欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (10): 1496-1505.doi: 10.3724/SP.J.1006.2018.01496

• 耕作栽培·生理生化 • 上一篇    下一篇

施钾量对膜下滴灌甜菜光合性能以及对产量和品质的影响

黄春燕1,2,苏文斌2,张少英1,*(),樊福义2,郭晓霞2,李智1,2,菅彩媛2,任霄云2,宫前恒2   

  1. 1内蒙古农业大学农学院, 内蒙古呼和浩特 010019
    2 内蒙古自治区农牧业科学院特色作物研究所, 内蒙古呼和浩特010031
  • 收稿日期:2018-03-01 接受日期:2018-07-20 出版日期:2018-10-10 网络出版日期:2018-08-01
  • 通讯作者: 张少英
  • 基金资助:
    本研究由国家现代农业产业技术体系建设专项(CARS-210302);国家自然科学基金项目()和内蒙古自治区农牧业科学院青年创新基金(2014QNJJN08)资助(31260347);内蒙古自治区农牧业科学院青年创新基金(2014QNJJN08)

Effects of Potassium Application on Photosynthetic Performance, Yield, and Quality of Sugar Beet with Mulching-drip Irrigation

Chun-Yan HUANG1,2,Wen-Bin SU2,Shao-Ying ZHANG1,*(),Fu-Yi FAN2,Xiao-Xia GUO2,Zhi LI1,2,Cai-Yuan JIAN2,Xiao-Yun REN2,Qian-Heng GONG2   

  1. 1 Agriculture College, Inner Mongolia Agriculture University, Hohhot 010019, Inner Mongolia, China
    2 Special Crops Institute, Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010031, Inner Mongolia, China
  • Received:2018-03-01 Accepted:2018-07-20 Published:2018-10-10 Published online:2018-08-01
  • Contact: Shao-Ying ZHANG
  • Supported by:
    This study was supported by the China Agricultural Research System(CARS-210302);the National Natural Science Foundation of China(31260347);the Youth Innovation Foundation of Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences(2014QNJJN08)

摘要:

膜下滴灌技术被广泛应用于内蒙古冷凉干旱地区的甜菜生产中。为探明施钾量对膜下滴灌甜菜光合生理特性和产质量的影响及其适宜钾肥用量, 于2014?2015年在内蒙古凉城县设K2O 0、90、180、270和360 kg hm -25个施肥处理进行了研究。结果表明, 钾素能够提高甜菜的光合性能, 如促进株高、叶面积指数、净光合速率的增加; 施钾肥180、270和360 kg hm -2显著提高了叶丛快速生长期甜菜的净光合速率, 影响净光合速率的最主要因素是RuBPCase活性, 其次是气孔导度, 净光合速率与甜菜产量呈极显著正相关。适宜的钾肥用量有利于块根、叶柄和叶片干重的增加及产量增加, 但施钾过量, 块根干物质分配比例下降, 含糖率下降, 块根干物质分配比例与甜菜含糖率呈显著正相关。施钾量270 kg hm -2时产量最高, 90 kg hm -2时含糖率最高, 当施钾量大于180 kg hm -2时, 块根中K +、Na +含量增加, 大于270 kg hm -2时, 块根中α-氨基酸含量增加, 施钾量180 kg hm -2时产糖量最高。综合考虑施钾量对膜下滴灌甜菜产量和品质的影响, 内蒙古甜菜种植优势区域的钾肥推荐施用量为180 kg hm -2

关键词: 施钾量, 膜下滴灌, 甜菜, 光合性能, 产量和品质

Abstract:

