欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (10): 1485-1495.doi: 10.3724/SP.J.1006.2018.01485

• 耕作栽培·生理生化 • 上一篇    下一篇

减量施氮对玉米-大豆套作系统土壤氮素氨化、硝化及固氮作用的影响

雍太文1,陈平1,刘小明1,2,周丽1,3,宋春4,王小春1,杨峰1,刘卫国1,杨文钰1,*()   

  1. 1四川农业大学农学院 / 农业部西南作物生理生态与耕作重点实验室 / 四川省作物带状复合种植工程技术研究中心, 四川成都 611130
    2射洪县农业局, 四川遂宁 629200
    3宜宾市农业科学院, 四川宜宾 644000
    4四川农业大学环境学院, 四川成都 611130
  • 收稿日期:2017-12-15 接受日期:2018-07-20 出版日期:2018-10-10 网络出版日期:2018-07-30
  • 通讯作者: 杨文钰
  • 基金资助:
    本研究由国家重大研发计划项目(2016YFD0300202);国家自然科学基金项目(31271669);国家自然科学基金项目(31671625)

Effects of Reduced Nitrogen on Soil Ammonification, Nitrification, and Nitrogen Fixation in Maize-soybean Relay Intercropping Systems

Tai-Wen YONG1,Ping CHEN1,Xiao-Ming LIU1,2,Li ZHOU1,3,Chun SONG4,Xiao-Chun WANG1,Feng YANG1,Wei-Guo LIU1,Wen-Yu YANG1,*()   

  1. 1 College of Agronomy, Sichuan Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture/ Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu 611130, Sichuan, China
    2 Shehong Bureau of Agriculture, Suining 629200, Sichuan, China
    3 Yibin Academy of Agricultural Sciences, Yibin 644000, Sichuan, China
    4 College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
  • Received:2017-12-15 Accepted:2018-07-20 Published:2018-10-10 Published online:2018-07-30
  • Contact: Wen-Yu YANG
  • Supported by:
    The study was supported by the National Key Research and Development Program of China(2016YFD0300202);the National Natural Science Foundation of China(31271669);the National Natural Science Foundation of China(31671625)

摘要:

土壤氮素氨化、硝化及固氮作用是影响作物氮素吸收及氮肥损失的主要因素, 为揭示氮肥减量下玉米-大豆套作系统的土壤氮素转化特性及排放规律, 利用大田定位试验研究了3种模式(玉米单作MM、大豆单作MS、玉米-大豆套作IMS)和3种施氮水平(不施氮NN: 0; 减量施氮RN: 180 kg hm -2; 常量施氮CN: 240 kg hm -2)对土壤硝化作用、氨化作用、固氮作用及氨挥发、N2O排放、NO3 --N累积的影响。结果表明, IMS较相应单作提高了土壤硝化和氨化作用, IMS的氨挥发损失率和N2O损失率较MM降低21.6%和29.7%; IMS下玉米土壤的NO3 --N积累量显著高于MM, 而大豆土壤的NO3 --N积累量显著低于MS。各施氮处理间, RN较CN降低了玉米土壤的氨化与硝化作用, 增加了大豆土壤的硝化和固氮作用。IMS下RN的玉米、大豆全生育期固氮作用较CN增加29.7%和32.0%, 年均氨挥发总量和N2O排放量较CN降低37.2%和41.0%。玉米-大豆套作系统在减量施氮下通过提高土壤氮素氨化、硝化与固氮作用, 减少氮素排放损失, 增强耕层土壤NO3 --N积累, 为作物氮素吸收提供了充足氮源。

关键词: 玉米-大豆套作, 减氮, 土壤氮素循环, 氮排放, 氮残留

Abstract:

The ammonification, nitrification, and nitrogen fixation processes of soil are the main factors affecting nitrogen acquisition by plants and nitrogen loss in soil. A field experiment was conducted to reveal the characteristics of soil nitrogen transformation and emission with reduced nitrogen application in the maize-soybean relay intercropping. The effects of three planting patterns (MM: maize monoculture; MS: soybean monoculture; IMS: maize-soybean relay strip intercropping) and three nitrogen application rates (no nitrogen, NN: 0; reduced nitrogen, RN: reduced N 180 kg ha -1; conventional nitrogen, CN: conventional N 240 kg ha -1) on ammonification, nitrification, nitrogen fixation, N emission, and NO3 --N accumulation were assessed. The IMS enhanced soil nitrification and ammonification enhanced in IMS compared with the corresponding monocultures. The ammonia volatilization and N2O loss ratio were decreased by 21.6% and 29.7% in IMS compared with those in MM, respectively. Additionally, compared with the corresponding monocultures, IMS had significantly higher soil NO3 --N accumulation of maize, while that of soybean significantly lower. Under different N levels, the soil ammonification and nitrification of maize were decreased in RN compared with those in CN, and the soil nitrification and nitrogen fixation of soybean were increased in RN compared with those in CN. The total nitrogen fixation of maize and soybean in IMS was increased by 29.7% and 32.0% in RN compared with those in CN, respectively. In addition, the annual soil ammonia volatilization and N2O emission of IMS were decreased by 37.2% and 41.0% in RN compared with those in CN, respectively. In summary, the maize-soybean relay intercropping with reduced nitrogen can provide sufficient nitrogen for crops by strengthening soil ammonification, nitrification, nitrogen fixation, and increasing soil nitrogen residual and decreasing nitrogen emissions.

Key words: maize-soybean relay intercropping, reduced nitrogen, nitrogen cycle, nitrogen emission, residual nitrogen

表1

不同种植方式下的氮肥施用量"

种植模式
Planting patterns
施氮处理
N application
施氮总量
Total N application rate
底肥
Base fertilizer
追肥
Top fertilizer
玉米单作
MM
减量施氮RN 135 72 63
常量施氮CN 180 72 108
大豆单作
MS
减量施氮RN 45 45 0
常量施氮CN 60 60 0
玉米-大豆套作
IMS
减量施氮RN 180 72 108
常量施氮CN 240 72 168

图1

作物种植模式及土壤取样布局示意图 A为玉米-大豆套作; B为玉米单作; C为大豆单作。"

图2

不同种植与施氮方式下土壤硝化作用强度(仁寿大田, 2013) A: 玉米土壤。MMNN: 单作玉米不施氮; MMRN: 单作玉米减量施氮; MMCN: 单作玉米常规施氮; IMNN: 套作玉米不施氮; IMRN: 套作玉米减量施氮; IMCN: 套作玉米常规施氮。B: 大豆土壤。MSNN: 单作大豆不施氮; MSRN: 单作大豆减量施氮; MSCN: 单作大豆常规施氮; ISNN: 套作大豆不施氮; ISRN: 套作大豆减量施氮; ISCN: 套作大豆常规施氮。 横坐标轴为生育时期, 玉米生育时期分别为拔节期(V6)、大喇叭口期(V12)、抽雄吐丝期(VT)和成熟期(R6), 大豆生育时期分别为五节期(V5)、盛花期(R2)、结荚期(R4)、鼓粒期(R6)和成熟期(R8)。同一生育时期下, 相同种植模式不同氮水平间字母不同表明差异显著(LSD, P < 0.05)。"

图3

不同种植与施氮方式下土壤氨化作用强度(仁寿大田, 2013) A: 玉米土壤; B: 大豆土壤。缩写同图2。缩写同图2。同一生育时期下, 相同种植模式不同氮水平间字母不同表明差异显著(LSD, P < 0.05)。"

图4

不同种植与施氮方式下土壤固氮作用强度(仁寿大田, 2013) A: 玉米土壤; B: 大豆土壤。缩写同图2。同一生育时期下, 相同种植模式不同氮水平间字母不同表明差异显著(LSD, P < 0.05)。"

