欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (1): 188-199.doi: 10.3724/SP.J.1006.2023.23004

• 耕作栽培·生理生化 • 上一篇    下一篇

夏玉米根系构型与抗根倒性能间的关系

张静1(), 王洪章1, 任昊1, 殷复伟2, 吴红燕2, 赵斌1, 张吉旺1, 任佰朝1, 戴爱斌3, 刘鹏1,*()   

  1. 1山东农业大学农学院 / 作物生物学国家重点实验室, 山东泰安271018
    2泰安市农业技术推广中心, 山东泰安271000
    3东营市东营区农业农村局, 山东东营257091
  • 收稿日期:2022-01-08 接受日期:2022-03-25 出版日期:2023-01-12 网络出版日期:2022-04-20
  • 通讯作者: 刘鹏
  • 作者简介:E-mail: zhangjing971209@163.com
  • 基金资助:
    山东省重点研发计划项目(LJNY202103);山东省现代农业产业技术体系建设项目(Maize, SDAIT-02-08)

Relationship between root architecture and root pulling force of summer maize

ZHANG Jing1(), WANG Hong-Zhang1, REN Hao1, YIN Fu-Wei2, WU Hong-Yan2, ZHAO Bin1, ZHANG Ji-Wang1, REN Bai-Zhao1, DAI Ai-Bin3, LIU Peng1,*()   

  1. 1State Key Laboratory of Crop Science / College of Agronomy, Shandong Agricultural University, Tai’an 271018, Shandong, China
    2Agricultural Technology Extension Center, Tai’an 271000, Shandong, China
    3Dongying District Bureau of Agriculture and Rural Affairs, Dongying 257091, Shandong, China
  • Received:2022-01-08 Accepted:2022-03-25 Published:2023-01-12 Published online:2022-04-20
  • Contact: LIU Peng
  • Supported by:
    Shandong Province Key Research and Development Project(LJNY202103);Shandong Agriculture Research System(Maize, SDAIT-02-08)

摘要:

探究夏玉米根系构型与抗根倒性能间的关系, 筛选出高抗根倒性能的夏玉米品种, 明确抗根倒玉米的根系特性, 为抗根倒玉米品种选育和玉米抗倒稳产栽培提供理论依据。本试验以黄淮海区域推广种植的104个夏玉米品种为试验材料, 在开花期测定不同品种玉米的根拔力及根系相关性状, 用主成分分析和聚类分析方法对这些夏玉米抗根倒性状进行综合评价, 分析根系形态特征与抗根倒性能间的关系。结果表明, 试验所用的104个品种的根拔力符合正态分布, 其变化范围为862~1092 N。根拔力与节根着生角度、节根条数、节根总条数、节根长度、根干重、产量呈显著正相关性。基于不同玉米品种根系性状综合因子可以将试验品种按抗根倒伏性能由强到弱聚为6类。其中, 抗根倒性强的品种有: 联研155、迪卡517、齐民玉6号、金海13、来玉721、丰乐365、良星579、登海605、登海518、德单179。这一类群玉米品种具有根干重、节根条数、节根总条数、节根着生角度、节根长度、产量均较大的特点。

关键词: 玉米, 抗根倒伏性, 根系形态, 根拔力

Abstract:

To screen out the summer maize varieties with high root-lodging resistance and provide theoretical basis for the breeding of root-toppling resistance maize varieties to achieve resistant to lodging and high and stable yields in summer maize, the relationship between root architecture and root-lodging resistance was studied. In this experiment, to analyze the relationship between root morphology and root lodging resistance, 104 summer maize varieties widely planted in Yellow-Huaihe-Haihe Rivers region were used as materials, and the root pulling force and root related characters of different maize varieties were measured at flowering stage, and were evaluated by principal component analysis and cluster analysis. The results showed that the root pulling force of 104 varieties conformed to normal distribution with a range of 862-1092 N. There was a significant positive correlation between root pulling force and root angle, root numbers, total root number, root length, root dry weight, and yields. Based on the comprehensive root traits of different maize varieties, the experimental varieties were group into six groups according to the root lodging resistance from strong to weak. Among them, the varieties with strong root resistance were as follows: Lianyan 155, Dika 517, Qiminyu 6, Jinhai 13, Laiyu 721, Fengle 365, Liangxing 579, Denghai 605, Denghai 518, and Dedan 179. This group of maize varieties had the characteristics of higher root dry weight, root number, total root number, root angle, root length, and grain yield.

