欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (05): 642-649.doi: 10.3724/SP.J.1006.2018.00642

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

普通菜豆中烟草水杨酸结合蛋白2同源基因的鉴定及表达特征分析

薛仁风1,**(), 王利2,**, 丰明1, 葛维德1,*()   

  1. 1辽宁省农业科学院作物研究所, 辽宁沈阳 110161
    2农业部农业生态与资源保护总站, 北京 100125
  • 收稿日期:2017-09-10 接受日期:2018-01-08 出版日期:2018-05-20 网络出版日期:2018-01-29
  • 通讯作者: 薛仁风,王利,葛维德
  • 作者简介:

    第一作者联系方式: E-mail: xuerf82@163.com, Tel: 024-31029901

  • 基金资助:
    本研究由国家自然科学基金项目(31401447), 辽宁省博士科研启动基金(201501113), 特色粮油新品种选育及优质高效生产技术集成与示范(2018416023)和国家现代农业产业技术体系建设专项(CARS-09-08Z)资助

Identification and Expression Analysis of Likely Orthologs of Tobacco Salicylic Acid Binding Protein 2 in Common Beans

Ren-Feng XUE1,**(), Li WANG2,**, Ming FENG1, Wei-De GE1,*()   

  1. 1 Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning, China
    2 Rural Energy and Environment Agency, Ministry of Agriculture, Beijing 100125, China
  • Received:2017-09-10 Accepted:2018-01-08 Published:2018-05-20 Published online:2018-01-29
  • Contact: Ren-Feng XUE,Li WANG,Wei-De GE
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (31401447), the Liaoning Doctor Startup Foundation (201501113), the New Varieties Breeding, High Quality and Effective Technology Integration and Demonstration of Special Grain and Oil Crop (2018416023), and the China Agriculture Research System (CARS-08-Z8).

摘要:

水杨酸(salicylic acid, SA)能够诱导植物产生系统抗病性反应, 而水杨酸结合蛋白2 (salicylic acid binding protein 2, SABP2)是植物细胞内调控水杨酸水平的重要酯酶。本研究利用生物信息学方法在普通菜豆中搜索到7个烟草水杨酸结合蛋白2的同源基因, 命名为PvMES1~PvMES7。分别在2个菜豆感病品种(白刀豆和BRB130)和2个抗病品种(黑芸豆和260205)中接种尖镰孢菌FOP-DM01菌株(Fusarium oxysporum f. sp. phaseoli isolate, FOP-DM01)后, 检测寄主根组织中水解水杨酰甲酯(methyl salicylate, MeSA)活性和游离SA含量的变化, 并利用荧光定量PCR技术分析7个PvMES基因表达量变化。结果表明, PvMES1PvMES3PvMES4PvMES5PvMES6的转录表达受FOP-DM01菌株诱导均呈现不同程度的升高, 其中黑芸豆中PvMES5基因和260205中PvMES1基因表达量变化最显著, 接种3 d后分别升高至0 d表达量的7.6倍和5.6倍。此外, 黑芸豆和260205根中水杨酰甲酯酯酶(methyl salicylate esterase, MES)活性显著提升, 游离SA含量也相应升高, 激活寄主内SA介导的相关防御反应。本研究结果可以为普通菜豆镰孢菌枯萎病抗病分子育种和抗病机理研究提供理论基础。

关键词: 普通菜豆, 镰孢菌枯萎病, 水杨酸结合蛋白2, 直系同源基因, 系统获得性抗性

Abstract:

Salicylic acid can induce the systematic resistant response in plants, and salicylic acid-binding protein 2 is an important esterase in the regulation of salicylic acid content in plant cells. In this study, we used the bioinformatics method to search the orthologous genes of tobacco salicylic acid-binding protein 2 in common bean, which were designated as PvMES1-PvMES7, then analyzed the changes of MES activity and free SA accumulation in plant roots. The expression level of 7 PvMES genes in susceptible varieties BRB130 and Baidaodou, resistant varieties Heiyundou and 260205 infected by Fusarium oxysporum f. sp. phaseoli isolate FOP-DM01 was detected by Real time PCR, showing that the expression of PvMES1, PvMES3, PvMES4, PvMES5, and PvMES6 was significantly increased at three days after FOP-DM01 infection, with most significant increase of 7.6 folds and 5.6 folds for PvMES5 gene in Heiyundou and PvMES1 gene in 260205 at 0 day, respectively. The MES activity and free SA content in roots of Heiyundou and 260205 were also improved, which activated the relevant defense response reaction mediated by SA in the host. The results of this study provide a theoretical basis for the resistance molecular breeding of Fusarium wilt in common beans.

Key words: common bean, Fusarium wilt, salicylic acid binding protein 2, orthologous genes, system acquired resistance

表1

实验中所用的引物"

基因名称
Gene name
引物名称
Primer name
引物序列
Sequence for qPCR (5°-3°)
PvMES1 QMES1F GCTCTATCAACTTTCCCCTG
QMES1R CATCGTTGGTAATCCAAAGT
PvMES2 QMES2F CTATCAACTCTCCCCAACTC
QMES2R CAAAGTAATTGCAAGGTCTAT
PvMES3 QMES3F CAGAAAATTGAAGACGTTGG
QMES3R AACATAGGAGGGCTTGCGC
PvMES4 QMES4F GAGTACCTTGGGAGAGAAT
QMES4R TAGAGAAGCTCTTCTGTTGG
PvMES5 QMES5F GCAATTCCCAGAAAAAATTCTG
QMES5R CTTGGGACCAAAGAACATCAA
PvMES6 QMES6F ACCAAGTTTCTGTCCACTGC
QMES6R TACTCTTTTGGAATTGTCAA
PvMES7 QMES7F GGAGTTGAATTTTTGAGATCTA
QMES7R CATCAAATTATCTTTTCCAGC
PvPR1 QPR1F TGCTAAAGACGCCGATACCA
QPR1R GCAACACCTCCAACTATGCT
Actin Act-F GAAGTTCTCTTCCAACCATCC
Act-R TTTCCTTGCTCATTCTGTCCG

表2

PvMES家族基因与烟草水杨酸结合蛋白2核苷酸序列分析"

基因名称
Gene
基因位点
Genetic locus
基因序列位置
Sequence location
E值
E-value
一致性
Identity (%)
染色体
Chromosome
PvMES1 Phvul.003G248200.1 48561200-48564505 1.7×10-35 59.2 3
PvMES2 Phvul.003G248300.1 48567955-48569848 7.0×10-34 57.6 3
PvMES3 Phvul.003G248025.1 48530639-48532632 1.6×10-29 63.8 3
PvMES4 Phvul.003G248050.1 48539059-48541466 1.9×10-28 61.4 3
PvMES5 Phvul.003G248075.1 48545538-48547254 1.9×10-28 63.1 3
PvMES6 Phvul.002G022300.1 2389494-2391172 3.4×10-25 58.4 2
PvMES7 Phvul.010G043800.2 6682398-6684451 5.1×10-4 45.3 10

图1

PvMES1~PvMES7和NtSABP2氨基酸序列比对分析相同位点用黑色表示, 相似位点用灰色表示; 水解活性位点用黑色箭头表示。SA结合位点用黑色三角形表示。"

图2

PvMES1~PvMES7和NtSABP2进化树分析"

图3

FOP-DM01菌株诱导下普通菜豆根组织PvMES1~PvMES7和PvPR1表达量相同时间点中标以不同字母的柱值在不同品种间差异显著(P < 0.05)。"

图4

FOP-DM01菌株诱导下普通菜豆根组织MES活性相同时间点中标以不同字母的柱值在不同品种间差异显著(P < 0.05)。"

图5

FOP-DM01菌株诱导下普通菜豆根组织SA含量分析相同时间点中标以不同字母的柱值在不同品种间差异显著(P < 0.05)。"

图6

普通菜豆接种FOP-DM01菌株后的病情评价 A: 接种FOP-DM01菌株3周后发病情况; B: 接种FOP-DM01菌株3周后的病情指数。相同时间点中标以不同字母的柱值在不同品种间差异显著(P < 0.05)。"

[1] Broughton W J, Hernandez G, Blair M, Beebe S, Gepts P, Vanderleyden J.Beans (Phaseolus spp.)—model food legumes. Plant Soil, 2003, 252: 55-128
[2] Xue R F, Wu J, Zhu Z D, Wang L F, Wang X M, Wang S M, Blair M W.Differentially expressed genes in resistant and susceptible common bean (Phaseolus vulgaris L.) genotypes in response to Fusarium oxysporum f. sp. phaseoli. PLoS One, 2015, 10: e0127698, doi:10.1371/journal.pone.0127698
[3] Xue R F, Wu J, Wang L F, Blair M W, Wang X M, Ge W D, Zhu Z D, Wang S M.Salicylic acid enhances resistance to Fusarium oxysporum f. sp. phaseoli in common beans(Phaseolus vulgaris L.). J Plant Growth Regul, 2014, 33: 470-476
[4] Vlot A C, Dempsey D A, Klessig D F.Salicylic acid, amultifaceted hormone to combat disease.Annu Rev Phytopathol, 2009, 47: 177-206
doi: 10.1146/annurev.phyto.050908.135202 pmid: 19400653
[5] Liu P P, von Dahl C C, Park S W, Klessig D F. Interconnection between methyl salicylate and lipid-based long-distance signaling during the development of systemic acquired resistance in Arabidopsis and tobacco.Plant Physiol, 2011, 155:1762-1768
doi: 10.1104/pp.110.171694 pmid: 21311035
[6] Edgar C I, McGrath K C, Dombrecht B, Manners J M, Maclean D C, Schenk P M, Kazan K. Salicylic acid mediates resistance to the vascular wilt pathogen Fusarium oxysporum in the model host Arabidopsis thaliana. Aust Plant Path, 2006, 35: 581-591
[7] Mandal S, Mallick N, Mitra A.Salicylic acid-induced resistance to Fusarium oxysporum f. sp. lycopersici in tomato. Plant Physiol Biochem, 2009, 47: 642-649
[8] Dihazi A, Serghini M A, Jaiti F, Daayf F, Driouich A, Dihazi H, El Hadrami I.Structural and biochemical changes in salicylic-acid-treated date palm roots challenged with Fusarium oxysporum f. sp. albedinis.J Pathogens, 2011, doi 10.4061/2011/280481
[9] Gayatridevi S, Jayalakshmi S, Sreeramulu K.Salicylic acid is a modulator of catalase isozymes in chickpea plants infected with Fusarium oxysporum f. sp. ciceri. Plant Physiol Biochem, 2012, 52:154-161
[10] Park S W, Kaimoyo E, Kumar D, Mosher S, Klessig D F.Methyl salicylate is a critical mobile signal for plant systemic acquired resistance.Science, 2007, 318:113-116
doi: 10.1126/science.1147113 pmid: 17916738
[11] Kumar D, Klessig D F.High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity.Proc Natl Acad Sci USA, 2003, 100: 16101-16106
doi: 10.1073/pnas.0307162100
[12] Tripathi D, Jiang Y L, Kumar D.SABP2, a methyl salicylate esterase is required for the systemic acquired resistance induced by acibenzolar-S-methyl in plants.FEBS Lett, 2010, 584: 3458-3463
doi: 10.1016/j.febslet.2010.06.046
[13] Park S W, Liu P P, Forouhar F, Volt A C, Tong L, Tiejen K, Klessig D F.Use of a synthetic salicylic acid analog to investigate the roles of methyl salicylate and its esterases in plant disease resistance.J Biol Chem, 2009, 284: 7307-7317
doi: 10.1074/jbc.M807968200 pmid: 19131332
[14] Kumar D, Hotz T, Hossain M, Chigurupati P, Mayakoti A, Binda N, Zhao B Q, Tripathi D.Methyl salicylate esterases in plant immunity.Plant Stress, 2012, 1: 47-51
[15] Chigurupati P, Haq I, Kumar D.Tobacco Methyl Salicylate Esterase Mediates Nonhost Resistance.Curr Plant Biol, 2016, 6: 48-55
doi: 10.1016/j.cpb.2016.10.001
[16] Vlot A C, Liu P P, Cameron R K, Park S W, Yang Y, Kumar D, Zhou F, Padukkavidana T, Gustafsson C, Pichersky E, Klessig D F.Identification of likely orthologs of tobacco salicylic acid-binding protein 2 and their role in systemic acquired resistance in Arabidopsis thaliana. Plant J, 2008, 56: 445-456
doi: 10.1111/j.1365-313X.2008.03618.x pmid: 18643994
[17] Manosalva P M, Park S W, Forouhar F, Tong L, Fry W E, Klessig D F.Methyl esterase 1 (StMES1) is required for systemic acquired resistance in potato. Mol Plant- Microbe Interact, 2010, 23: 1151-1163
doi: 10.1094/MPMI-23-9-1151 pmid: 20687805
[18] 薛仁风, 朱振东, 王晓鸣, 王兰芬, 武小菲, 王述民. 普通菜豆镰孢菌枯萎病抗病相关基因PvCaM1的克隆及表达.作物学报, 2012, 38: 606-613
doi: 10.3724/SP.J.1006.2012.00606
Xue R F, Zhu Z D, Wang X M, Wang L F, Wu X F, Wang S M.Cloning and expression analysis of the Fusarium wilt resistance-related gene PvCaM1 in common bean(Phaseolus vulgaris L.). Acta Agron Sin, 2011, 38: 606-613 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2012.00606
[19] Forouhar F, Yang Y, Kumar D, Chen Y, Fridman E, Park S W, Chiang Y, Acton T B, Montelione G T, Pichersky E, Klessig D F, Tong L.Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity. Proc Natl Acad Sci USA, 2005, 102: 1773
doi: 10.1073/pnas.0409227102
[20] 王述民, 张亚芝, 魏淑红. 普通菜豆种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. p 64
Wang S M, Zhang Y Z, Wei S H.Descriptors and Data Standard for Common Bean (Phaseolus vulgaris L.). Beijing: China Agriculture Press, 2006. p 64 (in Chinese)
[21] Institute S.SAS 9.1.3 Intelligence Platform: Single-user Installation Guide. SAS Institute Cary, NC, 2005
[22] Dempsey D A, Shah J, Klessig D F.Salicylic acid and disease resistance in plants.Crit Rev Plant Sci, 1999, 18: 547-575
doi: 10.1080/07352689991309397
[23] Xue R F, Wu J, Chen M L, Zhu Z D, Wang L F, Wang X M, Blair M W, Wang S M.Cloning and characterization of a novel secretory root-expressed peroxidase gene from common bean (Phaseolus vulgaris L.) infected with Fusarium oxysporum f. sp. Phaseoli. Mol Breed, 2014, 34: 855-870
[24] Xue R F, Wu X B, Wang Y J, Zhuang Y, Chen J, Wu J, Ge W D,Wang L F, Wang S M, Blair M W.Hairy root transgene expression analysis of a secretory peroxidase (PvPOX1) from common bean infected by Fusarium wilt. Plant Sci, 2017, 260:1-7
doi: 10.1016/j.plantsci.2017.03.011 pmid: 28554466
[25] Spletzer M E, Enyedi A J.Salicylic acid induces resistance toAlternaria solani in hydroponically grown tomato. Phytopathology, 1999, 89: 722-727
doi: 10.1094/PHYTO.1999.89.9.722 pmid: 18944699
[26] Szôke C, Pál M, Szalai G, Janda T, Rácz F, Marton C L.Potencial role of salicylic acid in tolerance of maize to Fusarium graminearum. Acta Biol Szeged, 2011, 55: 167-168
[27] Wu Y L, Yi G J, Peng X X, Huang B Z, Liu E, Zhang J J.Systemic acquired resistance in Cavendish banana induced by infection with an incompatible strain of Fusarium oxysporum f. sp. cubense. J Plant Physiol, 2013, 170 : 1039-1046
doi: 10.1016/j.jplph.2013.02.011 pmid: 23702248
[28] 陈明丽, 王兰芬, 赵晓彦, 王述民. 普通菜豆基因组学及抗炭疽病遗传研究进展. 植物遗传资源学报, 2011, 12: 941-947
Chen M L, Wang L F, Zhao X Y, Wang S M.Current research progress (Phaseolus vulgaris L.) on Anthracnose resistant genetics and genomics of common bean. J Plant Genet Resour, 2011, 12: 941-947 (in Chinese with English abstract)
[1] 王兰芬, 武晶, 王昭礼, 陈吉宝, 余莉, 王强, 王述民. 普通菜豆种质资源不同环境下表型差异及生态适应性评价[J]. 作物学报, 2018, 44(03): 357-368.
[2] 耿庆河,王兰芬,武晶,王述民. 普通菜豆籽粒大小与形状的QTL定位[J]. 作物学报, 2017, 43(08): 1149-1160.
[3] 朱吉风,武晶,王兰芬,朱振东,王述民*. 菜豆普通细菌性疫病抗性基因定位[J]. 作物学报, 2017, 43(01): 1-8.
[4] 李龙,王兰芬,武晶,景蕊莲,王述民. 普通菜豆品种苗期抗旱性鉴定[J]. 作物学报, 2015, 41(06): 963-971.
[5] 陈明丽,王兰芬,武晶,张晓艳,杨广东,王述民1. 普通菜豆基因组SSR标记开发及在豇豆和小豆中的通用性分析[J]. 作物学报, 2014, 40(05): 924-933.
[6] 李龙,王兰芬,武晶,景蕊莲,王述民. 普通菜豆抗旱生理特性[J]. 作物学报, 2014, 40(04): 702-710.
[7] 薛仁风,朱振东,黄燕,王晓鸣,王兰芬,王述民. 应用荧光定量PCR 技术分析普通菜豆品种中尖镰孢菜豆专化型定殖量[J]. 作物学报, 2012, 38(05): 791-799.
[8] 薛仁风,朱振东,王晓鸣,王兰芬,武小菲,王述民. 普通菜豆镰孢菌枯萎病抗病相关基因PvCaM1的克隆及表达分析[J]. 作物学报, 2012, 38(04): 606-613.
[9] 王坤;王晓鸣;朱振东;赵晓彦;张晓艳;王述民. 以SSR标记对普通菜豆抗炭疽病基因定位[J]. 作物学报, 2009, 35(3): 432-437.
[10] 陈吉宝;景蕊莲;毛新国;昌小平;王述民. 普通菜豆PvP5CS2基因对逆境胁迫的应答[J]. 作物学报, 2008, 34(07): 1121-1127.
[11] 赵晓彦;王晓鸣;王述民. 普通菜豆抗炭疽病基因SCAR标记鉴定[J]. 作物学报, 2007, 33(11): 1815-1821.
[12] 张赤红;王述民. 利用SSR标记评价普通菜豆种质遗传多样性[J]. 作物学报, 2005, 31(05): 619-627.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!