图5

不同种植模式下不同施氮量的氨挥发累积量(仁寿大田, 2013) MM: 玉米单作; MS: 大豆单作; IMS: 玉米-大豆套作。NN: 不施氮; RN: 减量施氮; CN: 常规施氮。同一种植模式下不同字母标记表明不同氮水平处理间差异显著(LSD, P < 0.05)。"

图6

不同种植模式下不同施氮量的氨挥发损失率(仁寿大田, 2013) MM: 玉米单作; MS: 大豆单作; IMS: 玉米-大豆套作。RN: 减量施氮; CN: 常规施氮。同一种植模式下不同字母标记表明不同氮水平处理间差异显著(LSD, P < 0.05)。"

图7

不同种植模式和施氮量下土壤N2O排放特征(仁寿大田, 2013) A: N2O排放量; B: N2O损失率。MM: 玉米单作; MS: 大豆单作; IMS: 玉米-大豆套作。NN: 不施氮; RN: 减量施氮; CN: 常规施氮。同一种植模式下不同字母标记表明不同氮水平处理间差异显著(LSD, P < 0.05)。"

图8

不同种植方式下的玉米土壤NO3--N累积量(雅安池栽) MMNN: 单作玉米不施氮; MMRN: 单作玉米减量施氮; IMNN: 套作玉米不施氮; IMRN: 套作玉米减量施氮。同一取样区间下, 相同种植模式不同氮水平间字母不同表明差异显著(LSD, P < 0.05)。"

图9

不同种植方式下的大豆土壤NO3--N累积量(雅安池栽) MSNN: 单作大豆不施氮; MSRN: 单作大豆减量施氮; ISNN: 套作大豆不施氮; ISRN: 套作大豆减量施氮。同一取样区间下, 相同种植模式不同氮水平间字母不同表明差异显著(LSD, P < 0.05)。"

[1] Han D, Currell M J, Cao G . Deep challenges for China’s war on water pollution. Environ Pollut, 2016,218:1222-1233
doi: 10.1016/j.envpol.2016.08.078 pmid: 27613318
[2] Zuo Y M, Zhang Z J, Liu C H, Zhang W N . Achieving food security and high production of bioenergy crops through intercropping with efficient resource use in China. Front Agric Sci Eng, 2015,2:134-143
doi: 10.15302/J-FASE-2015069
[3] 周丽, 付智丹, 杜青, 陈平, 杨文钰, 雍太文 . 减量施氮对玉米/大豆套作系统中作物氮素吸收及土壤氨氧化与反硝化细菌多样性的影响. 中国农业科学, 2017,50:1076-1087
Zhou L, Fu Z D, Du Q, Chen P, Yang W Y, Yong T W . Effects of reduced N fertilization on crop N uptake, soil ammonia oxidation and denitrification bacteria diversity in maize/soybean relay strip intercropping system. Sci Agric Sin, 2017,50:1076-1087 (in Chinese with English abstract)
[4] Luo S S, Yu L L, Liu Y, Zhang Y, Yang W T, Li Z X, Wang J W . Effects of reduced nitrogen input on productivity and N2O emissions in a sugarcane/soybean intercropping system. Eur J Agron, 2016,81:78-85
doi: 10.1016/j.eja.2016.09.002
[5] Manevski K, Børgesen C D, Andersen M N, Kristensen I S . Reduced nitrogen leaching by intercropping maize with red fescue on sandy soils in North Europe: a combined field and modeling study. Plant Soil, 2014,388:67-85
[6] Qiao X, Bei S K, Li C J, Dong Y, Li H G, Christie P, Zhang F S, Zhang J L . Enhancement of faba bean competitive ability by arbuscular mycorrhizal fungi is highly correlated with dynamic nutrient acquisition by competing wheat. Sci Rep, 2015,5:8122
doi: 10.1038/srep08122
[7] Yang J Y, Drury C F, Yang X M, De Jong R, Huffman E C, Campbell C A, Kirkwood V . Estimating biological N2 fixation in Canadian agricultural land using legume yields. Agric Ecosyst Environ, 2010,137:192-201
doi: 10.1016/j.agee.2010.02.004
[8] 章莹, 王建武, 王蕾, 杨文亭, 吴鹏, 刘宇, 唐艺玲 . 减量施氮与大豆间作对蔗田土壤温室气体排放的影响. 中国生态农业学报, 2013,21:1318-1327
Zhang Y, Wang J W, Wang L, Yang W T, Wu P, Liu Y, Tang Y L . Effect of low nitrogen application and soybean intercrop on soil greenhouse gas emission of sugarcane field. Chin J Eco-agric, 2013,21:1318-1327 (in Chinese with English abstract)
[9] Min J, Shi W M, Xing G X, Zhang H L, Zhu Z L . Effects of a catch crop and reduced nitrogen fertilization on nitrogen leaching in greenhouse vegetable production systems. Nutr Cycl Agroecosyst, 2011,91:31-39
doi: 10.1007/s10705-011-9441-5
[10] Chen P, Du Q, Liu X M, Zhou L, Hussain S, Lei L, Song C, Wang X C, Liu W G, Yang F, Shu K, Liu J, Du J B, Yang W Y, Yong T W . Effects of reduced nitrogen inputs on crop yield and nitrogen use efficiency in a long-term maize-soybean relay strip intercropping system. PLoS One, 2017,12:e0184503
doi: 10.1371/journal.pone.0184503
[11] Wu B Z, Fullen M A, Li J B, An T X, Fan Z W, Zhou F, Zi S H, Yang Y Q, Xue G F, Liu Z, Wu K X . Integrated response of intercropped maize and potatoes to heterogeneous nutrients and crop neighbours. Plant Soil, 2013,374:185-196
[12] Yong T W, Chen P, Dong Q, Du Q, Yang F, Wang X C, Liu W G, Yang W Y . Optimized nitrogen application methods to improve nitrogen use efficiency and nodule nitrogen fixation in a maize-soybean relay intercropping system. J Integr Agric, 2018,17:60345-60347
[13] 王竹, 杨文钰 . 玉米株型和幅宽对套作大豆碳氮代谢及产量的影响. 中国油料作物学报, 2014,36:206-212
doi: 10.7505/j.issn.1007-9084.2014.02.010
Wang Z, Yang W Y . Effects of plant-types of maize and planting width on carbon-nitrogen metabolism and yield of relay-cropping soybean. Chin J Oil Crop Sci, 2014,36:206-212 (in Chinese with English abstract)
doi: 10.7505/j.issn.1007-9084.2014.02.010
[14] 雍太文, 刘小明, 肖秀喜, 刘文钰, 徐婷, 杨洋, 杨文钰 . 不同种子处理对苗期干旱胁迫条件下大豆农艺性状、产量及品质的影响. 大豆科学, 2013,32:620-624
Yong T W, Liu X M, Xiao X X, Liu W Y, Xu T, Yang Y, Yang W Y . Effects of different seed treatments on agronomic properties, yield and quality of soybean under drought stress at seedling stage. Soybean Sci, 2013,32:620-624 (in Chinese with English abstract)
[15] 闫艳红, 杨文钰, 李兴佐, 邓卫民 . 不同品种及播期对丘区套作大豆产量的影响. 大豆科学, 2007,26:544-549
Yan Y H, Yang W Y, Li X Z, Deng W M . Effect of different varieties and sowing dates on the yield of relay-cropping soybean in the mound district. Soybean Sci, 2007,26:544-549 (in Chinese with English abstract)
[16] 于晓波, 张明荣, 吴海英, 杨文钰 . 净套作下不同耐荫性大豆品种农艺性状及产量分布的研究. 大豆科学, 2012,31:757-761
Yu X B, Zhang M R, Wu H Y, Yang W Y . Agronomic characters and yield distribution of different shade tolerance soybean under monoculture and relay strip intercropping systems. Soybean Sci, 2012,31:757-761 (in Chinese with English abstract)
[17] 刘小明, 雍太文, 苏本营, 刘文钰, 周丽, 宋春, 杨峰, 王小春, 杨文钰 . 减量施氮对玉米-大豆套作系统中作物产量的影响. 作物学报, 2014,40:1629-1638
doi: 10.3724/SP.J.1006.2014.01629
Liu X M, Yong T W, Su B Y, Liu W Y, Zhou L, Song C, Yang F, Wang X C, Yang W Y . Effect of reduced N application on crop yield in maize-soybean intercropping system. Acta Agron Sin, 2014,40:1629-1638 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.01629
[18] 雍太文, 刘小明, 刘文钰, 周丽, 宋春, 杨峰, 蒋莉, 王小春, 杨文钰 . 减量施氮对玉米-大豆套作系统下作物氮素吸收和利用效率的影响. 生态学报, 2015,35:4474-4482
Yong T W, Liu X M, Liu W Y, Zhou L, Song C, Yang F, Jiang L, Wang X C, Yang W Y . Effects of reduced nitrogen application on nitrogen uptake and utilization efficiency in maize-soybean relay strip intercropping system. Acta Ecol Sin, 2015,35:4474-4482 (in Chinese with English abstract)
[19] 刘文钰, 雍太文, 刘小明, 陈鹏, 董茜, 徐婷, 杨文钰 . 减量施氮对玉米-大豆套作体系中大豆根瘤固氮及氮素吸收利用的影响. 大豆科学, 2014,33:705-712
Liu W Y, Yong T W, Liu X M, Chen P, Dong Q, Xu T, Yang W Y . Effect of reduced N application on nodule N fixation, N uptake and utilization of soybean in maize-soybean relay strip intercropping system. Soybean Sci, 2014,33:705-712 (in Chinese with English abstract)
[20] Fehr W R, Caviness C E, Burmood D T, Pennington J S . Stage of development descriptions for soybeans, Glycine max (L.) Merrill. Crop Sci, 1971,11:929-931
[21] 刘小明, 雍太文, 刘文钰, 苏本营, 宋春, 杨峰, 王小春, 杨文钰 . 减量施氮对玉米-大豆套作体系土壤氮素残留和氮肥损失的影响. 应用生态学报, 2014,25:2267-2274
Liu X M, Yong T W, Liu W Y, Su B Y, Song C, Yang F, Wang X C, Yang W Y . Effect of reduced N application on soil N residue and N loss in maize-soybean relay strip intercropping system. Chin J Apply Ecol, 2014,25:2267-2274 (in Chinese with English abstract)
[22] 赵伟, 王宏燕, 王大庆, 王立民, 韩晓盈, 于佳 . 农肥和化肥对东北黑土土壤氮素转化作用的研究. 水土保持学报, 2009,23(2):99-102
Zhao W, Wang H Y, Wang D Q, Wang L M, Han X Y, Yu J . Effects of manure and chemical fertilizers application on nitrogen transfer in black soil. J Soil Water Conserv, 2009,23(2):99-102 (in Chinese with English abstract)
[23] Chu H, Fujii T, Morimoto S, Lin X, Yagi K, Hu J, Zhang J . Community structure of ammonia-oxidizing bacteria under long-term application of mineral fertilizer and organic manure in a sandy loam soil. Appl Environ Microbiol, 2007,73:485-491
doi: 10.1128/AEM.01536-06
[24] 蔡艳, 郝明德, 臧逸飞, 何晓雁 . 长期施肥对黑垆土氨化细菌数量和氨化作用强度的影响. 麦类作物学报, 2016,36:1517-1522
doi: 10.7606/j.issn.1009-1041.2016.11.15
Cai Y, Hao M D, Zang Y F, He X Y . Effect of long-term fertilization on the amount of ammonifier and ammonification intensity in the dark loessial soil. J Triticeae Crops, 2016,36:1517-1522 (in Chinese with English abstract)
doi: 10.7606/j.issn.1009-1041.2016.11.15
[25] 王朝辉, 刘学军, 巨晓棠, 张福锁 . 田间土壤氨挥发的原位测定—通气法. 植物营养与肥料学报, 2002,8:205-209
Wang Z H, Liu X J, Ju X T, Zhang F S . Field in situ determination of ammonia volatilization from soil: venting method. Plant Nutr Fert Sci, 2002,8:205-209 (in Chinese with English abstract)
[26] Luo Y Q, Zhou X H. Soil Respiration and the Environment, CHAPTER 8: Methods of Measurements and Estimations. Burlington: Academic Press, 2006. pp 161-185
[27] Hayatsu M, Kosuge N . Effects of difference in fertilization treatments on nitrification activity in tea soils. Soil Sci Plant Nutr, 1993,39:373-378
doi: 10.1080/00380768.1993.10417010
[28] 徐永刚, 宇万太, 马强, 周桦 . 不同施肥制度下潮棕壤氮素功能群活性的研究. 水土保持学报, 2010,24(3):160-163
Xu Y G, Yu W T, Ma Q, Zhou H . Effect of different fertilizations on activity of nitrogen functional group in aquic brown soil. J Soil Water Conserv, 2010,24(3):160-163 (in Chinese with English abstract)
[29] 陶瑞, 唐诚, 李锐, 谭亮, 褚贵新 . 有机肥部分替代化肥对滴灌棉田氮素转化及不同形态氮含量的影响. 中国土壤与肥料, 2015, ( 1):50-56
Tao R, Tang C, Li R, Tan L, Chu G X . Effects of using organic fertilizer as partial substitution for chemical fertilizer on soil nitrogen transformation and amount of different nitrogen forms in drip irrigation. Soils Fert Sci China, 2015, ( 1):50-56 (in Chinese with English abstract)
[30] 邹国元, 张福锁, 李新慧 . 夏玉米生长期土壤氮素的硝化-反硝化作用研究. 干旱地区农业研究, 2002,20(1):30-34
Zou G Y, Zhang F S, Li X H . Study on nitrification-denitrification of soil nitrogen in summer maize season. Agric Res Arid Areas, 2002,20(1):30-34 (in Chinese with English abstract)
[31] 叶优良, 李隆, 索东让 . 小麦/玉米和蚕豆/玉米间作对土壤硝态氮累积和氮素利用效率的影响. 生态环境学报, 2008,17:377-383
doi: 10.3969/j.issn.1674-5906.2008.01.071
Ye Y L, Li L, Suo D R . Effect of wheat/maize and faba bean/maize intercropping on soil nitrate nitrogen concentration and accumulation. Ecol Environ Sci, 2008,17:377-383 (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-5906.2008.01.071
[32] 雍太文, 杨文钰, 任万军, 樊高琼, 向达兵 . 两种三熟套作体系中的氮素转移及吸收利用. 中国农学科学, 2009,42:3170-3178
Yong T W, Yang W Y, Ren W J, Fan G Q, Xiang D B . Analysis of the nitrogen transfer, nitrogen uptake and utilization in the two relay-planting systems. Sci Agric Sin, 2009,42:3170-3178 (in Chinese with English abstract)
[33] 涂勇, 杨文钰, 刘卫国, 雍太文, 江连强, 王小春 . 大豆与烤烟不同套作年限对根际土壤微生物数量的影响. 作物学报, 2015,41:733-742
Tu Y, Yang W Y, Liu W G, Yong T W, Jiang L Q, Wang X C . Effects of relay strip intercropping years between flue-cured tobacco and soybean on rhizospheric microbes quantities. Acta Agron Sin, 2015,41:733-742 (in Chinese with English abstract)
[34] Kramer S B, Reganold J P, Glover J D, Bohannan B J, Mooney H A . Reduced nitrate leaching and enhanced denitrifier activity and efficiency in organically fertilized soils. Proc Natl Acad Sci USA, 2006,103:4522-4527
doi: 10.1073/pnas.0600359103
[35] Zhang Y J, Lin F, Jin Y G, Wang X F, Liu S W, Zou J W . Response of nitric and nitrous oxide fluxes to N fertilizer application in greenhouse vegetable cropping systems in southeast China. Sci Rep, 2016,6:20700
doi: 10.1038/srep20700
[36] Ashworth A J, Taylor A M, Reed D L, Allen F L, Keyser P D, Tyler D D . Environmental impact assessment of regional switchgrass feedstock production comparing nitrogen input scenarios and legume-intercropping systems. J Clean Prod, 2015,87:227-234
doi: 10.1016/j.jclepro.2014.10.002
[1] 张军, 周冬冬, 许轲, 李必忠, 刘忠红, 周年兵, 方书亮, 张永进, 汤洁, 安礼政. 淮北地区麦茬机插优质食味粳稻氮肥减量的精确运筹[J]. 作物学报, 2022, 48(2): 410-422.
[2] 程艳双, 胡美艳, 杜志敏, 闫秉春, 李丽, 王祎玮, 鞠晓堂, 孙丽丽, 徐海. 减氮对辽粳5号/秋田小町RIL群体茎秆维管束、穗部和产量
性状的影响及其相互关系
[J]. 作物学报, 2021, 47(5): 964-973.
[3] 李敏, 罗德强, 江学海, 蒋明金, 姬广梅, 李立江, 周维佳. 控水增密模式对杂交籼稻减氮后产量形成的调控效应[J]. 作物学报, 2020, 46(9): 1430-1447.
[4] 雒文鹤, 师祖姣, 王旭敏, 李军, 王瑞. 节水减氮对土壤硝态氮分布和冬小麦水氮利用效率的影响[J]. 作物学报, 2020, 46(6): 924-936.
[5] 姜丽娜,马静丽,方保停,马建辉,李春喜,王志敏,蒿宝珍. 限水减氮对豫北冬小麦产量和植株不同层次器官干物质运转的影响[J]. 作物学报, 2019, 45(6): 957-966.
[6] 于显枫,张绪成,方彦杰,陈光荣,王红丽,侯慧芝,马一凡,赵记军. 减氮追施和增密对全膜覆盖垄上微沟马铃薯水分利用及生长的影响[J]. 作物学报, 2019, 45(5): 764-776.
[7] 唐会会,许艳丽,王庆燕,马正波,李光彦,董会,董志强. 聚天门冬氨酸螯合氮肥减量基施对东北春玉米的增效机制[J]. 作物学报, 2019, 45(3): 431-442.
[8] 周苏玫,张珂珂,张嫚,李磊,张春丽,尹钧,贺德先. 减氮适墒提高冬小麦旗叶光合潜力和籽粒产量[J]. 作物学报, 2016, 42(11): 1677-1688.
[9] 文熙宸,王小春,邓小燕,张群,蒲甜,刘国丹,杨文钰. 玉米-大豆套作模式下氮肥运筹对玉米产量及干物质积累与转运的影响[J]. 作物学报, 2015, 41(03): 448-457.
[10] 董茜,雍太文,刘小明,刘文钰,徐婷,宋春,王小春,杨文钰. 施氮方式对玉米-大豆套作体系中作物产量及玉米籽粒灌浆特性的影响[J]. 作物学报, 2014, 40(11): 2028-2039.
[11] 刘小明,雍太文,苏本营,刘文钰,周丽,宋春,杨峰,王小春,杨文钰. 减量施氮对玉米-大豆套作系统中作物产量的影响[J]. 作物学报, 2014, 40(09): 1629-1638.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!