Key words: maize, resistance to root lodging, root morphology, root pulling force

表1

试验用玉米品种"

序号
Number
品种名称
Hybrid name
序号
Number
品种名称
Hybrid name
1 博信212 Boxin 212 53 迪卡517 Dika 517
2 道吉158 Daoji 158 54 农华5号 Nonghua 5
3 鑫研156 Xinyan 156 55 桓丰601 Huanfeng 601
4 中天303 Zhongtian 303 56 道吉1+1 Daoji 1+1
5 九圣禾2468 Jiushenghe 2468 57 好日子738 Haorizi 738
6 鲍玉3号 Baoyu 3 58 宁研519 Ningyan 519
7 鲁单9169 Ludan 9169 59 连胜253 Liansheng 253
8 京农科736 Jinnongke 736 60 中农大688 Zhongnongda 688
9 登海1717 Denghai 1717 61 天泰619 Tiantai 619
10 强盛339 Qiangsheng 339 62 鲁单9088 Ludan 9088
11 裕丰620 Yufeng 620 63 鑫瑞57 Xinrui 57
12 郑单958 Zhengdan 958 64 天泰366 Tiantai 366
13 登海371 Denghai 371 65 大京九4703 Dajingjiu 4703
14 中天308 Zhongtian 308 66 中天301 Zhongtian 301
15 邦玉519 Bangyu 519 67 登海6188 Denghai 6188
16 鑫瑞76 Xinrui 76 68 鑫瑞37 Xinrui 37
17 莱农14 Lainong 14 69 登海606 Denghai 606
18 德单179 Dedan 179 70 京科999 Jingke 999
19 丰乐37 Fengle 37 71 NK815
20 登海518 Denghai 518 72 C1210
21 金海2010 Jinhai 2010 73 C9256
22 胶玉1号 Jiaoyu 1 74 登海682 Denghai 682
23 九玉Y02 Jiuyu Y02 75 宇玉268 Yuyu 268
24 齐单805 Qidan 805 76 来玉1819 Laiyu 1819
25 NK818 77 齐民玉6号 Qimingyu 6
26 安玉706 Anyu 706 78 德发718 Defa718
27 金海13 Jinhai 13 79 登海511Denghai 511
28 济玉519 Jiyu 519 80 鑫玉518 Xinyu 518
29 鑫星321 Xinxing 321 81 登海533 Denghai 533
30 MC121 82 登海653 Denghai 653
31 郑原玉432 Zhengyuanyu 432 83 丰乐235 Fengle 235
32 MC278 84 豫禾269 Yuhe 269
33 源丰008 Yuanfeng 008 85 登海605 Denghai 605
34 来玉317 Laiyu 317 86 鲁单1号 Ludan 1
35 强盛198 Qiangsheng 198 87 宁研503 Ningyan 503
36 鑫瑞25 Xinrui 25 88 德发705 Defa 705
37 京农玉658 Jinnongyu 658 89 金来705 Jinlai 705
38 丰度191 Fengdu 191 90 德单5号Dedan 5
39 金海1911 Jinhai 1911 91 万盛69 Wansheng 69
40 金海1908 Jinhai 1908 92 农华221 Nonghua 221
41 丰乐365 Fengle 365 93 德瑞88 Derui 88
42 登海710 Denghai 710 94 齐单109 Qidan 109
43 来玉721 Laiyu 721 95 京科927 Jingke 927
44 来玉238 Laiyu 238 96 联研155 Lianyan 155
45 新单68 Xindan 68 97 宁研678 Ningyan 678
46 MC812 98 桓丰107 Huanfeng 107
47 德发106 Defa 106 99 登海1996 Denghai 1996
48 胜风1号 Shengfeng 1 100 立原296 Liyuan 296
49 金海188 Jinhai 188 101 硕秋702 Shuoqiu 702
50 德单123 Dedan 123 102 良星579 Liangxing 579
51 明天695 Mingtian 695 103 鑫研218 Xinyan 218
52 登海111 Denghai 111 104 禾硕818 Heshuo 818

