条件下深松技术研究. 农业机械学报, 2000, 31(6): 42–45 Li H W, Chen J D, Li W Y. Study on subsoiling technique for conservation tillage filed. J Agric Machi, 2000, 31(6): 42–45 (in Chinese with English abstract) [7]朱凤武, 王景利, 潘世强, 张盛文. 土壤深松技术研究进展. 吉林农业大学学报, 2003, 25: 457–461 Zhu F W, Wang J L, Pan S Q, Zhang S W. Advances in researches of soil subsoiling technique. J Jilin Agric Univ, 2003, 25: 457–461 (in Chinese with English abstract) [8]段巍巍, 李慧玲, 肖凯, 李雁鸣. 氮肥对玉米穗位叶光合作用及其生理生化特性的影响. 华北农学报, 2007, 22(1): 26–29 Duan W W, Li H L, Xiao K, Li Y M. Effects of nitrogen fertilizer on photosynthesis and its physiological and biochemical characteristics in ear-leaf of maize. J Acta Agric Boreali-sin, 2007, 22(1): 26–29 (in Chinese with English abstract) [9]董树亭, 高荣岐, 胡昌浩, 王群瑛, 王空军. 玉米花粒期群体光合性能与高产潜力研究. 作物学报, 1997, 23: 318–325 Dong S T, Gao R Q, Hu C H, Wang Q Y, Wang K J. Study of canopy photosynthesis property and high yield potential after anthesis in maize. Acta Agron Sin, 1997, 23: 318–325 (in Chinese with English abstract) [10]Strasser R J, Srivastava A, Tsimilli-Michael M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P, eds. Probing Photosynthesis: Mechanism, Regulation and Adaptation. London: Taylor & Francis Press, 2000, 25: 445–483 [11]Strasser R J, Tsimill-Michael M, Srivastava A. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G, Govindjee, eds. Advances in Photosynthesis and Respiration. Netherlands: KAP Press, 2004, 12: 1–47 [12]Baker N R. A possible role for photosystem II in environmental perturbations of photosynthesis. Plant Physiol, 1991, 81: 563–570 [13]刘明, 来永才, 李炜, 肖佳雷, 毕影东, 刘淼, 李琬, 齐华. 深松与施氮对玉米群体光合特性的影响. 作物杂志, 2013, (6): 95–98 Liu M, Lai Y C, Li W, Xiao J L, Bi Y D, Liu M, Li W, Qi H. The effects of subsoiling and nitrogen on the photosynthetic characteristic of maize population. Crops, 2013, (6): 95–98 (in Chinese) [14]Lawlor D W. Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems. J Exp Bot, 2002, 53: 773–787 [15]杨晴, 李雁鸣, 肖凯, 杜艳华. 不同施氮量对小麦旗叶衰老特性和产量性状的影响. 河北农业大学学报, 2002, 25(4): 20–24 Yang Q, Li Y M, Xiao K, Du Y H. Effect of different amount of nitrogen on flag leaf senescence and yield components of wheat. J Hebei Agric Univ, 2002, 25(4): 20–24 (in Chinese with English abstract) [16]曹翠玲, 李生秀. 供氮水平对小麦生殖生长时期叶片光合速率、NR活性和核酸含量及产量的影响. 植物学通报, 2003, 20: 319–324 Cao C L, Li S X. Effect of nitrogen level on the photosynthetic rate, NR activity and the contents of nucleic acid of wheat leaf in the stage of reproduction. Chin Bull Bot, 2003, 20: 319–324 (in Chinese with English abstract) [17]Arnon D I. Copper enzymes in isolated chloroplasts: Poly-phenoloxidase in Beta vulgaris L. Plant Physiol, 1949, 24(1): 1–15 [18]Bremner J M. Nitrogen-Total. In: Sparks D L ed. Methods of soil analysis part 3. Chemical methods. SSSA Book Ser. No. 5. America society of Agronmy-Soil Science Society of America Press, 1996, 37: 1085–1121 [19]Schansker G, Srivastava A, Govindjee, Strasser R J. Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. Funct Plant Biol, 2003, 30: 785–796 [20]王进军, 柯福来, 白鸥, 黄瑞冬. 不同施氮方式对玉米干物质积累及产量的影响. 沈阳农业大学学报, 2008, 39: 392–395 Wang J J, Ke F L, Bai Ou, Huang R D. Effect of dry weight accumulation and yield of maize under different nitrogen application. J Shenyang Agric Univ, 2008, 39: 392–395 (in Chinese with English abstract) [21]李耕, 高辉远, 刘鹏, 杨吉顺, 董树亭, 张吉旺, 王敬锋. 氮素对玉米灌浆期叶片光合性能的影响. 