The technology of drip irrigation under mulch is widely used for sugar beet cultivation in cold and arid region of Inner Mongolia. In order to investigate proper potassium application rate and effects of potassium on photosynthetic characteristics, yield and quality on sugar beet with mulching-drip irrigation, a field experiment was conducted at Liangcheng city of Inner Mongolia in 2014-2015 with five treatments (0, 90, 180, 270, and 360 kg ha -1)potassium application. The results indicated that potassium could increase the photosynthetic performance of sugar beet, enhancing plant height, leaf area index and net photosynthetic rate. The treatments of 180, 270, and 360 kg ha -1 potassium fertilizer increased the net photosynthetic rate, which mainly affected by RuBPCase activity, followed by stomatal conductance. Proper potassium application benefited dry weigh increasing of roots, shoots and leaves, and yield increasing. But excessive application of potassium fertilizer significantly decreased the dry matter distribution to roots, and sugar content. There were the highest yield 270 kg ha -1 potassium application, the highest sugar content in the treatment of 90 kg ha -1 potassium and the largest economic benefits in the treatment of 180 kg ha -1potassium. When the application amount of potassium was more than 180 kg ha -1, the contents of K + and Na + increased in root. When the application amount of potassium was more than 270 kg ha -1, the content of α-amino acid in roots increased. According to the effects of potassium on sugar beet yield and quality, the recommended potassium fertilizer rate was 180 kg ha -1 in the main sugar beet planting area in Inner Mongolia.

Key words: potassium application, mulching-drip irrigation, sugar beet, photosynthetic performance, yield and quality

表1

试验地土壤基础肥力"

年份
Year
有机质
Organic matter
(g kg-1)
全氮
Total N
(g kg-1)
全磷
Total P
(g kg-1)
全钾
Total K
(g kg-1)
碱解氮
Avail N
(mg kg-1)
有效磷
Avail P
(mg kg-1)
速效钾
Avail K
(mg kg-1)
pH
2014 9.88 0.49 0.82 19.68 64.82 13.9 103.7 8.13
2015 15.73 0.64 0.82 24.12 73.28 9.05 122.16 8.10

表2

施钾量对甜菜株高的影响"

处理
Treatment
2014 2015
块根分化
形成期
RDFS
叶丛快速
生长期
LGFS
块根及糖
分增长期
RSIS
糖分积累期
SCAS
块根分化
形成期
RDFS
叶丛快速
生长期
LGFS
块根及糖
分增长期
RSIS
糖分积累期
SCAS
K0 19.4±0.5 a 40.9±1.0 b 43.8±0.6 d 45.9±0.9 c 27.6±0.8 b 43.0±1.0 c 48.1±1.8 b 49.1±1.2 b
K90 19.7±0.4 a 43.5±0.7 ab 46.6±0.9 c 48.5±0.5 b 29.4±0.4 a 43.6±0.9 bc 51.6±1.6 ab 53.2±0.8 a
K180 20.3±0.3 a 43.9±1.3 ab 50.3±0.9 b 51.0±0.9 a 28.9±0.6 ab 46.3±1.1 ab 52.1±1.6 ab 54.2±1.4 a
K270 20.6±0.8 a 44.0±1.0 a 52.1±0.8 a 53.1±0.8 a 30.5±0.2 a 47.1±0.9 a 55.4±1.7 a 56.2±1.3 a
K360 19.4±0.6 a 41.1±0.9 ab 46.8±1.0 bc 47.3±0.9 c 28.9±0.7 ab 45.0±0.7 abc 52.6±0.9 ab 52.0±1.8 ab

表3

施钾量对甜菜叶面积指数的影响"

处理
Treatment
2014 2015
块根分化
形成期
RDFS
叶丛快速
生长期
LGFS
块根及糖
分增长期
RSIS
糖分积累期
SCAS
块根分化
形成期
RDFS
叶丛快速
生长期
LGFS
块根及糖
分增长期
RSIS
糖分积累期
SCAS
K0 0.43±0.01 a 1.59±0.03 b 2.52±0.09 c 2.09±0.02 c 0.56±0.01 b 2.09±0.09 b 2.61±0.13 b 2.08±0.14 c
K90 0.48±0.02 a 1.68±0.05 b 2.58±0.06 c 2.18±0.06 bc 0.66±0.01 ab 2.21±0.04 b 2.65±0.07 b 2.43±0.20 bc
K180 0.47±0.03 a 1.73±0.09 b 2.75±0.12 c 2.27±0.07 b 0.70±0.02 ab 2.30±0.04 b 2.88±0.06 b 2.56±0.10 b
K270 0.49±0.01 a 2.24±0.15 a 3.55±0.10 a 2.61±0.08 a 0.76±0.02 a 2.53±0.06 a 3.49±0.17 a 3.13±0.10 a
K360 0.45±0.01 a 2.10±0.09 a 3.25±0.11 b 2.31±0.04 b 0.70±0.02 ab 2.58±0.10 a 3.38±0.09 a 3.15±0.13 a