图1

各品种根拔力的频率分布及正态分布曲线"

图2

各根系性状箱式图 1st: 第1层; 2nd: 第2层; 3rd: 第3层; 4th: 第4层; 5th: 第5层; 6th: 第6层; 7th: 第7层; 8th: 第8层"

表2

根拔力与每层节根着生角度的相关性分析"

指标
Index
根拔力
RPF
第1层
1st floor
第2层
2nd floor
第3层
3rd floor
第4层
4th floor
第5层
5th floor
第6层
6th floor
第7层
7th floor
第8层
8th floor
根拔力 RPF 1 0.071 0.185 0.092 0.367** 0.345** 0.249** 0.299** 0.658**
第1层 1st floor 1 0.525** 0.352** 0.323* 0.239 0.139 0.115 0.055
第2层 2nd floor 1 0.378** 0.437** 0.265** 0.128 0.184 0.217*
第3层 3rd floor 1 0.417** 0.475** 0.216* 0.233* 0.261**
第4层 4th floor 1 0.416** 0.215* 0.231* 0.367**
第5层 5th floor 1 0.413** 0.558** 0.379**
第6层 6th floor 1 0.413** 0.207*
第7层 7th floor 1 0.442**
第8层 8th floor 1

表3

根拔力与各层节根根条数的相关系数"

指标
Index
根拔力
RPF
第1层
1st floor
第2层
2nd floor
第3层
3rd floor
第4层
4th floor
第5层
5th floor
第6层
6th floor
第7层
7th floor
第8层
8th floor
根拔力 RPF 1 0.376** 0.234* 0.201** 0.422** 0.454** 0.624** 0.609** 0.207*
第1层 1st floor 1 0.438** 0.147 0.172** -0.033 0.023** 0.113** 0.158**
第2层 2nd floor 1 0.252* 0.045** -0.162** 0.067** 0.079 0.132**
第3层 3rd floor 1 0.083** -0.085 0.002 -0.05 0.078**
第4层 4th floor 1 0.256** 0.243* 0.262 0.097
第5层 5th floor 1 0.386** 0.352** 0.169
第6层 6th floor 1 0.731** 0.163
第7层 7th floor 1 0.128
第8层 8th floor 1

图3

根拔力与节根总条数的关系"

表4

根拔力与节根长度的相关性"

指标
Index
根拔力
RPF
第1层
1st floor
第2层
2nd floor
第3层
3rd floor
第4层
4th floor
第5层
5th floor
第6层
6th floor
第7层
7th floor
第8层
8th floor
根拔力 RPF 1 0.115 0.240* 0.383** 0.365** 0.454** 0.495** 0.568** 0.666**
第1层 1st floor 1 0.231 0.457** 0.634** 0.623** 0.765** 0.780** 0.795**
第2层 2nd floor 1 0.272 0.501** 0.691** 0.710** 0.807** 0.855**
第3层 3rd floor 1 0.167 0.481** 0.669** 0.640* 0.873**
第4层 4th floor 1 0.256 0.474** 0.689** 0.718**
第5层 5th floor 1 0.268 0.591** 0.763**
第6层 6th floor 1 0.227 0.661**
第7层 7th floor 1 0.357
第8层 8th floor 1

图4

根拔力与节根干物质重的关系"

表5

根拔力与根系性状的相关性"

指标
Index
植株根拔力
RPF
根干重
RDM
节根条数
RN
节根总条数
TRN
节根着生角度
RA
节根长度
RL
植株根拔力RPF 1
根干重RDM 0.671** 1
节根条数RN 0.609** 0.379** 1
节根总条数TRN 0.870** 0.585** 0.717** 1
节根着生角度RA 0.299** 0.173 0.302** 0.279** 1
节根长度RL 0.568** 0.394** 0.313** 0.511** 0.077 1