植物营养与肥料学报, 2010, 16: 536–542 Li G, Gao H Y, Liu P, Yang J S, Dong S T, Zhang J W, Wang J F. Effects of nitrogen fertilization on photosynthetic performance in maize leaf at grain filling stage. Plant Nutr Fert Sin, 2010, 16: 536–542 (in Chinese with English abstract) [22]朱诚, 傅亚萍, 孙宗修. 超高产水稻开花结实期间叶片衰老与活性氧代谢的关系. 中国水稻科学, 2002, 16: 326–330 Zhu C, Fu Y P, Sun Z X. Relationship between leaf senescence and activated oxygen metabolism in super high yielding rice during flowering and grain formation stage. Chin J Rice Sci, 2002, 16: 326–330 (in Chinese with English abstract) [23]刘巽浩. 耕作学. 北京: 科学出版社, 1994 Liu X H. Cultivation Science. Beijing: Science Press, 1994 [24]Zhang, J S, Zhang F P, Yang J H, Wang J P, Cai M L, Li C F, Cao C G. Emissions of N2O and NH3, and nitrogen leaching from direct seeded rice under different tillage practices in central China. Agric Ecol Environ, 2011, 140: 164–173 [25]苏晓琼, 王美月, 束胜, 孙锦, 郭世荣. 外源亚精胺对高温胁迫下番茄幼苗快速叶绿素荧光诱导动力学特性的影响. 园艺学报, 2013, 40: 2409–2418 Su X Q, Wang M Y, Shu S, Sun J, Guo S R. Effects of exogenous spd on the fast chlorophyll fluorescence induction dynamics in tomato seedings under hight temperature stress. Acta Hort Sin, 2013, 40: 2409–2418 (in Chinese with English abstract) [26]李志真, 刘东焕, 赵世伟, 姜闯道, 石雷. 环境强光诱导玉簪叶片光抑制的机制. 植物生态学报, 2014, 38: 720–728 Li Z Z, Liu D H, Zhao S W, Jiang C D, Shi L. Mechanisms of photoinhibition induced by high light in Hosta grown outdoors. J Plant Ecol, 2014, 38: 720–728 (in Chinese with English abstract) [27]张子山, 李耕, 高辉远, 刘鹏, 杨程, 孟祥龙, 孟庆伟. 玉米持绿与早衰品种叶片衰老过程中光化学活性的变化. 作物学报, 2013, 39: 93–100 Zhang Z S, Li G, Gao H Y, Liu P, Yang C, Meng X L, Meng Q W. Changs of photochemistry activity during senescence of leaves in stay green and quick-leaf-senescence inbred lines of maize. Acta Agron Sin, 2013, 39: 93–100 (in Chinese with English abstract) [28]Govindjee. Sixty-three yearssince Kautsky: Chlorophyll a fluorescence. Aust J Plant Physiol, 1995, 22: 131–160 [29]Strasser R J, Srivastava A, Govindjee. Polyphasic chlorophyll a fluorescence transients in plants and cyanobacteria. Photochem, Photobiol, 1995, 61: 32–42 [30]Eggenberg P, Rensburg L V, Krüger H J, Strasser R J. Screening criteria for drought tolerance in Nicotiana tabacum L derived from the polyphasic rise of the chlorophyll a fluorescence transient (O-J-I-P). In: Mathis P ed. Photosynthesis: from Light to Biosphere. Dordrecht: KAP Press, 1995, Vol. 4, pp 661–664 [31]Krause G H, Weis E. Chlorophyll fluorescence and photosynthe-sis: the basics. Annu Rev Plant Physiol Plant Mol Biol, 1991, 42: 313–349 [32]Appenroth K J, St?ckel J, Srivastava A, Strasser R J. Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. Environ Pollut, 2001, 115: 49–64 [33]van Heerden P D R, Tsimilli-Michael M, Krüger G H J, Strasser R J. Dark chilling effects on soybean genotypes during vegetative development: parallel studies of CO2 assimilation, chlorophyll a fluorescence kinetics O-J-I-P and nitrogen fixation. Physiol Plant, 2003, 117: 476–491 [34]van Heerden P D R, Strasser R J, Krüger G H J. Reduction of dark chilling stress in N2-fixing soybean by nitrate as indicated by chlorophyll a fluorescence kinetics. Physiol Plant, 2004, 121: 239–249

[1] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[2] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[3] 李静, 王洪章, 刘鹏, 张吉旺, 赵斌, 任佰朝. 夏玉米不同栽培模式花后叶片光合性能的差异[J]. 作物学报, 2021, 47(7): 1351-1359.