图1

施钾量对甜菜叶片气体交换参数的影响 缩写同表2。"

图2

施钾量对甜菜 RuBPCase活性的影响 缩写同表2。"

表4

甜菜Pn与Gs、Tr、Ci和RuBPCase活性的相关系数"

生育时期
Growth period
气孔导度
Gs
蒸腾速率
Tr
胞间CO2浓度
Ci
RuBPCase活性
RuBPCase activity
RDFS 0.752 0.720 0.759 0.995**
LGFS 0.960** 0.627 0.858* 0.993**
RSIS 0.868* 0.993** 0.610 0.997**
SCAS 0.995** 0.983** 0.828* 0.984**

图3

施钾量对甜菜干物质积累与分配的影响 缩写同表2。"

表5

施钾量对甜菜产量和品质的影响"

年份
Year
处理
Treatment
产量
Yield
(kg hm-2)
含糖率
Sugar content
(%)
K+含量
K+ content
(μmol g-1 FW)
Na+含量
Na+ content
(μmol g-1 FW)
α-氨基酸含量
α-amino acid
(μmol g-1 FW)
2014 K0 58536.43±642.15 d 16.50±0.15 b 36.28±0.59 a 4.50±0.13 d 9.98±0.21 c
K90 63205.16±765.08 c 17.43±0.10 a 36.68±0.34 a 6.48±0.28 c 10.38±0.17 c
K180 66201.89±254.42 b 17.26±0.08 a 38.43±0.52 a 9.93±0.37 a 10.73±0.39 c
K270 68475.90±730.50 a 16.53±0.18 b 39.10±0.27 a 8.98±0.19 b 15.30±0.11 b
K360 67167.40±688.93 ab 15.90±0.27 c 39.65±0.40 a 5.78±0.28 c 16.20±0.37 a
2015 K0 65182.51±875.45 d 16.02±0.15 b 39.18±0.30 b 6.70±0.31 c 14.95±0.30 b
K90 70363.43±582.09 c 16.96±0.10 a 39.30±0.44 b 7.30±0.09 abc 15.20±0.15 b
K180 74490.63±641.28 b 16.83±0.21 a 39.38±0.50 a 7.80±0.36 a 15.48±0.49 b
K270 77698.13±1005.27 a 15.95±0.07 b 40.25±0.23 a 7.53±0.26 ab 17.53±0.25 a
K360 75395.81±894.22 b 15.65±0.08 b 42.85±0.37 a 6.83±0.24 bc 18.13±0.34 a

表6

部分指标与甜菜产质量的相关系数"

指标
Index
产量
Yield
含糖率
Sugar content
K+含量
K+ content
Na+含量
Na+ content
α-氨基酸含量
α-amino acid
株高 Plant height 0.859 0.173 0.336 0.512 0.433
叶面积指数Leaf area index 0.695 -0.638 0.987** -0.174 0.892*
净光合速率Pn 0.995** -0.164 0.740 0.338 0.737
块根干重 Root dry weigh 0.957* 0.101 0.559 0.562 0.545
叶柄干重 Shoot dry weigh 0.955* -0.423 0.917* 0.097 0.900*
叶片干重 Leaf dry weigh 0.955* -0.432 0.915* 0.084 0.907*
块根干物质分配比例 Distribution ratio of root dry matter -0.214 0.921* -0.774 0.710 -0.764
叶柄干物质分配比例 Distribution ratio of shoot dry matter -0.209 -0.840 0.444 -0.851 0.448
叶片干物质分配比例 Distribution ratio of leaf dry matter 0.522 -0.866 0.936* -0.507 0.917*

图4

施钾量对甜菜产糖量的影响 误差线上不同小写字母表示在0.05水平差异显著。"