图5

根拔力与根系性状相关性树状图 **相关性在0.01水平上显著(双侧)。*相关性在0.05水平上显著(双侧)。"

表6

不同玉米相关根系性状的主成分特征值及累计贡献率"

成分
Ingredient
初始特征值
Initial eigen value
方差百分比
Percentage of variances (%)
累积
Accumulation (%)
PC1 2.607 31.012 31.012
PC2 1.701 28.156 59.168
PC3 1.283 24.015 83.183
PC4 0.819 9.013 92.196
PC5 0.232 7.804 100.000

表7

玉米不同根系性状的主成分特征值"

指标
Index
第1主成分
PC1
第2主成分
PC2
第3主成分
PC3
根干重RDM -0.201 0.535 -0.249
每层节根条数RN 0.878 0.012 -0.198
节根总条数TRN 0.806 0.776 0.187
节根着生角度RA 0.615 0.769 0.601
节根长度RL -0.014 0.370 0.721

图6

夏玉米品种基于根系性状综合因子得分的聚类分析"

[1] Ranum P, Juan Pablo Pea-Rosas, MN Garcia-Casal. Global maize production, utilization, and consumption. Ann New York Acad Sci, 2014, 1312: 105-112.
[2] 杨红旗, 路凤银, 郝仰坤, 董兵. 中国玉米产业现状与发展问题探讨. 中国农学通报, 2011, 27(6): 368-373.
Yang H Q, Lu F Y, Hao Y K, Dong B. Discussion on current situation and development of corn industry in China. Chin Agric Sci Bull, 2011, 27(6): 368-373 (in Chinese with English abstract).
[3] Bailey-Serres J, Parker J E, Ainsworth E A, Oldroyd G, Schroeder J I. Genetic strategies for improving crop yields. Nature, 2011, 575: 109-118.
doi: 10.1038/s41586-019-1679-0
[4] 李少昆, 赵久然, 董树亭, 赵明, 李潮海, 崔彦宏, 刘永红, 高聚林, 薛吉全, 王立春, 王璞, 陆卫平, 王俊河, 杨祁峰, 王子明. 中国玉米栽培研究进展与展望. 中国农业科学, 2017, 50: 1941-1959.
Li S K, Zhao J R, Dong S T, Zhao M, Li C H, Cui Y H, Liu Y H, Gao J L, Xue J Q, Wang L C, Wang P, Lu W P, Wang J H, Yang Q F, Wang Z M. Research progress and prospect of maize cultivation in China. Sci Agric Sin, 2017, 50: 1941-1959. (in Chinese with English abstract)
[5] 王杰, 刘实, 兰玉彬, 陈立文, 郭永青, 王颖. 基于HJ-1A/BCCD数据的玉米倒伏识别方法. 中国农业气象, 2020, 41: 121-128.
Wang J, Liu S, Lan Y B, Chen L W, Guo Y Q, Wang Y. Identification method of corn lodging based on HJ-1A/BCCD data. Chin J Agrom, 2020, 41: 121-128. (in Chinese with English abstract)
[6] 薛军, 李璐璐, 谢瑞芝, 王克如, 侯鹏, 明博, 张万旭, 张国强, 高尚, 白氏杰, 初振东, 李少昆. 倒伏对玉米机械粒收田间损失和收获效率的影响. 作物学报, 2018, 44: 1774-1781.
Xue J, Li L L, Xie R Z, Wang K R, Hou P, Ming B, Zhang W X, Zhang G Q, Gao S, Bai S J, Chu Z D, Li S K. Effects of lodging on field loss and harvest efficiency in mechanical grain harvesting of maize. Acta Agron Sin, 2018, 44: 1774-1781. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.01774
[7] He C, Poysa V, Yu K. Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivars. Theor Appl Gene, 2003, 106: 363-373.
doi: 10.1007/s00122-002-1076-0
[8] 薛军, 王克如, 谢瑞芝, 勾玲, 张旺锋, 明博, 侯鹏, 李少昆. 玉米生长后期倒伏研究进展. 中国农业科学, 2018, 51: 1845-1854.
Xue J, Wang K, Xie R Z, Gou L, Zhang W F, Ming B, Hou P, Li S K. Advances in studies on lodging of maize at late growth stage. Sci Agric Sin, 2018, 51: 1845-1854. (in Chinese with English abstract)