[4] 王一帆, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 间作小麦光合性能对地上地下互作强度的响应[J]. 作物学报, 2021, 47(5): 929-941.
[5] 田昌, 靳拓, 周旋, 黄思怡, 王英姿, 徐泽, 彭建伟, 荣湘民, 谢桂先. 控释尿素对环洞庭湖区双季稻吸氮特征和产量的影响[J]. 作物学报, 2021, 47(4): 691-700.
[6] 胡旦旦,张吉旺,刘鹏,赵斌,董树亭. 密植条件下玉米品种混播对夏玉米光合性能及产量的影响[J]. 作物学报, 2018, 44(6): 920-930.
[7] 黄春燕,苏文斌,张少英,樊福义,郭晓霞,李智,菅彩媛,任霄云,宫前恒. 施钾量对膜下滴灌甜菜光合性能以及对产量和品质的影响[J]. 作物学报, 2018, 44(10): 1496-1505.
[8] 白伟,张立祯,逄焕成,孙占祥,牛世伟,蔡倩,安景文. 秸秆还田配施氮肥对东北春玉米光合性能和产量的影响[J]. 作物学报, 2017, 43(12): 1845-1855.
[9] 翟玉山,邓宇晴,董萌,徐倩,程光远,彭磊,林彦铨*,徐景升*. 甘蔗捕光叶绿素a/b 结合蛋白基因ScLhca3 的克隆及表达[J]. 作物学报, 2016, 42(09): 1332-1341.
[10] 李广浩, 赵斌, 董树亭, 刘鹏, 张吉旺, 何在菊. 控释尿素水氮耦合对夏玉米产量和光合特性的影响[J]. 作物学报, 2015, 41(09): 1406-1415.
[11] 尹宝重,甄文超,冯悦. 海河低平原深松播种对夏玉米根系生理的影响及其节水增产效应[J]. 作物学报, 2015, 41(04): 623-632.
[12] 王新兵,侯海鹏,周宝元,孙雪芳,马玮*,赵明. 条带深松对不同密度玉米群体根系空间分布的调节效应[J]. 作物学报, 2014, 40(12): 2136-2148.
[13] 孙敏,温斐斐,高志强*,任爱霞,邓妍,赵维峰,赵红梅. 不同降水年型旱地小麦休闲期耕作的蓄水增产效应[J]. 作物学报, 2014, 40(08): 1459-1469.
[14] 孙敏,高志强*,赵维峰,任爱霞,邓妍,苗果园. 休闲期深松配施氮肥对旱地土壤水分及小麦籽粒蛋白质积累的影响[J]. 作物学报, 2014, 40(07): 1286-1295.
[15] 桑贤春,徐芳芳,朱小燕,邢亚迪,何沛龙,张长伟,杨正林,何光华. 水稻早衰突变体esl5的鉴定及其基因精细定位[J]. 作物学报, 2014, 40(07): 1182-1189.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!