[1] 屈冬玉, 谢开云, 金黎平, 庞万福, 卞春松, 段绍光 . 中国马铃薯产业发展与食物安全. 中国农业科学, 2005,38:358-362
Qu D Y, Xie K Y, Jin L P, Pang W F, Bian C S, Duan S G . Development of potato industry and food security in China. Sci Agric Sin, 2005,38:358-362 (in Chinese with English abstract)
[2] 李智, 李国龙, 张永丰, 于超, 苏文斌, 樊福义, 张少英 . 膜下滴灌条件下高产甜菜灌溉的生理指标. 作物学报, 2017,43:1724-1730
Li Z, Li G L, Zhang Y F, Yu C, Su W B, Fan F Y, Zhang S Y . Physiological indices of high-yielding sugar beet under drip irrigation and plastic mulching. Acta Agron Sin, 2017,43:1724-1730 (in Chinese with English abstract)
[3] 苏文斌, 黄春燕, 樊福义, 郭晓霞, 宫前恒, 任霄云 . 甜菜膜下滴灌高产优质农艺栽培措施的研究. 中国糖料, 2016,38(1):15-18
doi: 10.13570/j.cnki.scc.2016.01.006
Su W B, Huang C Y, Fan F Y, Guo X X, Gong Q H, Ren X Y . Studies on cultivation of high yield and quality of sugar beet with drip irrigation under plastic film. Sugar Crops China, 2016,38(1):15-18 (in Chinese with English abstract)
doi: 10.13570/j.cnki.scc.2016.01.006
[4] 邵金旺, 蔡葆, 张家骅 . 甜菜生理学. 北京: 农业出版社, 1991. pp 162-194
Shao J W, Cai B, Zhang J H . Sugar Beet Physiology. Beijing: Agriculture Press, 1991. pp 162-194(in Chinese)
[5] 曲扬 . 钾对甜菜主要营养的影响. 中国甜菜糖业, 2006, ( 2):5-12
doi: 10.3969/j.issn.1002-0551.2006.02.002
Qu Y . Affection of potassium to sugar beet main nutrition. China Beet Sugar, 2006, ( 2):5-12 (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-0551.2006.02.002
[6] 黄春燕, 张少英, 苏文斌, 樊福义, 郭晓霞, 任霄云, 宫前恒 . 施钾量对高产甜菜光合特性、干物质积累和产量的影响. 东北师大学报(自然科学版), 2016,48(3):120-125
Huang C Y, Zhang S Y, Su W B, Fan F Y, Guo X X, Ren X Y, Gong Q H . Effects of potassium fertilizer on main physiological characteristics, dry matter accumulation and yield of high yield sugar beet. J Northeast Norm Univ(Nat Sci Edn), 2016,48(3):120-125 (in Chinese with English abstract)
[7] Hassanli A M, Ahmadirad S, Beecham S . Evaluation of the influence of irrigation methods and water quality on sugar beet yield and water use efficiency. Agric Water Manage, 2010,97:357-362
doi: 10.1016/j.agwat.2009.10.010
[8] Kiymaz S, Ertek A . Water use and yield of sugar beet (Beta vulgaris L.) under drip irrigation at different water regimes. Agric Water Manage, 2015,158:225-234
[9] 李智, 李国龙, 刘蒙, 张永丰, 尹成怀, 张少英 . 膜下滴灌条件下甜菜水分代谢特点的研究. 节水灌溉, 2015, ( 9):52-56
Li Z, Li G L, Liu M, Zhang Y F, Yin C H, Zhang S Y . Study on water metabolism characteristics of sugar beet under plastic mulching drip irrigation. Water Saving Irrig, 2015, ( 9):52-56 (in Chinese with English abstract)
[10] 张蜀秋 . 植物生理学实验技术教程. 北京: 科学出版社, 2011. pp 93-95
Zhang S Q. Experimental Techniques Course of Plant Physiology. Beijing: Science Press, 2011. pp 93-95(in Chinese)
[11] 李建明, 潘铜华, 王玲慧, 杜清洁, 常毅博, 张大龙, 刘媛 . 水肥耦合对番茄光合、产量及水分利用效率的影响. 农业工程学报, 2014,30(10):82-90
doi: 10.3969/j.issn.1002-6819.2014.10.010
Li J M, Pan T H, Wang L H, Du Q J, Chang Y B, Zhang D L, Liu Y . Effects of water-fertilizer coupling on tomato photosynthesis, yield and water use efficiency. Trans CSAE, 2014,30(10):82-90 (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-6819.2014.10.010
[12] 王瑞霞, 闫长生, 张秀英, 孙果忠, 钱兆国, 亓晓蕾, 牟秋焕, 肖世和 . 春季低温对小麦产量和光合特性的影响. 作物学报, 2018,44:288-296
Wang R X, Yan C S, Zhang X Y, Sun G Z, Qian Z G, Qi X L, Mou Q H, Xiao S H . Effect of low temperature in spring on yield and photosynthetic characteristics of wheat. Acta Agron Sin, 2018,44:288-296 (in Chinese with English abstract)
[13] Han Q . Height-related decreases in mesophyll conductance, leaf photosynthesis and compensating adjustments associated with leaf nitrogen concentrations in Pinus densiflora. Tree Physiol, 2011,31:976-984
[14] Lebaudy A, Vavasseur A, Hosy E, Dreyer I, Leonhardt N, Thibaud J B, Very A A, Simonneau T, Sentenac H . Plant adaptation to fluctuating environment and biomass production are strongly dependent on guard cell potassium channels. Proc Natl Acad Sci USA, 2008,105:5271-5276
doi: 10.1073/pnas.0709732105
[15] 汪顺义, 李欢, 刘庆, 史衍玺 . 施钾对甘薯根系生长和产量的影响及其生理机制. 作物学报, 2017,43:1057-1066
doi: 10.3724/SP.J.1006.2017.01057
Wang S Y, Li H, Liu Q, Shi Y X . Effect of potassium application on root grow and yield of sweet potato and its physiological mechanism. Acta Agron Sin, 2017,43:1057-1066 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.01057
[16] 陈凤真 . 钾对黄瓜根系保护酶和光合特性的影响. 西北农林科技大学学报(自然科学版), 2015,43(7):127-132
Chen F Z . Effects of potassium on activities of root protective enzymes and photosynthetic characteristics of cucumber (Cucumis sativus L.). J Northwest A&F Univ (Nat Sci Edn), 2015,43(7):127-132 (in Chinese with English abstract)
[17] 柳洪鹃, 史春余, 柴沙沙, 王翠娟, 任国博, 江燕, 司成成 . 不同时期施钾对甘薯光合产物运转动力的调控. 植物营养与肥料学报, 2015,21:171-180
Liu H J, Shi C Y, Chai S S, Wang C J, Ren G B, Jiang Y, Si C C . Effect of different potassium application time on the vigor of photosynthate transportations of edible sweet potato (Ipomoea batata L.). Plant Nutr Fert Sci, 2015,21:171-180 (in Chinese with English abstract)
[18] Epstein E, Bloom A J . Mineral Nutrition of Plants: Principles and Perspective. Sunderland, US: Sinauer Associates, 2005. pp 33-38
[19] 赵平, 林克惠 . 钾肥对农作物品质的影响. 云南农业大学学报, 2011,16(1):56-59
Zhao P, Lin K H . Effect of potassium fertilizer on quality of crops. J Yunnan Agric Univ, 2011,16(1):56-59 (in Chinese with English abstract)
[20] 丁伟, 曲文章 . 不同施钾水平与甜菜产质量关系的研究. 中国糖料, 2002, ( 3):17-18
doi: 10.3969/j.issn.1007-2624.2002.03.005
Ding W, Qu W Z . Relationship between potassium level applied and sugar beet yield and quality. Sugar Crops China, 2002, ( 3):17-18 (in Chinese with English abstract)
doi: 10.3969/j.issn.1007-2624.2002.03.005
[21] 曲扬, 丁伟, 曲文章 . 钾对甜菜干物质积累分配及产量的影响. 中国甜菜糖业, 2008, ( 3):4-8
Qu Y, Ding W, Qu W Z . Affection of potassium to sugar beet dry material accumulation and distribution and yield. China Beet Sugar, 2008, ( 3):4-8 (in Chinese with English abstract)
[22] Muhammad U M, Muhammad Z, Sagheer A, Abdul W . Sugar beet yield and industrial sugar contents improved by potassium fertilization under scarce and adequate moisture conditions. J Integr Agric, 2016,15:2620-2626
doi: 10.1016/S2095-3119(15)61252-7
[23] 张文元, 牛德奎, 郭晓敏, 李小梅, 胡冬南 . 施钾水平对油茶养分积累和产油量的影响. 植物营养与肥料学报, 2016,22:863-868
doi: 10.11674/zwyf.14439
Zhang W Y, Niu D K, Guo X M, Li X M, Hu D N . Effect of different levels of potassium fertilization on nutrient accumulation and oil yield of Camellia oleifera Abel. Plant Nutr Fert Sci, 2016,22:863-868 (in Chinese with English abstract)
doi: 10.11674/zwyf.14439
[24] 郭明明, 赵广才, 郭文善, 常旭虹, 王德梅, 杨玉双, 王美, 元振, 王雨, 代丹丹, 魏星, 李银银, 刘孝成 . 追氮时期和施钾量对小麦氮素吸收运转的调控. 植物营养与肥料学报, 2016,22:590-597
Guo M M, Zhao G C, Guo W S, Chang X H, Wang D M, Yang Y S, Wang M, Yuan Z, Wang Y, Dai D D, Wei X, Li Y Y, Liu X C . Regulation of nitrogen topdressing stage and potassium fertilizer rate on absorption and translocation of nitrogen by wheat. Plant Nutr Fert Sci, 2016,22:590-597 (in Chinese with English abstract)
[1] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[2] 张加康, 李斐, 史树德, 杨海波. 内蒙古地区甜菜临界氮浓度稀释模型的构建及应用[J]. 作物学报, 2022, 48(2): 488-496.
[3] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[4] 李静, 王洪章, 刘鹏, 张吉旺, 赵斌, 任佰朝. 夏玉米不同栽培模式花后叶片光合性能的差异[J]. 作物学报, 2021, 47(7): 1351-1359.
[5] 王一帆, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 间作小麦光合性能对地上地下互作强度的响应[J]. 作物学报, 2021, 47(5): 929-941.
[6] 姜仲禹, 唐丽雪, 柳洪鹃, 史春余. 不同施钾量条件下甘薯块根形成的内源激素变化及其与块根数量的关系[J]. 作物学报, 2020, 46(11): 1750-1759.
[7] 严青青,张巨松,代健敏,窦巧巧. 甜菜碱对盐碱胁迫下海岛棉幼苗光合作用及生物量积累的影响[J]. 作物学报, 2019, 45(7): 1128-1135.
[8] 胡旦旦,张吉旺,刘鹏,赵斌,董树亭. 密植条件下玉米品种混播对夏玉米光合性能及产量的影响[J]. 作物学报, 2018, 44(6): 920-930.
[9] 白伟,张立祯,逄焕成,孙占祥,牛世伟,蔡倩,安景文. 秸秆还田配施氮肥对东北春玉米光合性能和产量的影响[J]. 作物学报, 2017, 43(12): 1845-1855.
[10] 李智,李国龙,张永丰,于超,苏文斌,樊福义,张少英. 膜下滴灌条件下高产甜菜灌溉的生理指标[J]. 作物学报, 2017, 43(11): 1724-1730.
[11] 郑宾,赵伟,徐铮,高大鹏,姜媛媛,刘鹏,李增嘉,李耕,宁堂原. 不同耕作方式与氮肥类型对夏玉米光合性能的影响[J]. 作物学报, 2017, 43(06): 925-934.
[12] 李阳阳,费聪,崔静,王开勇,马富裕,樊华. 滴灌甜菜对块根膨大期水分亏缺的补偿性响应[J]. 作物学报, 2016, 42(11): 1727-1732.
[13] 喻时周,杨成龙,郭建春,段瑞军. 海马齿甜菜碱醛脱氢酶基因克隆、高效表达及酶学特性分析[J]. 作物学报, 2016, 42(10): 1569-1574.
[14] 王茂芊,李博,王华忠. 甜菜遗传连锁图谱初步构建[J]. 作物学报, 2014, 40(02): 222-230.
[15] 李伟,申家恒,郭德栋. 栽培甜菜中央细胞受精前后的超微结构[J]. 作物学报, 2014, 40(01): 166-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!