[9] Sekhon R S, Joyner C N. Ackerman A J, McMahan C S, Cook D D, Robertson D J. Stalk bending strength is strongly associated with maize stalk lodging incidence across multiple environments. Field Crops Res, 2020, 249: 107737.
doi: 10.1016/j.fcr.2020.107737
[10] 杨扬, 杨建宇, 李绍明, 张晓东, 朱德海, 刘哲, 米春桥, 肖开能. 玉米倒伏胁迫影响因子的空间回归分析. 农业工程学报, 2011, 27(6): 244-249.
Yang Y, Yang J Y, Li S M, Zhang X D, Zhu D H, Liu Z, Mi C Q, Xiao K N. Spatial regression analysis of influence factors of maize lodging stress. Trans CSAE, 2011, 27(6): 244-249. (in Chinese with English abstract)
[11] 赵雪, 周顺利. 玉米抗茎倒伏能力相关性状与评价研究进展. 作物学报, 2022, 48: 15-26.
Zhao X, Zhou S L. Research progress on traits and evaluation of stem lodging resistance in maize. Acta Agron Sin, 2022, 48: 15-26. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.03055
[12] 田伯红. 禾谷类作物抗倒伏性的研究方法与谷子抗倒性评价. 植物遗传资源学报, 2013, 14: 265-269.
Tian B H. Study method of lodging resistance of cereal and evaluation of lodging resistance in millet. J Plant Gen Res, 2013, 14: 265-269. (in Chinese with English abstract)
[13] 曹亚娟, 沙莎, 何闻静, 韩霜, 罗红兵, 陈平平, 易镇邪. 玉米籽粒机收影响因素及其栽培调控研究进展. 中国农学通报, 2020, 36(1): 19-23.
Cao Y J, Sha S, He W J, Han S, Luo H B, Chen P P, Yi Z X. Research progress on influencing factors of corn grain harvesting and its cultivation regulation. Chin Agric Sci Bull, 2020, 36(1): 19-23. (in Chinese with English abstract)
[14] Berry P M, Baker C J, Hatley D, Dong R, Wang X, Blackburn G A, Miao Y, Sterling M, Whyatt J D. Development and application of a model for calculating the risk of stem and root lodging in maize. Field Crops Res, 2021, 262: 108037.
doi: 10.1016/j.fcr.2020.108037
[15] Bian D H, Jia G P, Cai L J, Ma Z Y, Egrinya Eneji A, Cui Y H. Effects of tillage practices on root characteristics and root lodging resistance of maize. Field Crops Res, 2016, 185: 89-96.
doi: 10.1016/j.fcr.2015.10.008
[16] 谷娇娇, 胡博文, 贾琰, 沙汉景, 李经纬, 马超, 赵宏伟. 盐胁迫对水稻根系相关性状及产量的影响. 作物杂志, 2019, (4): 176-182.
Gu J J, Hu B W, Jia Y, Sha H J, Li J W, Ma C, Zhao H W. Effects of salt stress on root traits and yield of rice. Crops, 2019, (4): 176-182. (in Chinese with English abstract)
[17] 宋朝玉, 张继余, 张清霞, 陈希群, 李祥云, 王圣健. 玉米倒伏的类型、原因及预防、治理措施. 作物杂志, 2006, (1): 36-38.
Song C Y, Zhang J Y, Zhang Q X, Chen X Q, Li X Y, Wang S J. Types, causes, prevention and control measures of maize lodging. Crops, 2006, (1): 36-38. (in Chinese with English abstract)
