欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (4): 873-885.doi: 10.3724/SP.J.1006.2022.14043

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

谷子叶绿体基因RNA编辑位点的鉴定与分析

杜晓芬(), 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军*()   

  1. 山西农业大学谷子研究所 / 杂粮种质创新与分子育种山西省重点实验室 / 杂粮种质资源发掘与遗传改良山西省重点实验室, 山西长治 046011
  • 收稿日期:2021-03-15 接受日期:2021-07-12 出版日期:2022-04-12 网络出版日期:2021-07-24
  • 通讯作者: 王军
  • 作者简介:杜晓芬, E-mail: dxf6285210@126.com第一联系人:**同等贡献
  • 基金资助:
    山西省农业科学院国家自然科学基金培育项目(YGJPY1906);山西省自然基金面上项目(201901D1114545);山西省青年基金面上项目(201901D211556);山西省农业科学院农业科技创新研究课题(YCX2020YQ35);山西省农业科学院杂粮分子育种平台专项资助(YGC2019FZ3)

Identification and analysis of RNA editing sites of chloroplast genes in foxtail millet [Setaria italica (L.) P. Beauv.]

DU Xiao-Fen(), WANG Zhi-Lan, HAN Kang-Ni, LIAN Shi-Chao, LI Yu-Xin, ZHANG Lin-Yi, WANG Jun*()   

  1. Millet Research Institute of Shanxi Agricultural University / Shanxi Key Laboratory of Minor Crop Germplasm Innovation and Molecular Breeding / Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi 046011, Shanxi, China
  • Received:2021-03-15 Accepted:2021-07-12 Published:2022-04-12 Published online:2021-07-24
  • Contact: WANG Jun
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    Natural Science Foundation Cultivation Project of Shanxi Academy of Agricultural Sciences(YGJPY1906);Shanxi Province Science Fund(201901D1114545);Shanxi Province Youth Fund(201901D211556);Agricultural Science and Technology Innovation Research Project of Shanxi Academy of Agricultural Sciences(YCX2020YQ35);Minor Crop Molecular Breeding Platform Special Project of Shanxi Academy of Agricultural Sciences(YGC2019FZ3)

摘要:

RNA编辑是高等植物叶绿体基因转录后加工修饰的现象, 它会影响叶绿体发育, 导致植株叶片出现黄化或白化等表型。本研究以长农35号及其2份叶色突变体(E752和E1005)为试验材料, 利用紫外分光光度计测定了苗期叶绿素含量, 通过透射电镜观察了叶绿体结构; 利用在线工具Prep-Cp对谷子叶绿体基因RNA编辑位点进行了预测, 通过PCR、RT-PCR及测序等方法对预测到的编辑位点进行了验证, 并与其他单子叶作物的编辑位点进行了比较分析; 进一步利用荧光实时定量方法, 分析rpoB及依赖PEP转录的光合途径相关基因(ndhG、psaA、psbArbcL)在不同发育时期的表达水平; 最后, 利用生物信息学分析ropB编辑前后蛋白二级结构的变化。结果表明, 与长农35号相比, 2份叶色突变体叶绿素含量显著降低, 叶绿体发育异常; 在谷子中, 有10个叶绿体基因共计20个位点发生RNA编辑, 所有编辑位点均为胞嘧啶(C)和尿嘧啶(U)的转换, 不同基因的编辑位点存在数量差异, 其中ndhB编辑位点数量最多, 共计6个; 20个编辑位点中, 有19个位点在物种进化上具有较高保守性, 只有rpoC1-2753为谷子中特有的编辑位点; 在长农35号及其2份叶色突变体中, rpoB的3个编辑位点(rpoB-467、rpoB-545rpoB-560)存在编辑效率差异, 而这种编辑效率的改变导致rpoB表达水平改变, 进一步可能影响了ndhG、psaA、psbArbcL表达水平的变化; 生物信息学分析表明, rpoB-467rpoB-560编辑前后影响了蛋白二级结构。研究结果为解析叶绿体RNA编辑参与谷子叶绿体发育的分子机制奠定了一定基础。

