欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (7): 1351-1359.doi: 10.3724/SP.J.1006.2021.03051

• 耕作栽培·生理生化 • 上一篇    下一篇

夏玉米不同栽培模式花后叶片光合性能的差异

李静, 王洪章, 刘鹏*(), 张吉旺, 赵斌, 任佰朝   

  1. 山东农业大学农学院 / 作物生物学国家重点实验室, 山东泰安 271018
  • 收稿日期:2020-08-29 接受日期:2020-12-01 出版日期:2021-07-12 网络出版日期:2021-01-04
  • 通讯作者: 刘鹏
  • 作者简介:E-mail: xli3260@126.com
  • 基金资助:
    本研究是由国家重点研发计划项目(2016YFD0300106);本研究是由国家重点研发计划项目(2018YFD0300603);国家自然科学基金项目(31771713);国家自然科学基金项目(3207150188);山东省现代农业产业技术体系项目资助(SDAIT-02-08)

Differences in photosynthetic performance of leaves at post-flowering stage in different cultivation modes of summer maize (Zea mays L.)

LI Jing, WANG Hong-Zhang, LIU Peng*(), ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao   

  1. College of Agriculture, Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, Shandong, China
  • Received:2020-08-29 Accepted:2020-12-01 Published:2021-07-12 Published online:2021-01-04
  • Contact: LIU Peng
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2016YFD0300106);This study was supported by the National Key Research and Development Program of China(2018YFD0300603);the National Natural Science Foundation of China(31771713);the National Natural Science Foundation of China(3207150188);the Shandong Province Key Agricultural Project for Application Technology Innovation(SDAIT-02-08)

摘要:

光合作用是作物生长发育及产量形成的重要生理过程, 不同栽培模式会显著影响夏玉米花后叶片光合性能。本研究于2018—2019年设置大田试验, 以登海605为试验材料, 当地农户栽培管理模式(farmer management mode, FP)为对照, 通过综合优化种植密度、肥料运筹和种植方式等措施设置超高产栽培模式(super high yield mode, SH)、高产高效栽培模式(high-yield and efficient mode, HH)。分析不同栽培模式叶面积指数、叶绿素含量、气体交换参数和快速叶绿素荧光诱导动力学曲线(OJIP)等的变化特点, 探究栽培模式对夏玉米花后叶片光合性能的调控效应。结果表明, 不同栽培模式可显著影响夏玉米成熟期群体生物量, SH、HH模式较FP两年分别平均提高27.77%和7.43%, 且HH模式花后群体生物量显著增加。不同栽培模式夏玉米花后叶片光合速率均呈现下降趋势, 吐丝后30 d (R1+30 d)时下降幅度较大。与FP相比, SH、HH在R1和R1+30 d净光合速率(net photosynthetic rate, Pn)显著提高, 可维持较高的光合能力, 分别提高21.63%、12.96%和35.37%、12.37%; 另外, 气孔导度(stomatal conductance, Gs)分别提高18.36%、16.66%和26.16%、10.74%, 胞间二氧化碳浓度(intercellular carbon dioxide concentration, Ci)分别降低12.85%、7.34%和14.08%、9.75%, 不同栽培模式间光合性能的差异是由非气孔因素引起的。SH、HH的WkVj较FP显著降低, 表明其PSII反应中心供、受体侧性能均有明显改善, 增大了PSII电子传递效率(φE0)及向下游传递电子的能力, PSII反应中心活性及PSII与PSI之间的协调性提高。因此, SH、HH处理有效地改善了光系统性能, 提高光合速率、延长了叶片光合高值持续期, 是群体生物量增加, 实现高产的原因。

关键词: 夏玉米, 栽培模式, 光合性能, 叶绿素荧光参数

Abstract:

Photosynthesis plays an important role in crop growth and yield formation. Different cultivation patterns can significantly affect the photosynthetic performance of leaves at post-flowering stage in summer maize. In order to explore the effects of different cultivation modes on the photosynthetic performance of summer maize leaves at post-flowering stage, field experiments were carried out with Denghai 605 maize hybrid variety as experimental material from 2018 to 2019 in Tai’an, Shandong, China. With the local farmer management mode (FP) as the control, the super-high-yield cultivation mode (SH) and high-yield and high-efficiency cultivation mode (HH) by comprehensively optimizing the planting density, fertilizer planting and management mode were set in this study. Leaf area index, chlorophyll content, gas exchange parameters, rapid chlorophyll fluorescence induction kinetic curve (OJIP) were evaluated, which indicated significant differences in biomass of different cultivation modes at maturity stage. Compared with FP, the biomass of SH and HH increased by 27.77% and 7.43%, respectively, and the population biomass at post-flowering stage of HH increased significantly as well. Besides, the photosynthetic rate all declined in different cultivation modes, reaching the highest degree of decline on the 30th day at post-flowering stage (R1+30 d). In contrast with FP, the net photosynthetic rate (Pn) of SH and HH increased at post-flowering stage stage (R1) by 21.63% and 12.96%, respectively, and on the 30th day (R1+30 d) at post-flowering stage by 35.37% and 12.37%, respectively, which could maintain a higher level of photosynthetic capacity. In addition, these results revealed that the differences of net photosynthetic rate among the different cultivation modes were caused by non-stomatal factors. The stomatal conductance (Gs) of SH and HH was increased at the silking stage by 18.36%, 16.66%, 26.16%, and 10.74%, respectively, and while on the 30th day at post-flowering stage intercellular carbon dioxide (Ci) declined by 12.85%, 7.34%, 14.08%, and 9.75%, respectively. Compared with FP, Wk and Vj of SH and HH significantly decreased, indicating that SH and HH apparently improved the performances of both electron donor and acceptor sides of electron transport chain in PSII reaction center, the quantum yield of electron transfer (φE0), the electron transfer ability as well as the reaction center activities of PSII and the coordination between PSI and PSII. In conclusion, SH and HH effectively improved the photosystems performance, increased the net photosynthetic rate, and prolonged duration of high photosynthesis rate, resulting in the increase of the population biomass and high yield.

Key words: summer maize, cultivation modes, photosynthetic performance, chlorophyll fluorescence parameters

表1

播前试验田0~20 cm土层养分含量"

年份
Year
有机质
Soil organic matter
(g kg-1)
速效氮
Available N
(mg kg-1)
速效磷
Available P
(mg kg-1)
速效钾
Available K
(mg kg-1)
2018 9.22 70.54 35.75 137.57
2019 9.51 72.54 32.25 135.35

图1

玉米生育期内的日平均气温、日光合有效辐射、日降雨量"

表2

密度及肥料运筹"

处理
Treatment
种植密度
Planting density
(plant hm-2)
行距
Row spacing (cm)
肥料类型
Fertilizer
肥料用量
Dosage
(kg hm-2)
比例Proportion
播种
Seeding
大口
V12
开花
VT
乳熟
R3
SH 82,500 80+40 有机肥
Organic fertilizer
7500 100%
N 540 30% PU+10% U 30% U 20% U 10% U
P2O5 180 100%
K2O 360 75% 25%
HH 82,500 60+60 有机肥
Organic fertilizer
7500 100%
N 225 30% PU+10% U 30% U 20% U 10% U
P2O5 150 100%
K2O 300 75% 25%
FP 67,500 60+60 种肥同播, 复合肥 (N-P2O5-K2O=14-16-15) 750 kg hm-2
Compound fertilizer (N-P2O5-K2O=14-16-15) 750 kg hm-2

图2

栽培模式对夏玉米群体生物量的影响 SH: 超高产模式; HH: 高产高效模式; FP: 农户管理模式; R1: 吐丝期; R6: 成熟期。图中不同小写字母表示不同处理间差异达0.05显著水平。"

图3

栽培模式对夏玉米花后叶片气体交换参数的影响 SH: 超高产模式; HH: 高产高效模式; FP: 农户管理模式; R1: 吐丝期; R1+15: 吐丝后15 d; R1+30: 吐丝后30 d; R1+45: 吐丝后45 d。 *和**分别表示在0.05和0.01水平上处理之间差异显著。不同小写字母表示P < 0.05差异显著。"

表3

夏玉米不同栽培模式花后比叶重、叶面积指数及叶绿素含量的差异"

年份
Years
处理
Treatment
比叶重
Specific leaf weight
(mg cm-2)
叶面积指数
Leaf area index
叶绿素a含量
Chlorophyll a
(mg dm-2)
叶绿素b含量
Chlorophyll b
(mg dm-2)
叶绿素a/b
Chlorophyll a/b
R1 R1+30 d R1 R1+30 d R1 R1+30 d R1 R1+30 d R1 R1+30 d
2018 SH 4.75 a 4.38 a 6.2 a 5.3 a 5.53 a 5.04 a 2.70 a 2.31 a 2.04 a 2.16 a
HH 4.63 ab 4.34 ab 5.4 b 4.8 b 5.21 b 4.77 b 2.66 a 2.26 ab 1.95 b 2.11 ab
FP 4.53 b 4.11 b 4.8 c 4.5 c 5.06 b 4.59 c 2.63 a 2.24 b 1.92 b 2.05 b
2019 SH 4.69 a 4.39 a 7.1 a 6.6 a 5.42 a 5.01 a 2.71 a 2.35 a 1.99 a 2.13 a
HH 4.55 ab 4.30 a 6.1 b 5.5 b 5.18 b 4.71 b 2.67 a 2.25 ab 1.94 b 2.09 ab
FP 4.38 b 4.16 ab 5.0 c 4.6 c 5.04 c 4.52 c 2.66 a 2.21 b 1.90 b 2.04 b

图4

栽培模式对夏玉米叶片光系统II (PSII)反应中心性能的影响 处理和缩写同图3。图中不同小写字母表示不同处理间差异达0.05显著水平。"

图5

栽培模式对夏玉米Wk与Vj的影响 处理和缩写同图3。图中不同小写字母表示不同处理间差异达0.05显著水平。"

[1] 李少昆, 赵久然, 董树亭, 赵明, 李潮海, 崔彦宏, 刘永红, 高聚林, 薛吉全, 王立春, 王璞, 陆卫平, 王俊河, 杨祁峰, 王子明. 中国玉米栽培研究进展与展望. 中国农业科学, 2017,50:1941-1959.
Li S K, Zhao J R, Dong S T, Zhao M, Li C H, Cui Y H, Liu Y H, Gao J L, Xue J Q, Wang L C, Wang P, Lu W P, Wang J K, Yang Q F, Wang Z M. Research progress and prospect of corn cultivation in China. Sci Agric Sin, 2017,50:1941-1959 (in Chinese with English abstract).
[2] 陈印军, 易小燕, 方琳娜, 杨瑞珍. 中国耕地资源与粮食增产潜力分析. 中国农业科学, 2016,49:1117-1131.
Chen Y J, Yi X Y, Fang L N, Yang R Z. Analysis of cultivated land and grain production potential in China. Sci Agric Sin, 2016,49:1117-1131 (in Chinese with English abstract).
[3] 王楷, 王克如, 王永宏, 赵健, 赵如浪, 王喜梅, 李健, 梁明晰, 李少昆. 密度对玉米产量(>15,000 kg hm -2)及其产量构成因子的影响 . 中国农业科学, 2012,45:3437-3445.
Wang K, Wang K R, Wang Y H, Zhao J, Zhao R L, Wang X M, Li J, Liang M X, Li S K. Effects of density on maize yield and yield components. Sci Agric Sin, 2012,45:3437-3445 (in Chinese with English abstract).
[4] 史建国, 崔海岩, 赵斌, 董树亭, 刘鹏, 张吉旺. 花粒期光照对夏玉米产量和籽粒灌浆特性的影响. 中国农业科学, 2013,46:4427-4434.
Shi J G, Cui H Y, Zhao B, Dong S T, Liu P, Zhang J W. Effect of light on yield and characteristics of grain-filling of summer maize from flowering to maturity. Sci Agric Sin, 2013,46:4427-4434 (in Chinese with English abstract).
[5] 张子山, 杨程, 高辉远, 李耕, 刘鹏. 保绿玉米与早衰玉米叶片衰老过程中叶绿素降解与光合作用光化学活性的关系. 中国农业科学, 2012,45:4794-4800.
Zhang Z S, Yang C, Gao H Y, Li G, Liu P. Relationship between photochemistry activity and decrease in chlorophyll content during senescence in leaves of stay green and quick-leaf-senescence inbred line of maize. Sci Agric Sin, 2012,45:4794-4800 (in Chinese with English abstract).
[6] 徐宗贵, 孙磊, 王浩, 王淑兰, 王小利, 李军. 种植密度对旱地不同株型春玉米品种光合特性与产量的影响. 中国农业科学, 2017,50:2463-2475.
Xu Z G, Sun L, Wang H, Wang S L, Wang X L, Li J. Effects of different planting densities on photosynthetic characteristics and yield of different variety types of spring maize on dryland. Sci Agric Sin, 2017,50:2463-2475 (in Chinese with English abstract).
[7] Baker N R. A possible role for photosystem II in environmental perturbations of photosynthesis. Physiol Plant, 2010,81:563-570.
[8] 柏延文, 杨永红, 朱亚利, 李红杰, 薛吉全, 张仁和. 种植密度对不同株型玉米冠层光能截获和产量的影响. 作物学报, 2019,45:1868-1879.
Bai Y W, Yang Y H, Zhu Y L, Li H J, Xue J Q, Zhang R H. Effect of planting density on light interception within canopy and grain yield of different plant types of maize. Acta Agron Sin, 2019,45:1868-1879 (in Chinese with English abstract).
[9] 肖继兵, 刘志, 孔凡信, 辛宗绪, 吴宏生. 种植方式和密度对高粱群体结构和产量的影响. 中国农业科学, 2018,51:4264-4276.
Xiao J B, Liu Z, Kong F X, Xin Z X, Wu H S. Effects of planting pattern and density on population structure and yield of sorghum. Sci Agric Sin, 2018,51:4264-4276 (in Chinese with English abstract).
[10] 王永华, 黄源, 辛明华, 苑沙沙, 康国章, 冯伟, 谢迎新, 朱云集, 郭天财. 周年氮磷钾配施模式对砂姜黑土麦玉轮作体系籽粒产量和养分利用效率的影响. 中国农业科学, 2017,50:1031-1046.
Wang Y H, Huang Y, Xin M H, Yuan S S, Kang G Z, Feng W, Xie Y X, Zhu Y J, Guo T C. Effects of the year-round management model of N, P and K combined application on grain yield and nutrient efficiency of wheat-maize rotation system in lime concretion black soil. Sci Agric Sin, 2017,50:1031-1046 (in Chinese with English abstract).
[11] Li T, Liu Y J, Shi L, Jiang C D. Systemic regulation of photosynthetic function in field-grown sorghum. Plant Physiol Biochem, 2015,90:86-94.
[12] 张柳, 王铮, 张亚婕, 林春, 陈严平, 李军营, 毛自朝. 烟草叶片衰老期过程中的蛋白质组学分析. 植物生理学报, 2014,50:488-500.
Zhang L, Wang Z, Zhang Y J, Lin C, Chen Y P, Li J Y, Mao Z Z. Proteomics analysis of tobacco leaves during senescence. Plant Physiol J, 2014,50:488-500 (in Chinese with English abstract).
[13] 杨吉顺, 高辉远, 刘鹏, 李耕, 董树亭, 张吉旺, 王敬锋. 种植密度和行距配置对超高产夏玉米群体光合特性的影响. 作物学报, 2010,36:1226-1233.
Yang J S, Gao H Y, Liu P, Li G, Dong S T, Zhang J W, Wang J F. Effects of planting density and row spacing on canopy apparent photosynthesis of high-yield summer corn. Acta Agron Sin, 2010,36:1226-1233 (in Chinese with English abstract).
[14] Wu Y S, Yang F, Gong W Z, Shoaib A, Fan Y F, Wu X L, Yong T W, Liu W G, Shu K, Liu J, Du J B, Yang W Y. Shade adaptive response and yield analysis of different soybean genotypes in relay intercropping systems. J Integr Agric, 2017,16:1331-1340.
[15] 郑宾, 赵伟, 徐铮, 高大鹏, 姜媛媛, 刘鹏, 李增嘉, 李耕, 宁堂原. 不同耕作方式与氮肥类型对夏玉米光合性能的影响. 作物学报, 2017,43:925-934.
Zheng B, Zhao W, Xu Z, Gao D P, Jiang Y Y, Liu P, Li Z J, Li G, Ning T Y. Effects of tillage methods and nitrogen fertilizer types on photosynthetic performance of summer maize. Acta Agron Sin, 2017,43:925-934 (in Chinese with English abstract).
[16] 赵伟, 甄天悦, 张子山, 徐铮, 高大鹏, 丁聪, 刘鹏, 李耕, 宁堂原. 增施磷肥提高弱光环境中夏大豆叶片光合能力及产量. 作物学报, 2020,46:249-258.
Zhao W, Zhen T Y, Zhang Z S, Xu Z, Gao D P, Ding C, Liu P, Li G, Ning T Y. Increasing phosphate fertilizer application to improve photosynthetic capacity and yield of summer soybean in weak light environment. Acta Agron Sin, 2020,46:249-258 (in Chinese with English abstract).
[17] 王菲, 曹翠玲. 磷水平对不同磷效率小麦叶绿素荧光参数的影响. 植物营养与肥料学报, 2010,16:758-762.
Wang F, Cao C L. Effects of phosphorus levels on chlorophyll fluorescence parameters of wheat ( Triticum aestivum L.) with different phosphorus efficiencies. J Plant Nutr Fert, 2010,16:758-762 (in Chinese with English abstract).
[18] 焦念元, 杨萌珂, 宁堂原, 尹飞, 徐国伟, 付国占, 李友军. 玉米花生间作和磷肥对间作花生光合特性及产量的影响. 植物生态学报, 2013,37:1010-1017.
Jiao N Y, Yang M K, Ning T Y, Yin F, Xu G W, Fu G Z, Li Y J. Effects of maize-peanut intercropping and phosphate fertilizer on photosynthetic characteristics and yield of intercropped peanut plants. Chin J Plant Ecol, 2013,37:1010-1017 (in Chinese with English abstract).
[19] Arnon D I. Copper enzymes in isolated chloroplasts, polyphenoloxidase in beta vulgaris. Plant Physiol, 1949,24:1-15.
doi: 10.1104/pp.24.1.1 pmid: 16654194
[20] Schansker G, Srivastava A, Strasser R J. Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. Funct Plant Biol, 2003,30:785-796.
pmid: 32689062
[21] 张浩, 郑云普, 叶嘉, 高伟, 乔雅君, 戴川景, 赵雨欣, 石少婕. 外源钙离子对盐胁迫玉米气孔特征、光合作用和生物量的影响. 应用生态学报, 2019,30:923-930.
Zhang H, Zheng Y P, Ye J, Gao W, Qiao Y J, Dai C J, Zhao Y X, Shi S J. Effects of exogenous calcium ions on stomata characteristics, photosynthesis and biomass of maize under salt stress. Chin J Appl Ecol, 2019,30:923-930 (in Chinese with English abstract).
[22] 高冠龙, 冯起, 张小由, 司建华, 鱼腾飞. 植物叶片光合作用的气孔与非气孔限制研究综述. 干旱区研究, 2018,35:929-937.
Gao G L, Feng Q, Zhang X Y, Si J H, Yu T F. A review of research on stomatal and non-stomata restriction of plant leaf photosynthesis. Arid Zone Res, 2018,35:929-937 (in Chinese with English abstract).
[23] Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annu Rev Plant Physiol, 1982,33:317-345.
[24] 顾骏飞, 周振翔, 李志康, 戴琪星, 孔祥胜, 王志琴, 杨建昌. 水稻低叶绿素含量突变对光合作用及产量的影响. 作物学报, 2016,42:551-560.
Gu J F, Zhou Z X, Li Z K, Dai Q X, Kong X S, Wang Z Q, Yang J C. Effects of the mutant with low chlorophyll content on photosynthesis and yield in rice. Acta Agron Sin, 2016,42:551-560 (in Chinese with English abstract).
[25] 杜祥备, 王家宝, 刘小平, 夏家平, 韩杨. 减氮运筹对甘薯光合作用和叶绿素荧光特性的影响. 应用生态学报, 2019,30:1253-1260.
Du X B, Wang J B, Liu X P, Xia J P, Han Y. Effects of nitrogen fertilizer reduction management on photosynthesis and chlorophyll fluorescence characteristics of sweetpotato. Chin J Appl Ecol, 2019,30:1253-1260 (in Chinese with English abstract).
[26] Gitelson A A, Peng Y, Arkebauer T J. Relationships between gross primary production, green LAI, and canopy chlorophyll content in maize: implications for remote sensing of primary production. Remote Sens Environ, 2014,144:65-72.
[27] 张丽光, 李丹, 刘磊, 王蕾, 孙志梅, 彭正萍, 薛世川. 不同施肥种植模式对玉米光合特性、养分效率及产量性状的影响. 水土保持学报, 2013,27(2):115-119.
Zhang L G, Li D, Liu L, Wang L, Sun Z M, Peng Z P, Xue S C. Effects of different fertilization planting patterns on photosynthetic characteristics, nutrient efficiency and yield traits of maize. J Soil Water Conserv, 2013,27(2):115-119 (in Chinese with English abstract).
[28] 赵伟, 徐铮, 高大鹏, 安振, 高辉远, 张子山, 宁堂原, 李耕. 定向种植对夏玉米群体内光环境及叶片光合性能的影响. 应用生态学报, 2019,30:2707-2716.
Zhao W, Xu Z, Gao D P, An Z, Gao H Y, Zhang Z S, Ning T Y, Li G. Effects of directional planting on light environment and leaf photosynthesis of summer maize population. Chin J Appl Ecol, 2019,30:2707-2716 (in Chinese with English abstract).
[29] 吴含玉, 张雅君, 张旺锋, 王克如, 李少昆, 姜闯道. 田间密植诱导抽穗期玉米叶片衰老时的光合作用机制. 作物学报, 2019,45:248-255.
Wu H Y, Zhang Y J, Zhang W F, Wang K R, Li S K, Jiang C D. Photosynthetic characteristics of senescent leaf induced by high planting density of maize at heading stage in the field. Acta Agron Sin, 2019,45:248-255 (in Chinese with English abstract).
[30] 苏晓琼, 王美月, 束胜, 孙锦, 郭世荣. 外源亚精胺对高温胁迫下番茄幼苗快速叶绿素荧光诱导动力学特性的影响. 园艺学报, 2013,40:2409-2418.
Su X Q, Wang M Y, Shu S, Sun J, Guo S R. Effects of exogenous spd on the fast chlorophyll fluorescence induction dynamics in tomato seedlings under high temperature stress. Acta Hortic Sin, 2013,40:2409-2418 (in Chinese with English abstract).
[31] Takehiro S, Daisuke T, Hiroshi F, Amane M, Chikahiro M. Repetitive short-pulse light mainly inactivates photosystem I in sunflower leaves. Plant Cell Physiol, 2014,55:1184-1193.
doi: 10.1093/pcp/pcu061 pmid: 24793753
[32] Strasserf R J, Srivastava A. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol, 2010,61:32-42.
[1] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[2] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[3] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[4] 赵杰, 李绍平, 程爽, 田晋钰, 邢志鹏, 陶钰, 周磊, 刘秋员, 胡雅杰, 郭保卫, 高辉, 魏海燕, 张洪程. “独秆”栽培模式下全程氮肥在分蘖中后期施用对旱直播水稻产量和品质的影响[J]. 作物学报, 2021, 47(6): 1162-1174.
[5] 王一帆, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 间作小麦光合性能对地上地下互作强度的响应[J]. 作物学报, 2021, 47(5): 929-941.
[6] 柳燕兰, 郭贤仕, 张绪成, 马明生, 王宏康. 密度和施肥对旱地马铃薯干物质积累、产量和水肥利用的影响[J]. 作物学报, 2021, 47(2): 320-331.
[7] 周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展[J]. 作物学报, 2021, 47(10): 1843-1853.
[8] 马正波, 董学瑞, 唐会会, 闫鹏, 卢霖, 王庆燕, 房孟颖, 王琦, 董志强. 四甲基戊二酸对夏玉米光合生产特征的调控效应[J]. 作物学报, 2020, 46(10): 1617-1627.
[9] 陈晓影,刘鹏,程乙,董树亭,张吉旺,赵斌,任佰朝,韩坤. 基于磷肥施用深度的夏玉米根层调控提高土壤氮素吸收利用[J]. 作物学报, 2020, 46(02): 238-248.
[10] 侯红乾,林洪鑫,刘秀梅,冀建华,刘益仁,蓝贤瑾,吕真真,周卫军. 长期施肥处理对双季晚稻叶绿素荧光特征及籽粒产量的影响[J]. 作物学报, 2020, 46(02): 280-289.
[11] 万泽花,任佰朝,赵斌,刘鹏,张吉旺. 不同熟期夏玉米品种籽粒灌浆脱水特性和激素含量变化[J]. 作物学报, 2019, 45(9): 1446-1453.
[12] 周宝元,马玮,孙雪芳,丁在松,李从锋,赵明. 冬小麦-夏玉米高产模式周年气候资源分配与利用特征研究[J]. 作物学报, 2019, 45(4): 589-600.
[13] 高超,李学文,孙艳伟,周婷,罗纲,陈财. 淮河流域夏玉米生育阶段需水量及农业干旱时空特征[J]. 作物学报, 2019, 45(2): 297-309.
[14] 王洪章,刘鹏,贾绪存,李静,任昊,董树亭,张吉旺,赵斌. 不同栽培管理条件下夏玉米产量与肥料利用效率的差异解析[J]. 作物学报, 2019, 45(10): 1544-1553.
[15] 陈晓影,刘鹏,程乙,董树亭,张吉旺,赵斌,任佰朝. 土壤深松下磷肥施用深度对夏玉米根系分布及磷素吸收利用效率的影响[J]. 作物学报, 2019, 45(10): 1565-1575.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!