[18] 薛军, 王克如, 谢瑞芝, 勾玲, 张旺锋, 明博, 侯鹏, 李少昆. 玉米生长后期倒伏研究进展. 中国农业科学, 2018, 51: 1845-1854.
Xue J, Wang K, Xie R Z, Gou L, Zhang W F, Ming B, Hou P, Li S K. Advances in studies on lodging of maize at late growth stage. Sci Agric Sin, 2018, 51: 1845-1854. (in Chinese with English abstract)
[19] 黎裕, 李英慧, 杨庆文, 张锦鹏, 张金梅, 邱丽娟, 王天宇. 基于基因组学的作物种质资源研究: 现状与展望. 中国农业科学, 2015, 48: 3333-3353.
Li Y, Li Y H, Yang Q W, Zhang J P, Zhang J M, Qiu L J, Wang T Y. Crop germplasm resources based on genomics: present situation and prospect. Sci Agric Sin, 2015, 48: 3333-3353. (in Chinese with English abstract)
[20] Kuai J, Yang Y, Sun Y Y, Zhou G S, Zuo Q S, Wu J S, Ling X X. Paclobutrazol increases canola seed yield by enhancing lodging and pod shatter resistance in Brassica napus L. Field Crops Res, 2015, 180: 10-20.
doi: 10.1016/j.fcr.2015.05.004
[21] Piera-Chavez F J. Genotypic variation for lodging tolerance in spring wheat: wider and deeper root plates, a feature of low lodging, high yielding germplasm. Field Crops Res, 2020, 258: 107942.
doi: 10.1016/j.fcr.2020.107942
[22] 丰光, 景希强, 李妍妍, 王亮, 黄长玲. 玉米茎秆性状与倒伏性的相关和通径分析. 华北农学报, 2010, 25: 72-74.
doi: 10.7668/hbnxb.2010.S1.017
Feng G, Jing X Q, Li Y Y, Wang L, Huang C L. Correlation and path analysis of stalk traits and lodging property in maize. Acta Agric Sin, 2010, 25: 72-74. (in Chinese with English abstract)
[23] Xue J, Gao S, Fan Y H, Li L L, Ming B, Wang K R, Xie R Z, Hou P, Li S K. Traits of plant morphology, stalk mechanical strength, and biomass accumulation in the selection of lodging-resistant maize cultivars. Eur J Agron, 2020, 117: 126073.
doi: 10.1016/j.eja.2020.126073
[24] 杨丽雯, 张永清. 4种旱作谷类作物根系发育规律的研究. 中国农业科学, 2011, 44: 2244-2251.
Yang L W, Zhang Y Q. Study on root development of four upland cereal crops. Sci Agric Sin, 2011, 44: 2244-2251. (in Chinese with English abstract)
[25] Zhang P, YanY, Gu S C, Wang Y Y, Xu C L, Sheng D C, Li Y B, Wang P, Huang S B. Lodging resistance in maize: a function of root-shoot interactions. Eur J Agron, 2022, 132: 126393.
doi: 10.1016/j.eja.2021.126393
[26] Wang Q, Xue J, Chen J L, Fan Y H, Zhang G Q, Xie R Z, Ming B, Hou P, Wang K R, Li S K. Key indicators affecting maize stalk lodging resistance of different growth periods under different sowing dates. J Integr Agric, 2020, 19: 2419-2428.
doi: 10.1016/S2095-3119(20)63259-2
[27] Singh V, Oosterom E, Jordan D R. Morphological and architectural development of root systems in sorghum and maize. Plant Soil, 2010, 333: 287-299.
doi: 10.1007/s11104-010-0343-0
[28] 春亮, 陈范骏, 张福锁, 米国华. 不同氮效率玉米杂交种的根系生长、氮素吸收与产量形成. 植物营养与肥料学报, 2005, 11: 615-619.