关键词: 谷子, 叶绿体, RNA编辑, 突变体

Abstract:

RNA editing is one of the post-transcriptional regulation mechanisms of gene expression in the chloroplast genomes of higher plants, which affects the chloroplast development and leads to albino phenotype or yellow phenotype of plant leaves. In this study, chlorophyll content was measured with a UV spectrophotometer at seeding stage among Changnong 35, E752, and E1005, and chloroplast structure of leaves was observed with a transmission electron microscopy; the online tool Prep-CP was used to predict the RNA editing sites of chloroplast genes; RNA editing site was verified by PCR, RT-PCR, and sequencing method, and the editing sites were compared and analyzed between foxtail millet and other monocotyledon. Furthermore, the relative expression patterns of rpoB and PEP-transcription-dependent photosynthetic pathway related genes (ndhG, psaA, psbA, and rbcL) were analyzed by qRT-PCR at different developmental stages, and the secondary structure of rpoB protein before and after editing was analyzed by bioinformatics. The results showed that chlorophyll content of E752 and E1005 were significantly lower and their chloroplasts were abnormal compared with Changnong 35. A total of 20 RNA editing sites of 10 chloroplast genes were identified, among which all were C to U conversion; the number of editing sites among chloroplast genes was varied, and ndhB had the most editing sites with the number of 6. Among the 20 editing sites, 19 editing sites were highly conserved in the evolution of species, however rpoC1-2753 was a unique editing site in foxtail millet. The editing efficiency of rpoB-467, rpoB-545, and rpoB-560 was distinctly different from those of the other editing sites among Changnong 35, E752, and E1005, leading to the expression level change of ropB, which might further affect the expression levels changes of ndhG, psaA, psbA, and rbcL. Bioinformatics analysis revealed that secondary structure of rpoB protein was changed due to the RNA editing of rpoB-467 and rpoB-560. Our results laid a foundation for the molecular mechanism analysis of chloroplast RNA editing in chloroplast development of foxtail millet.

Key words: foxtail millet, chloroplast, RNA editing, mutant

表1

引物信息"

引物名称
Marker name
引物序列
Sequence (5'-3')
产物大小
Product size (bp)
引物名称
Marker name
引物序列
Sequence (5'-3')
产物大小
Product size (bp)
atpA-F1 TCGCTTAATTGAATCTCCTG 946 rpoB-F1 ATCAGGGCTTGGCAGAAGA 875
atpA-R1 CGTTCCGGTATAAATGGTAG rpoB-R1 ATCCGCAACCGAACGAATA
ccsA-F1 TCTTAGTTTCTCGTTGGGTTTC 641 rpoC1-F1 AGGACGACTCAGAAGAAGAAT 1042
ccsA-R1 TGCAAATATGGTCCAGGTAAT rpoC1-R1 GAACAGTTGGATGCCGAC
matK-F1 GAGGGGTATTCAGAAAAACA 918 rps8-F1 ATGGGCAAGGACACTATTG 404
matK-R1 TTGTGAGAAATTGACAAGGTAA rps8-R1 ATATAACATAAGACTTCTCCCC
matK-F2 CACTTTTCTGGGAAGATGGA 780 rps14-F1 AAAAGTTTGATTCAGAGGGAG 302
matK-F2 CACCAGGTCATTGATACGG rps14-R1 TACCAACTGGATCTTGTTGC
ndhA-F1 ATGGATTCTACCCATTTTGAC 982 ycf3-F1 CTAGATCCCGTATAAATGGAA 498
ndhA-R1 TGTTAATAAGAGATTGCCCAG ycf3-R1 GCTTCGTAATCTTCAACCAGT
ndhB-F1 TTTATGTGGTGCTAACGATT 1073 ndhG-Real-Time-F GCCTTTTCGCTGGGATTAG 155
ndhB-R1 GGTTCATTGATATTCCTGGT ndhG-Real-Time-R GACCACTCTGAGCCGTTTACA
ndhD-F1 ACTTGTTGTTTTGCCGATAT 759 psaA-Real-Time-F TTTCTTAGGCGCTCATTTTGTC 151
ndhD-R1 ATCAATCCGTATGCTCCC psaA-Real-Time-R TATAATGCTCAAGGCTCTAGGC
ndhF-F1 TAATCCCTCTTCTCCCACTT 1132 psbA-Real-Time-F TTATGATTGTATTCCAGGCGGA 154
ndhF-R1 AAACCACCCATAAGAACCAT psbA-Real-Time-R GCAGACTCATTTTCAGTGGTTT
ndhF-F2 TGATCACTCATGCTTATTCGA 1010 rbcL-Real-Time-F CCGAAATCTTTGGAGACGATTC 105
ndhF-R2 ACCAGCAAGACCTACTCCAT rbcL-Real-Time-R CTTCTAAAGCCACACGATTAGC
petB-F1 ATGAGTATGAAATTTTCATATAC 689 rpoB-Real-Time-F AAACGTATTCGTTCGGTTGC 135
petB-R1 ATACCTTGCTTACGTATCA rpoB-Real-Time-R TACCAAAGTTTGTGGAGTCGG
rpl20-F1 AGAGTTCCGCGAGGATAT 325 SiActin-7-F TGATCTCACTGACAGTCTGATG 88
rpl20-R1 TCGTGTAAAGATTATTTGGATT SiActin-7-R GATGTCTCTTACAATTTCCCGC

图1

长农35号和突变体苗期表型及叶绿体超微结构 A~C: 长农35号; D~F: E1005; G~I: E752; GL: 基粒片层; SG: 淀粉粒; OP: 嗜饿体。"

表2

长农35号和叶色突变体苗期叶片色素含量比较"

材料
Material name
总叶绿素含量
Total chlorophyll
叶绿素a
Chlorophyll a
叶绿素b
Chlorophyll b
类胡萝卜素
Carotenoid
长农35号 Changnong 35 2.12±0.060 1.68±0.019 0.45±0.004 0.69±0.016
E752 1.55±0.050** 1.28±0.072* 0.27±0.031** 0.36±0.010**
E1005 0.99±0.017** 0.76±0.018** 0.24±0.002** 0.34±0.008**

表3

谷子叶绿体基因RNA编辑位点预测、验证及长农35号与E752和E1005编辑位点的比较"

基因
Gene ID
密码子位置
Codon position
密码子变化
Codon conversion
氨基酸转变
Amino acid conversion
长农35号
Changnong 35
E752 E1005
atpA 1148 uCa→uUa S→L + + +
ccsA 641 aCu→aUu T→I - - -
matK 331 Cuu→Tuu L→F - - -
1258 Cau→Uau H→Y - - -
ndhA 47 uCg→uUg S→L + + +
470 uCa→uUa S→L + + +
560 uCa→uUa S→L + + +
ndhB 467 cCa→cUa P→L + + +
586 Cau→Uau H→Y + + +
611 uCa→uUa S→L + + +
737 cCa→cUa P→L + + +
830 uCa→uUa S→L + + +
1481 cCa→cUa P→L + + +
ndhD 878 uCa→uUa S→L + + +
ndhF 62 uCa→uUa S→L - - -
1834 Cuu→Tuu L→F - - -
1909 Cuu→Tuu L→F - - -
petB 668 cCa→cUa P→L - - -
rpl20 308 uCa→uUa S→L + + +
rpoB* 467 uCa→uUa S→L +/- +/- +/-
545 uCa→uUa S→L +/- +/- +/-
560 uCa→uUa S→L +/- +/- +/-
617 cCa→cUa P→L + + +
rpoC1 2753 uCa→uUa S→L + + +
rps8 182 uCa→uUa S→L + + +
rps14 80 uCa→uUa S→L + + +
ycf3 44 uCc→uUc S→F - - -
191 aCg→aUg T→M + + +

表4

谷子与7种单子叶植物叶绿体基因RNA编辑位点的比较"

基因
Gene
密码子位置
Codon
position
谷子
Setaria italica
水稻
Oryza
sativa
黑麦
Lolium
perenne
玉米
Zea
mays
小麦
Triticum asetivum
大麦
Hordeum vulgare
野生二粒小麦
Triticum
dicoccoides
乌拉尔图小麦
Triticum
urartu
atpA 1148 + + + + + + + +
ccsA 641 -
matK 1258 - + +/- + + +
ndhA 47 + - + + + -
470 + + + + + + + +
560 + + + + + + + +
ndhB 467 + + + + + + + +
586 + + + + + + + +
基因
Gene
密码子位置
Codon
position
谷子
Setaria italica
水稻
Oryza
sativa
黑麦
Lolium
perenne
玉米
Zea
mays
小麦
Triticum asetivum
大麦
Hordeum vulgare
野生二粒小麦
Triticum
dicoccoides
乌拉尔图小麦
Triticum
urartu
611 + +/- + + + + + +
737 + + + + + + + -
830 + + + + + + + +
1481 + +/- + + + + + +
ndhD 878 + + +/- + + + + +
ndhF 62 - + + + + + - +
petB 668 - - + + - + +
rpl20 308 + - +/- + + + + +
rpoB 467 +/- +/- +/- + +/- + + +
545 +/- +/- +/- + +/- + + +
560 +/- +/- +/- + +/- + + +
617 + - - + + + +
rpoC1 2753 +
rps8 182 + + + + + - + +
rps14 80 + + - + - - +
ycf3 44 - - + + + + +
191 + +/- + +/- + + +

图2

长农35号及E752与E1005中rpoB编辑效率分析"

图3

rpoB在不同发育时期的表达水平分析 *、**分别表示在P < 0.05和P < 0.01水平差异显著。"

图4

不同发育时期光合途径相关基因的表达水平分析 *、**分别表示在P < 0.05和P < 0.01水平差异显著。"

图5

rpoB编辑前后蛋白结构分析 A: 编辑前后跨膜结构域分析; 横坐标表示氨基酸残基序号; 纵坐标表示横轴上每个氨基酸位于膜内侧(inside)、膜外侧(outside)和跨膜螺旋区(transmembrane)的概率值。B: 编辑位点二级结构分析; 箭头表示编辑位点; 蓝色表示α-螺旋; 绿色表示β-折叠; 黄色表示无规则卷曲; 红色表示延伸链。"

[1] Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S, Xie M, Zeng P, Yue Z, Wang W, Tao Y, Bian C, Han C, Xia Q, Peng X, Cao R, Yang X, Zhan D, Hu J, Zhang Y, Li H, Li N, Wang J, Wang C, Wang R, Guo T, Cai Y, Liu C, Xiang H, Shi Q, Huang P, Chen Q, Li Y, Zhao Z. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol, 2012, 30:549-554.
doi: 10.1038/nbt.2195
[2] Bennetzen J L, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli A C, Estep M, Feng L, Vaughn J N, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X, Wu X, Mitros T, Triplett J, Yang X, Ye C Y, Mauro-Herrera M, Wang L, Li P, Sharma M, Sharma R, Ronald P C, Panaud O, Kellogg E A, Brutnell T P, Doust A N, Tuskan G A, Rokhsar D, Devos K M. Reference genome sequence of the model plant Setaria. Nat Biotechnol, 2012, 30:555-561.
doi: 10.1038/nbt.2196 pmid: 22580951
[3] 贾冠清, 刁现民. 谷子(Setaria italica (L.) P. Beauv.)作为功能基因组研究模式植物的发展现状及趋势. 生命科学, 2017, 29:292-301.
Jia G Q, Diao X M. Current status and perspectives of researches on foxtail millet (Setaria italica(L.) P. Beauv.): a potential model of plant functional genomics studies. Chin Bull Life Sci, 2017, 29:292-301 (in Chinese with English abstract).
[4] 涂政军, 邹国兴, 黄李超, 陈龙, 代丽萍, 高易宏, 冷语佳, 朱丽, 张光恒, 胡江, 任德勇, 高振宇, 董国军, 陈光, 郭龙彪, 钱前, 曾大力. 水稻淡绿叶基因PGL11的鉴定与精细定位. 中国水稻科学, 2017, 31:489-499.
Tu Z J, Zou G X, Huang L C, Chen L, Dai L P, Gao Y H, Leng Y J, Zhu L, Zhang G H, Hu J, Ren D Y, Gao Z Y, Dong G J, Chen G, Guo L B, Qian Q, Zeng D L. Identification and fine mapping of pale green leaf PGL11 in rice. Chin J Rice Sci, 2017, 31:489-499 (in Chinese with English abstract).
[5] 李玲锋, 熊玉毅, 欧阳林娟, 彭小松, 陈小荣, 贺晓鹏, 傅军如, 边建民, 胡丽芳, 徐杰, 贺浩华, 孙晓棠, 朱昌兰. 水稻白条纹叶及白穗突变体wlp6的鉴定与基因定位. 中国水稻科学, 2018, 32:538-548.
Li L F, Xiong Y Y, Ou-Yang L J, Peng X S, Chen X R, He X P, Fu J R, Bian J M, Hu L F, Xu J, He H H, Sun X T, Zhu C L. Identification and gene mapping of white stripe leaf and white panicle mutant wlp6 in rice. Chin J Rice Sci, 2018, 32:538-548 (in Chinese with English abstract).
[6] Awan M A, Konzak C F, Rutger J N, Nilan R A. Mutagenic effects of sodium azide in rice. Crop Sci, 1980, 20:663-668.
doi: 10.2135/cropsci1980.0011183X002000050030x
[7] Nagata N, Tanaka R, Satoh S, Tanaka A. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell, 2005, 17:233-240.
doi: 10.1105/tpc.104.027276
[8] 李传宗. 谷子苗期黄叶性状的生理基础及候选基因鉴定. 中国农业科学院硕士学位论文,北京, 2020.
Li C Z. Physiological Basis and Gene Mapping of Yellow Seeding Character in Foxtail Millet. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing,China, 2020 (in Chinese with English abstract).
[9] Li W, Tang S, Zhang S, Shan J G, Tang C J, Chen Q N, Jia G Q, Han Y H, Zhi H, Diao X M. Gene mapping and functional analysis of the novel leaf color gene SiYGL1 in foxtail millet [Setaria italica(L.) P. Beauv]. Physiol Plant, 2016, 157:24-37.
[10] Zhang S, Tang S, Tang C J, Luo M Z, Jia G Q, Zhi H, Diao X M. SiSTL2 is required for cell cycle, leaf organ development, chloroplast biogenesis, and has effects on C4 photosynthesis in Setaria italica(L.) P. Beauv. Front Plant Sci, 2018, 9:1103.
doi: 10.3389/fpls.2018.01103 pmid: 30105043
[11] Tang C J, Tang S, Zhang S, Luo M Z, Jia G Q, Zhi H, Diao X M. SiSTL1 encoding a large subunit of RNR, is crucial for plant growth, chloroplast biogenesis, and cell cycle progression in Setaria italica. J Exp Bot, 2019, 70:1167-1182.
doi: 10.1093/jxb/ery429
[12] Benne R, Van den Burg J, Brakenhoff J P, Sloof P, Van Boom J H, Tromp M C. Major transcript of the frame shifted cox II gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell, 1986, 46:819-826.
pmid: 3019552
[13] Maier U G, Bozarth A, Funk H T, Zauner S, Rensing S A, Schmitz-Linneweber C, Börner T, Tillich M. Complex chloroplast RNA metabolism: just debugging the genetic programme? BMC Biol, 2008, 6:36-36.
doi: 10.1186/1741-7007-6-36 pmid: 18755031
[14] Takahashi A, Ohnishi T. The significance of the study about the biological effects of solar ultraviolet radiation using the exposed facility on the International Space Station. Biol Sci Space, 2004, 18:255-260.
pmid: 15858393
[15] Fujii S, Small I. The evolution of RNA editing and pentatricopeptide repeat genes. New Phytol, 2011, 191:37-47.
doi: 10.1111/j.1469-8137.2011.03746.x pmid: 21557747
[16] Cai W H, Ji D L, Peng L W, Guo J K, Ma J F, Zou M J, Lu C M, Zhang L X. LPA66 is required for editing psbF chloroplast transcripts in Arabidopsis. Plant Physiol, 2009, 150:1260-1271.
doi: 10.1104/pp.109.136812
[17] Yu Q B, Jiang Y, Chong K, Yang Z N. AtECB2, a pentatricopeptide repeat protein, is required for chloroplast transcript accD RNA editing and early chloroplast biogenesis in Arabidopsis thaliana. Plant J, 2009, 59:1011-1023.
doi: 10.1111/tpj.2009.59.issue-6
[18] Tseng C C, Sun T Y, Li Y C, Hsu S J, Hsieh M H. Editing of accD and ndhF chloroplast transcripts is partially affected in the Arabidopsis vanilla cream1 mutant. Plant Mol Biol, 2010, 73:309-323.
doi: 10.1007/s11103-010-9616-5
[19] Bock R, Kössel H, Maliga P. Introduction of a heterologous editing site into the tobacco plastid genome: the lack of RNA editing leads to a mutant phenotype. EMBO J, 1994, 13:4623-4628.
pmid: 7925303
[20] Okuda K, Myouga F, Motohashi R, Shinozaki K, Shikanai T. Conserved domain structure of pentatricopeptide repeat proteins involved in chloroplast RNA editing. Proc Natl Acad Sci USA, 2007, 104:8178-8183.
doi: 10.1073/pnas.0700865104
[21] Chateigner-Boutin A L, Small I. A rapid high-throughput method for the detection and quantification of RNA editing based on high-resolution melting of amplicons. Nucleic Acids Res, 2007, 35:e114.
doi: 10.1093/nar/gkm640
[22] Hoch B, Maier R M, Appel K, Igloi G L, Kossel H. Editing of a chloroplast mRNA by creation of an initiation codon. Nature, 1991, 353:178-180.
doi: 10.1038/353178a0
[23] Kotera E, Tasaka M, Shikanai T. A pentatricopeptide repeat protein is essential for RNA editing in chloroplasts. Nature, 2005, 433:326-330.
doi: 10.1038/nature03229
[24] Maier R M, Neckermann K, Igloi G L, Kössel H. Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol, 1995, 251:614-628.
pmid: 7666415
[25] Corneille S, Lutz K, Maliga P. Conservation of RNA editing between rice and maize plastids: are most editing events dispensable. Mol Gene Genet, 2000, 264:419-424.
[26] Diekmann K, Hodkinson T R, Wolfe K H, Rekerom R V D, Dix P J, Barth S. Complete chloroplast genome sequence of a major allogamous forage species, perennial ryegrass (Lolium perenne L.). DNA Res, 2009, 16:165-176.
doi: 10.1093/dnares/dsp008 pmid: 19414502
[27] 邓李坤, 李妍, 俞嘉宁. 小麦叶绿体蛋白质编码基因RNA编辑位点的测定及与返白现象的关系. 植物学报, 2012, 47:581-593.
doi: 10.3724/SP.J.1259.2012.00581
Deng L K, Li Y, Yu J N. RNA editing sites in chloroplast protein-coding genes in leaf white mutant of Triticum aestivum. Chin Bull Bot, 2012, 47:581-593 (in Chinese with English abstract).
[28] 马红战, 张保军, 樊虎玲. 大麦叶绿体基因RNA编辑位点的鉴定与分析. 麦类作物学报, 2013, 33:1071-1077.
Ma H Z, Zhang B J, Fan H L. Prediction and identification of RNA editing sites in the chloroplast genome of barley (Hordeum vulgare L). J Triticeae Crops, 2013, 33:1071-1077 (in Chinese with English abstract).
[29] 刘思妍, 冯克伟, 卞建新, 王萌, 杨智凯, 聂小军, 宋卫宁. 野生二粒小麦叶绿体基因RNA编辑位点的鉴定与分析. 麦类作物学报, 2015, 35:1609-1616.
Liu S Y, Feng K W, Bian J X, Wang M, Yang Z K, Nie N X, Song W N. Prediction and identification of the RNA editing sites in chloroplast transcripts of Triticum dicoccoides. J Triticeae Crops, 2015, 35:1609-1616 (in Chinese with English abstract).
[30] 葛玲巧, Kumbhar F, 赵贤, 王萌, 王莎, 宋卫宁, 聂小军. 乌拉尔图小麦叶绿体基因RNA编辑位点的预测与鉴定. 分子植物育种, 2017, 15:2479-2488.
Ge L Q, Kumbhar F, Zhao X, Wang M, Wang S, Song W N, Nie X J. Prediction and identification of the RNA editing sites in chloroplast transcripts of Triticum urartu. Mol Plant Breed, 2017, 15:2479-2488 (in Chinese with English abstract).
[31] Arnon D I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in beta vulgaris. Plant Physiol, 1949, 24:1-15.
doi: 10.1104/pp.24.1.1 pmid: 16654194
[32] Chen D H, Ronald P C. A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol Biol Rep, 1999, 17:53-57.
doi: 10.1023/A:1007585532036
[33] Mower J P. The PREP suite: predictive RNA editors for plant mitochondrial genes, chloroplast genes and user-defined alignments. Nucleic Acids Res, 2009, 37:W253-W259.
doi: 10.1093/nar/gkp337
[34] 易平, 汪莉, 孙清萍, 朱英国. 红莲型细胞质雄性不育水稻线粒体atp6基因转录本的编辑位点研究. 生物化学与生物物理进展, 2002, 29:729-733.
Yi P, Wang L, Sun Q P, Zhu Y G. Study on the editing site in the transcript of atp6 of HL-rice mitochondria. Prog Biochem Biophys, 2002, 29:729-733 (in Chinese with English abstract).
[35] 江媛, 何筠, 范术丽, 俞嘉宁, 宋美珍. 棉花芽黄突变体十个叶绿体蛋白编码基因RNA编辑位点的测定及分析. 棉花学报, 2011, 23:3-9.
Jiang Y, He Y, Fan S L, Yu J N, Song M Z. The identification and analysis of RNA editing sites of 10 chloroplast protein-coding genes from virescent mutant of Gossypium hirsutum. Cotton Sci, 2011, 23:3-9 (in Chinese with English abstract).
[36] Huang W F, Zhang Y, Shen L Q, Fang Q, Liu Q, Gong C B, Zhang C, Zhou Y, Mao C, Zhu Y L, Zhang J H, Chen H P, Zhang Y, Lin Y J, Bock R, Zhou F. Accumulation of the RNA polymerase subunit RpoB depends on RNA editing by OsPPR16 and affects chloroplast development during early leaf development in rice. New Phytol, 2020, 228:1401-1416.
doi: 10.1111/nph.v228.4
[37] Wang Y, Ren Y L, Zhou K N, Liu L L, Wang J L, Xu Y, Zhang H, Zhang L, Feng Z M, Wang L W, Ma W W, Wang Y L, Guo X P, Zhang X, Lei C L, Cheng Z J, Wan J M. White stripe leaf 4 encodes a novel P-type PPR protein required for chloroplast biogenesis during early leaf development. Front Plant Sci, 2017, 8:1116.
doi: 10.3389/fpls.2017.01116
[38] Liu X, Lan J, Huang Y S, Cao P H, Zhou C L, Ren Y K, He N Q, Liu S J, Tian Y L, Nguyen T, Jiang L, Wan J M. WSL5, a pentatricopeptide repeat protein, is essential for chloroplast biogenesis in rice under cold stress. J Exp Bot, 2018, 69:3949-3961.
doi: 10.1093/jxb/ery214 pmid: 29893948
[39] Pfalz J, Bayraktar O A, Prikryl J, Barkan A. Site-specific binding of a PPR protein defines and stabilizes 5′ and 3′ mRNA termini in chloroplasts. EMBO J, 2009, 28:2042-2052.
doi: 10.1038/emboj.2009.121
[40] Khrouchtchova A, Monde R A, Barkan A. A short PPR protein required for the splicing of specific group II introns in angiosperm chloroplasts. RNA, 2012, 18:1197-1209.
doi: 10.1261/rna.032623.112 pmid: 22495966
[41] Zhang J H, Guo Y P, Fang Q, Zhu Y L, Zhang Y, Liu X J, Lin Y J, Barkan A, Zhou F. The PPR-SMR protein ATP4 is required for editing the chloroplast rps8 mRNA in rice and maize. Plant Physiol, 2020, 184:2011-2021.
doi: 10.1104/pp.20.00849
[42] Bentolila S, Heller W P, Sun T, Babina A M, Friso G, van Wijk K J, Hanson M R. RIP1, a member of an Arabidopsis protein family, interacts with the protein RARE1 and broadly affects RNA editing. Proc Natl Acad Sci USA, 2012, 109:1453-1461.
[43] Takenaka M, Zehrmann A, Verbitskiy D, Kugelmann M, Härtel B, Brennicke A. Multiple organellar RNA editing factor (MORF) family proteins are required for RNA editing in mitochondria and plastids of plants. Proc Natl Acad Sci USA, 2012, 109:5104-5109.
doi: 10.1073/pnas.1202452109
[44] Glass F, Härtel B, Zehrmann A, Verbitskiy D, Takenaka M. MEF13 requires MORF3 and MORF8 for RNA editing at eight targets in mitochondrial mRNAs in Arabidopsis thaliana. Mol Plant, 2015, 8:1466-1477.
doi: 10.1016/j.molp.2015.05.008
[45] Hackett J B, Shi X, Kobylarz A T, Lucas M K, Wessendorf R L, Hines K M, Bentolila S, Hanson M R, Lu Y. An organelle RNA recognition motif protein is required for photosystem II subunit psbF transcript editing. Plant Physiol, 2017, 173:2278-2293.
doi: 10.1104/pp.16.01623 pmid: 28213559
[46] Shi X, Castandet B, Germain A, Hanson M R, Bentolila S. ORRM5, an RNA recognition motif-containing protein, has a unique effect on mitochondrial RNA editing. J Exp Bot, 2017, 68:2833-2847.
doi: 10.1093/jxb/erx139
[47] Zhang F, Tang W J, Hedtke B, Zhong L, Liu L L, Peng L W, Lu C M, Grimm B, Lin R C. Tetrapyrrole biosynthetic enzyme protoporphyrinogen IX oxidase 1 is required for plastid RNA editing. Proc Natl Acad Sci USA, 2014, 111:2023-2028.
doi: 10.1073/pnas.1316183111
[1] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[2] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[3] 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279.
[4] 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39.
[5] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[6] 文钦, 贾思思, 王加峰, 黄翠红, 王慧, 陈志强, 郭涛. 水稻单倍体诱导基因OsMATL突变体的创制与分析[J]. 作物学报, 2021, 47(5): 827-836.
[7] 马贵芳, 满夏夏, 张益娟, 高豪, 孙朝霞, 李红英, 韩渊怀, 侯思宇. 谷子穗发育期转录组与叶酸代谢谱联合分析[J]. 作物学报, 2021, 47(5): 837-846.
[8] 贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析[J]. 作物学报, 2021, 47(5): 974-982.
[9] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
[10] 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293.
[11] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
[12] 姜鸿瑞, 叶亚峰, 何丹, 任艳, 杨阳, 谢建, 程维民, 陶亮之, 周利斌, 吴跃进, 刘斌美. 一个新的水稻脆秆突变体bc17的鉴定及基因定位[J]. 作物学报, 2021, 47(1): 71-79.
[13] 贾小平,袁玺垒,李剑峰,王永芳,张小梅,张博,全建章,董志平. 不同光温条件谷子光温互作模式研究及SiCCT基因表达分析[J]. 作物学报, 2020, 46(7): 1052-1062.
[14] 王南,祁显涛,刘昌林,谢传晓,朱金洁. 基于CRISPR/Cas9核糖核蛋白体DNA定点内切酶体外活性建立高效基因型分析技术[J]. 作物学报, 2020, 46(7): 978-986.
[15] 王晓阳,王丽媛,潘兆娥,何守朴,王骁,龚文芳,杜雄明. 亚洲棉短绒突变体纤维发育及其差异基因表达分析[J]. 作物学报, 2020, 46(5): 645-660.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!