Chun L, Chen F J, Zhang F S, Mi G H. Root growth, nitrogen uptake and yield formation of hybrid maize with different N efficiency. Plant Nutr Fert Sci, 2005, 11: 615-619. (in Chinese with English abstract)
[29] 易镇邪, 王璞, 屠乃美. 夏播玉米根系分布与含氮量对氮肥类型与施氮量的响应. 植物营养与肥料学报, 2009, 15(1): 91-98.
Yi Z X, Wang P, Tu N M. Responses of roots distribution and nitrogen content of summer maize to nitrogen fertilization types and amounts. Plant Nutr Fert Sci, 2009, 15(1): 91-98. (in Chinese with English abstract)
[30] Bahn M, Lattanzi F A, Hasibeder R, Wild B, Koranda M, Danese V, Brüggemann N, Schmitt M, Siegwolf R, Richter A. Responses of belowground carbon allocation dynamics to extended shading in mountain grassland. New Phytol, 2013, 198: 116-126.
doi: 10.1111/nph.12138 pmid: 23383758
[31] Poorter H, Niklas K J, Reich P B, Oleksyn J, Poot P, Mommer L. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol, 2012, 193: 30-50.
doi: 10.1111/j.1469-8137.2011.03952.x pmid: 22085245
[1] 殷芳冰, 李雅楠, 鲍建喜, 马雅杰, 秦文萱, 王锐璞, 龙艳, 李金萍, 董振营, 万向元. 玉米雌穗产量相关性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2023, 49(2): 377-391.
[2] 宋杰, 王少祥, 李亮, 黄金苓, 赵斌, 张吉旺, 任佰朝, 刘鹏. 施钾量对夏玉米氮、磷、钾吸收利用和籽粒产量的影响[J]. 作物学报, 2023, 49(2): 539-551.
[3] 刘梦, 张垚, 葛均筑, 周宝元, 吴锡冬, 杨永安, 侯海鹏. 不同降雨年型施氮量与收获期对夏玉米产量及氮肥利用效率的影响[J]. 作物学报, 2023, 49(2): 497-510.
[4] 徐彤, 吕艳杰, 邵玺文, 耿艳秋, 王永军. 不同时期化控对密植玉米冠层结构及籽粒灌浆特性的影响[J]. 作物学报, 2023, 49(2): 472-484.
[5] 孙智超, 张吉旺. 弱光胁迫影响玉米产量形成的生理机制及调控效应[J]. 作物学报, 2023, 49(1): 12-23.
[6] 陈冰洁, 张富粮, 杨硕, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 郝晓峰, 张学林. 不同形态氮肥下丛枝菌根真菌对玉米灌浆期生理特性及产量和品质的影响[J]. 作物学报, 2023, 49(1): 249-261.
[7] 王锐璞, 董振营, 高悦欣, 鲍建喜, 殷芳冰, 李金萍, 龙艳, 万向元. 玉米籽粒淀粉含量全基因组关联分析和候选基因预测[J]. 作物学报, 2023, 49(1): 140-152.
[8] 商蒙非, 石晓宇, 赵炯超, 李硕, 褚庆全. 气候变化背景下中国不同区域玉米生育期高温胁迫时空变化特征[J]. 作物学报, 2023, 49(1): 167-176.
[9] 段灿星, 崔丽娜, 夏玉生, 董怀玉, 杨知还, 胡清玉, 孙素丽, 李晓, 朱振东, 王晓鸣. 玉米种质资源对拟轮枝镰孢与禾谷镰孢穗腐病的抗性精准鉴定与分析[J]. 作物学报, 2022, 48(9): 2155-2167.
[10] 张振博, 屈馨月, 于宁宁, 任佰朝, 刘鹏, 赵斌, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和内源激素作用的影响[J]. 作物学报, 2022, 48(9): 2366-2376.
[11] 郭瑶, 柴强, 殷文, 范虹. 玉米密植光合生理机制及应用途径研究进展[J]. 作物学报, 2022, 48(8): 1871-1883.
[12] 王天波, 赫文学, 张峻铭, 吕伟增, 梁雨欢, 卢洋, 王雨露, 谷丰序, 宋词, 陈军营. 人工老化玉米种胚ROS产生及ATP合成酶亚基mRNA完整性研究[J]. 作物学报, 2022, 48(8): 1996-2006.
[13] 裴丽珍, 陈远学, 张雯雯, 肖华, 张森, 周元, 徐开未. 有机物料还田对夏玉米穗位叶光合性能及氮代谢的影响[J]. 作物学报, 2022, 48(8): 2115-2124.
[14] 杨迎霞, 张冠, 王梦梦, 陆国清, 王倩, 陈锐. 基于高通量测序技术的转基因玉米GM11061分子特征研究[J]. 作物学报, 2022, 48(7): 1843-1850.
[15] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .