欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (1): 200-210.doi: 10.3724/SP.J.1006.2023.12083

• 耕作栽培·生理生化 • 上一篇    下一篇

氮素穗肥对粳米淀粉特性和结构的影响及其与食用特征的关系

蒋岩1(), 赵灿1, 陈越1, 刘光明1, 赵凌天1, 廖平强1, 王维领1, 许轲1, 李国辉1, 吴文革2,*(), 霍中洋1,*()   

  1. 1江苏省作物遗传生理重点实验室 / 江苏省作物栽培生理重点实验室/ 江苏省粮食作物现代产业技术协同创新中心 / 扬州大学, 江苏扬州225009
    2安徽省农业科学院水稻研究所, 安徽合肥 230001
  • 收稿日期:2021-12-04 接受日期:2022-06-07 出版日期:2023-01-12 网络出版日期:2022-07-05
  • 通讯作者: 吴文革,霍中洋
  • 作者简介:E-mail: mx120200671@yzu.edu.cn
  • 基金资助:
    国家自然科学基金项目(32001469);江苏省重点研发计划项目(BE2020319);江苏省重点研发计划项目(BE2019377);江苏省重点研发计划项目(BE2021361);国家重点研发计划项目(2018YFD0300802);国家现代农业产业技术体系建设专项(Rice, CARS-01-28);扬州大学研究生科研与实践创新计划资助项目(KYCX21_3242);江苏省高校优势学科建设工程资助项目资助

Effects of nitrogen panicle fertilizer application on physicochemical properties and fine structure of japonica rice starch and its relationship with eating quality

JIANG Yan1(), ZHAO Can1, CHEN Yue1, LIU Guang-Ming1, ZHAO Ling-Tian1, LIAO Ping-Qiang1, WANG Wei-Ling1, XU Ke1, LI Guo-Hui1, WU Wen-Ge2,*(), HUO Zhong-Yang1,*()   

  1. 1Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Cultivation and Physiology / Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops / Yangzhou University, Yangzhou 225009, Jiangsu, China
    2Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, Anhui, China
  • Received:2021-12-04 Accepted:2022-06-07 Published:2023-01-12 Published online:2022-07-05
  • Contact: WU Wen-Ge,HUO Zhong-Yang
  • Supported by:
    National Natural Science Foundation of China(32001469);Key Research Program of Jiangsu Province(BE2020319);Key Research Program of Jiangsu Province(BE2019377);Key Research Program of Jiangsu Province(BE2021361);National Key Research and Development Program of China(2018YFD0300802);China Agriculture Research System(Rice, CARS-01-28);Postgraduate Research & Practice Innovation Program of Yangzhou University(KYCX21_3242);Priority Academic Program Development of Jiangsu Higher Education Institutions

摘要:

为研究氮素穗肥对粳米淀粉理化特性和精细结构的影响, 明确粳米食用特征与淀粉特性和结构的关系, 以南粳9108和南粳0212为供试材料, 在相同基蘖肥用量下设置3个穗肥施氮水平(0、45和135 kg N hm-2), 测定了不同处理下粳米的淀粉特性及其结构, 分析了其与食用特征间的关系。施用氮素穗肥降低了粳米食味值, 高氮下差异显著。硬度、弹性、黏性和平衡性的绝对值与总蛋白含量均随穗肥施氮量的增加而提高, 表观直链淀粉含量则与之相反。在淀粉特性和结构方面, 增施氮素穗肥提高了淀粉溶解度、膨胀势、糊化焓、小淀粉颗粒占比、相对结晶度、红外比值(1045/1022 cm-1), 降低了淀粉回生焓、回生度、大淀粉颗粒占比、淀粉平均直径和红外比值(1022/995 cm-1), 高氮影响更趋明显。施用氮素穗肥降低了表观直链淀粉含量, 提高了淀粉表层的有序性和结晶区稳定性, 淀粉粒径变小, 进而阻碍了淀粉膨胀和糊化, 米饭硬度升高, 食用口感变差。适量施用氮素穗肥可实现粳稻优质丰产协同。

关键词: 氮素穗肥, 粳稻, 食味品质, 淀粉理化特性, 淀粉精细结构

Abstract:

To clarify the variations of physicochemical properties and the fine structure of japonica rice starch under different nitrogen panicle fertilizer treatment and to explore the relationship between eating quality and starch properties and structure, three panicle fertilizer nitrogen application levels (0, 45, and 135 kg N hm-2) were set under same basal and tiller fertilizer with Nanjing 9108 and Nanjing 0212 as the materials. Starch properties and structure of japonica rice under different treatments were determined, and the relationship between starch characteristics and eating quality was examined. The result indicated that application of nitrogen panicle fertilizer reduced the eating value of japonica rice, and there was significant difference in the high nitrogen treatment. Hardness, resilience, the absolute value of stickiness and balance, and the total protein content increased as nitrogen application rate were increased, while the apparent amylose content had the opposite trend. In terms of starch properties and structure, application of nitrogen panicle fertilizer increased starch solubility and swelling power, gelatinization enthalpy, small starch granules, relative crystallinity, and infrared ratio of 1045/1022 cm-1, while decreased retrogradation enthalpy and percentage, large starch granules, starch average diameter and infrared ratio of 1022/995 cm-1, and the trend appeared obvious especially under high nitrogen treatment. In conclusion, applying nitrogen panicle fertilizer can reduce the apparent amylose content, improve the surface order of starch and the stability of crystal region, decrease the starch granules size, thereby hindering the starch swelling and gelatinization, leading to the increase of rice hardness, eventually deteriorating the eating quality. Appropriate application of nitrogen panicle fertilizer can realize the coordination of excellent quality and high yield of japonica rice.

Key words: nitrogen panicle fertilizer, japonica rice, eating quality, physicochemical properties of starch, fine structure of starches

图1

2020年试验地水稻生长季平均温度和降雨量"

表1

氮素穗肥对粳稻产量及产量构成要素的影响"

品种
Variety
处理
Treatment
有效穗数
Panicles
(×104 hm-2)
每穗粒数
Grains per
panicle
千粒重
1000-grain
weight (g)
结实率
Seed-setting rate (%)
实际产量
Harvest yield
(t hm-2)
南粳9018
NJ 9108
CK 293.43±3.83 b 113.32±3.02 b 27.37±0.06 a 95.01±0.59 a 8.55±0.28 b
LN 296.22±2.64 ab 130.82±1.45 a 26.83±0.04 b 94.31±0.67 a 9.49±0.11 a
HN 300.61±2.13 a 133.39±1.23 a 26.76±0.10 b 92.93±0.57 b 9.83±0.03 a
南粳0212
NJ 0212
CK 297.34±1.78 b 109.24±2.78 c 27.92±0.07 a 94.17±0.61 a 8.59±0.09 b
LN 302.86±2.17 a 126.11±1.95 b 27.55±0.07 b 93.45±0.49 ab 9.34±0.12 a
HN 304.50±1.96 a 130.86±2.09 a 26.85±0.08 c 92.72±0.51 b 9.88±0.21 a

表2

氮素穗肥对粳米食味值和质构特性的影响"

品种
Variety
处理
Treatment
食味值
Taste value
硬度
Hardness (g)
弹性
Resilience (%)
黏性
Stickiness (g)
平衡性
Balance
南粳9018
NJ 9108
CK 73.97±0.59 a 106.58±11.54 b 0.469±0.003 c -1116.70±17.45 a -0.221±0.008 a
LN 72.93±0.68 a 122.85±10.23 b 0.486±0.002 b -1200.44±6.67 b -0.241±0.011 a
HN 70.67±0.39 b 163.32±6.61 a 0.502±0.004 a -1301.77±33.19 c -0.267±0.003 b
南粳0212
NJ 0212
CK 59.67±0.50 a 110.94±9.90 b 0.464±0.018 b -990.39±62.08 a -0.138±0.018 a
LN 58.33±0.78 a 130.51±6.33 b 0.489±0.010 b -1078.24±26.53 a -0.164±0.003 b
HN 55.00±0.42 b 161.99±10.84 a 0.535±0.013 a -1231.28±15.41 b -0.186±0.008 b

表3

氮素穗肥对表观直链淀粉、总蛋白含量和淀粉溶解度、膨胀势的影响"

品种
Variety
处理
Treatment
表观直链淀粉含量
Apparent amylose
content (%)
总蛋白含量
Total protein
content (%)
膨胀势
Swelling power
(g g-1)
溶解度
Solubility
(%)
南粳9018
NJ 9108
CK 10.10±0.11 a 7.53±0.06 c 20.63±0.12 c 19.78±0.27 b
LN 9.37±0.05 b 7.76±0.06 b 22.27±0.08 b 22.34±0.33 a
HN 9.07±0.04 c 8.13±0.05 a 23.58±0.34 a 23.10±0.46 a
南粳0212
NJ 0212
CK 17.64±0.13 a 7.18±0.02 c 17.40±0.51 c 17.58±0.15 b
LN 16.91±0.08 b 7.46±0.01 b 18.84±0.22 b 18.31±0.48 ab
HN 16.71±0.03 b 7.93±0.02 a 20.72±0.17 a 19.22±0.37 a

表4

氮素穗肥对淀粉热力学特性的影响"

品种
Variety
处理
Treatment
糊化焓
ΔHgel (J g-1)
起始温度
T0 (℃)
峰值温度
TP (℃)
终止温度
TC (℃)
回生焓
ΔHret (J g-1)
回生度
R (%)
南粳9018
NJ 9108
CK 10.01±0.10 b 60.25±0.35 a 67.90±0.40 a 75.85±0.95 a 2.39±0.08 a 23.86±0.55 a
LN 10.70±0.13 a 59.25±0.15 a 67.70±0.30 a 75.00±0.80 a 1.92±0.03 b 17.93±0.50 b
HN 11.03±0.03 a 60.25±0.25 a 67.95±0.05 a 75.70±0.30 a 1.52±0.09 b 13.82±0.88 c
南粳0212
NJ 0212
CK 10.40±0.17 c 59.80±0.00 ab 67.65±0.05 a 74.40±0.00 b 2.41±0.07 a 23.14±0.28 a
LN 11.04±0.05 b 58.60±0.20 b 66.80±0.00 b 75.50±0.20 a 2.06±0.03 b 18.66±0.15 b
HN 12.02±0.10 a 60.15±0.25 a 67.65±0.05 a 75.15±0.05 a 1.77±0.03 b 14.76±0.34 c

图2

不同氮素穗肥下淀粉粒径分布图 处理和缩写同表1。"

表5

氮素穗肥对淀粉粒径分布的影响"

品种
Variety
处理
Treatment
小淀粉颗粒占比
Small starch
granules
≤ 2 μm (%)
中淀粉颗粒占比
Middle starch
granules
2-5 μm (%)
大淀粉颗粒占比Large starch
granules
≥ 5 μm (%)
体积平均直径
D[4,3]
(μm)
表面积平均直径
D[3,2]
(μm)
南粳9018
NJ 9108
CK 20.15±0.14 c 16.25±0.03 b 63.61±0.16 a 5.26±0.02 a 2.83±0.01 a
LN 20.59±0.12 b 18.08±0.03 a 61.33±0.09 c 5.14±0.01 b 2.78±0.01 b
HN 21.60±0.08 a 15.89±0.04 c 62.51±0.05 b 5.16±0.00 b 2.68±0.01 c
南粳0212
NJ 0212
CK 20.86±0.26 c 19.84±0.81 b 59.31±1.06 a 4.98±0.01 a 2.63±0.00 a
LN 21.48±0.12 b 21.15±0.09 a 57.37±0.04 b 4.93±0.00 b 2.61±0.01 a
HN 22.16±0.16 a 21.31±0.69 a 56.53±0.84 b 4.84±0.00 c 2.53±0.01 b

图3

不同氮素穗肥下淀粉X射线衍射图谱 处理和缩写同表1。"

表6

氮素穗肥对淀粉相对结晶度和红外比例的影响"

品种
Variety
处理
Treatment
相对结晶度
Relative crystallinity (%)
红外比例 Infrared ratio
1045/1022 cm-1 1022/995 cm-1
南粳9018
NJ 9108
CK 21.19±0.12 c 0.550±0.001 b 1.042±0.002 a
LN 22.24±0.15 b 0.567±0.001 b 1.031±0.001 ab
HN 23.33±0.11 a 0.586±0.006 a 1.024±0.002 b
南粳0212
NJ 0212
CK 20.88±0.06 c 0.569±0.001 b 1.042±0.002 a
LN 21.48±0.04 b 0.574±0.002 b 1.037±0.003 ab
HN 21.81±0.08 a 0.592±0.001 a 1.027±0.001 b

图4

不同氮素穗肥下淀粉ATR-FTIR光谱 处理和缩写同表1。"

图5

氮素穗肥下粳米食用特征与淀粉特性和结构的Pearson相关性热图 AAC表示表观直链淀粉含量, TPA表示总蛋白含量, SP表示膨胀势, ΔHgel、ΔHret、R分别表示糊化焓、回生焓和回生度, SSG、MSG、LSG、D[4,3]、D[3,2]分别表示小淀粉颗粒占比、中淀粉颗粒占比、大淀粉颗粒占比、体积平均直径和表面积平均直径, RC、1045/1022、1022/995分别表示相对结晶度, 红外比例1045/1022 cm-1和1022/995 cm-1, *表示在P < 0.05水平上显著。"

[1] Cao L, Zhan X, Chen S, Feng Y, Wu W, Shen X, Cheng S. Breeding methodology and practice of super rice in China. Rice Sci, 2010, 17: 87-93.
doi: 10.1016/S1672-6308(08)60109-2
[2] Fitzgerald M A, McCouch S R, Hall R D. Not just a grain of rice: the quest for quality. Trends Plant Sci, 2009, 14: 133-139.
doi: 10.1016/j.tplants.2008.12.004 pmid: 19230745
[3] Zeeman S C, Kossmann J, Smith A M. Starch: its metabolism, evolution, and biotechnological modification in plants. Annu Rev Plant Biol, 2010, 61: 209-234.
doi: 10.1146/annurev-arplant-042809-112301 pmid: 20192737
[4] Li C, Hu Y M, Gu F T, Gong B. Causal relations among starch fine molecular structure, lamellar/crystalline structure and in vitro digestion kinetics of native rice starch. Food Funct, 2021, 12: 682-695.
doi: 10.1039/D0FO02934C
[5] Seung D. Amylose in starch: towards an understanding of biosynthesis, structure and function. New Phytol, 2020, 228: 1490-1504.
doi: 10.1111/nph.16858
[6] 龚波. 水稻淀粉精细结构决定其热力学性质和消化特性. 扬州大学硕士学位论文, 江苏扬州, 2020.
Gong B. Rice Starch Molecular Fine Structure Determines its Thermal and Digestive Properties. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2020. (in Chinese with English abstract)
[7] Li H Y, Prakash S, Nicholson T M, Fitzgerald M A, Gilbert R G. Instrumental measurement of cooked rice texture by dynamic rheological testing and its relation to the fine structure of rice starch. Carbohyd Polym, 2016, 146: 253-263.
doi: 10.1016/j.carbpol.2016.03.045 pmid: 27112873
[8] Zhou T Y, Zhou Q, Li E P, Yuan L M, Wang W I, Zhang H, Liu L J, Wang Z Q, Yang J C, Gu J F. Effects of nitrogen fertilizer on structure and physicochemical properties of ‘super’ rice starch. Carbohyd Polym, 2020, 239: 116237.
doi: 10.1016/j.carbpol.2020.116237
[9] Hu Y J, Cong S M, Zhang H C. Comparison of the grain quality and starch physicochemical properties between japonica rice cultivars with different contents of amylose, as affected by nitrogen fertilization. Agriculture, 2021, 11: 616.
doi: 10.3390/agriculture11070616
[10] Li H Y, Gilbert R G. Starch molecular structure: the basis for an improved understanding of cooked rice texture. Carbohyd Polym, 2018, 195: 9-17.
doi: S0144-8617(18)30451-X pmid: 29805029
[11] Cheng B, Jiang Y, Cao C G. Balance rice yield and eating quality by changing the traditional nitrogen management for sustainable production in China. J Clean Prod, 2021, 312: 127793.
doi: 10.1016/j.jclepro.2021.127793
[12] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响. 作物学报, 2022, 48: 656-666.
doi: 10.3724/SP.J.1006.2022.12012
Chen Y, Li S Y, Zhu A, Liu K, Zhang Y J, Zhang H, Gu J F, Zhang W Y, Liu L J, Yang J C. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing. Acta Agron Sin, 2022, 48: 656-666. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.12012
[13] Hu Q, Liu Q Y, Jiang W Q, Qiu S, Wei H Y, Zhang H C, Liu G D, Xing Z P, Hu Y J, Guo B W, Gao H. Effects of mid-stage nitrogen application timing on the morphological structure and physicochemical properties of japonica rice starch. J Sci Food Agric, 2021, 101: 2463-2471.
doi: 10.1002/jsfa.10872
[14] Yang X Y, Bi J G, Gilbert R G, Li G H, Liu Z H, Wang S H, Ding Y F. Amylopectin chain length distribution in grains of japonica rice as affected by nitrogen fertilizer and genotype. J Cereal Sci, 2016, 71: 230-238.
doi: 10.1016/j.jcs.2016.09.003
[15] Tao K Y, Yu W W, Prakash S, Gilbert R G. High-amylose rice: Starch molecular structural features controlling cooked rice texture and preference. Carbohyd Polym, 2019, 219: 251-260.
doi: S0144-8617(19)30536-3 pmid: 31151523
[16] Lu D L, Lu W P. Effects of protein removal on the physicochemical properties of waxy maize flours. Die Stärke, 2012, 64: 874-881.
doi: 10.1002/star.201200038
[17] Man J M, Yang Y, Zhang C Q, Zhou X H, Dong Y, Zhang F M, Liu Q Q, Wei C X. Structural changes of high-amylose rice starch residues following in vitro and in vivo digestion. J Agric Food Chem, 2012, 60: 9332-9341.
doi: 10.1021/jf302966f
[18] Sevenou O, Hill S E, Farhat I A, Mitchell J R. Organization of the external region of the starch granule as determined by infrared spectroscopy. Int J Biol Macromol, 2002, 31: 79-85.
pmid: 12559430
[19] 唐健, 唐闯, 郭保卫, 张诚信, 张振振, 王科, 张洪程, 陈恒, 孙明珠. 氮肥施用量对机插优质晚稻产量和稻米品质的影响. 作物学报, 2020, 46: 117-130.
doi: 10.3724/SP.J.1006.2020.92010
Tang J, Tang C, Guo B W, Zhang C X, Zhang Z Z, Wang K, Zhang H C, Chen H, Sun M Z. Effect of nitrogen application on yield and rice quality of mechanical transplanting high quality late rice. Acta Agron Sin, 2020, 46: 117-130. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.92010
[20] Kaur L, Singh J, McCarthy O J, Singh H. Physico-chemical, rheological and structural properties of fractionated potato starches. J Food Eng, 2007, 82: 383-394.
doi: 10.1016/j.jfoodeng.2007.02.059
[21] 董明辉, 陈培峰, 顾俊荣, 乔中英, 黄萌, 朱赟德, 赵步洪. 麦秸还田和氮肥运筹对超级杂交稻茎鞘物质运转与籽粒灌浆特性的影响. 作物学报, 2013, 39: 673-681.
Dong M H, Chen P F, Gu J R, Qiao Z Y, Huang M, Zhu B D, Zhao B H. Effects of wheat straw-residue applied to field and nitrogen management on photosynthate transportation of stem and sheath and grain-filling characteristics in super hybrid rice. Acta Agron Sin, 2013, 39: 673-681. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.00673
[22] Yang Y, Lin G Q, Yu X R, Wu Y F, Xiong F. Rice starch accumulation at different endosperm regions and physical properties under nitrogen treatment at panicle initiation stage. Int J Biol Macromol, 2020, 160: 328-339.
doi: S0141-8130(20)33371-7 pmid: 32473221
[23] Zhu D W, Zhang H C, Guo B W, Xu K, Dai Q G, Wei C X, Zhou G S, Huo Z Y. Effects of nitrogen level on structure and physicochemical properties of rice starch. Food Hydrocoll, 2017, 63: 525-532.
doi: 10.1016/j.foodhyd.2016.09.042
[24] Gong B, Cheng L, Gilbert R G, Li C. Distribution of short to medium amylose chains are major controllers of in vitro digestion of retrograded rice starch. Food Hydrocoll, 2019, 96: 634-643.
doi: 10.1016/j.foodhyd.2019.06.003
[25] Teng B, Xi M, Du S Y, Zhou Y J, Zhang Y, Zhang Y X, Luo Z X, Wu W. Structural and functional properties of indica rice starch as influenced by late-stage nitrogen fertilization. Int J Food Prop, 2021, 24: 249-263.
doi: 10.1080/10942912.2021.1872620
[26] Hanashiro I, Abe J, Hizukuri S. A periodic distribution of the chain length of amylopectin as revealed by high-performance anion-exchange chromatography. Carbohyd Res, 1996, 283: 151-159.
doi: 10.1016/0008-6215(95)00408-4
[27] Lopez-Rubio A, Flanagan B M, Gilbert E P, Gidley M J. A novel approach for calculating starch crystallinity and its correlation with double helix content: a combined XRD and NMR study. Biopolymers, 2008, 89: 761-768.
doi: 10.1002/bip.21005 pmid: 18428208
[28] Zhu D W, Fang C Y, Qian Z H, Guo B W, Huo Z Y. Differences in starch structure, physicochemical properties and texture characteristics in superior and inferior grains of rice varieties with different amylose contents. Food Hydrocoll, 2021, 110: 106170.
doi: 10.1016/j.foodhyd.2020.106170
[29] Tappiban P, Ying Y N, Xu F F, Bao J S. Proteomics and post- translational modifications of starch biosynthesis-related proteins in developing seeds of rice. Int J Mol Sci, 2021, 22: 5901.
doi: 10.3390/ijms22115901
[30] Hannah L C, James M. The complexities of starch biosynthesis in cereal endosperms. Curr Opin Biotechnol, 2008, 19: 160-165.
doi: 10.1016/j.copbio.2008.02.013
[31] Nakamura Y, Francisco P B, Hosaka Y, Sato A, Sawada T, Kubo A, Fujita N. Essential amino acids of starch synthase IIa differentiate amylopectin structure and starch quality between japonica and indica rice varieties. Plant Mol Biol, 2005, 58: 213-227.
doi: 10.1007/s11103-005-6507-2
[32] Iqbal A, Xie H M, He L, Ahmad S, Hussain I, Raza H, Khan A, Wei S Q, Quan Z, Wu K, Ali I, Jiang L G. Partial substitution of organic nitrogen with synthetic nitrogen enhances rice yield, grain starch metabolism and related genes expression under the dual cropping system. Saud J Biol Sci, 2021, 28: 1283-1296.
[33] 陈云, 刘昆, 张宏路, 李思宇, 张亚军, 韦佳利, 张耗, 顾骏飞, 刘立军, 杨建昌. 机插密度和穗肥减量对优质食味水稻品种籽粒淀粉合成的影响. 作物学报, 2021, 47: 1540-1550.
doi: 10.3724/SP.J.1006.2021.02069
Chen Y, Liu K, Zhang H L, Li S Y, Zhang Y J, Wei J L, Zhang H, Gu J F, Liu L J, Yang J C. Effects of machine transplanting density and panicle nitrogen fertilizer reduction on grains starch synthesis in good taste rice cultivars. Acta Agron Sin, 2021, 47: 1540-1550. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.02069
[34] 张洪程, 张军, 龚金龙, 常勇, 李敏, 高辉, 戴其根, 霍中洋, 许轲, 魏海燕. “籼改粳”的生产优势及其形成机理. 中国农业科学, 2013, 46: 686-704.
Zhang H C, Zhang J, Gong J L, Chang Y, Li M, Gao H, Dai Q G, Huo Z Y, Xu K, Wei H Y. The productive advantages and formation mechanisms of “indica rice to japonica rice”. Sci Agric Sin, 2013, 46: 686-704. (in Chinese with English abstract)
[35] 佴军, 张洪程, 陆建飞. 江苏省水稻生产30年地域格局变化及影响因素分析. 中国农业科学, 2012, 45: 3446-3452.
Nai J, Zhang H C, Lu J F. Regional pattern changes of rice production in thirty years and its influencing factors in Jiangsu province. Sci Agric Sin, 2012, 45: 3446-3452. (in Chinese with English abstract)
[36] Zhou C C, Huang Y C, Jia B Y, Wang Y, Wang Y, Xu Q, Li R F, Wang S, Dou F G. Effects of cultivar, nitrogen rate, and planting density on rice-grain quality. Agronomy, 2018, 8: 246.
doi: 10.3390/agronomy8110246
[37] Lindeboom N, Chang P R, Tyler R T. Analytical, biochemical and physicochemical aspects of starch granule size, with emphasis on small granule starches: a review. Die Stärke, 2004, 56: 89-99.
doi: 10.1002/star.200300218
[38] Saleh M I, Meullenet J. Effect of protein disruption using proteolytic treatment on cooked rice texture properties. J Texture Stud, 2007, 38: 423-437.
doi: 10.1111/j.1745-4603.2007.00105.x
[39] Furukawa S, Tanaka K, Masumura T, Ogihara Y, Kiyokawa Y, Wakai Y. Influence of rice proteins on eating quality of cooked rice and on aroma and flavor of sake. Cereal Chem, 2006, 83: 439-446.
doi: 10.1094/CC-83-0439
[40] Kamara J S, Konishi S, Sasanuma T, Abe T. Variation in free amino acid profile among some rice (Oryza sativa L.) cultivars. Breed Sci, 2010, 60: 46-54.
doi: 10.1270/jsbbs.60.46
[41] 金丽晨, 耿志明, 李金州, 王澎, 陈菲, 刘蔼民. 稻米淀粉组成及分子结构与食味品质的关系. 江苏农业学报, 2011, 27: 13-18.
Jin L C, Geng Z M, Li J Z, Wang P, Chen F, Liu H M. Correlation between components and molecule structure of rice starch and eating quality. Jiangsu J Agric Sci, 2011, 27: 13-18. (in Chinese with English abstract)
[42] Ayabe S, Kasai M, Ohishi K, Hatae K. Textural properties and structures of starches from indica and japonica rice with similar amylose content. Food Sci Technol Res, 2009, 15: 299-306.
doi: 10.3136/fstr.15.299
[43] Vamadevan V, Bertoft E. Observations on the impact of amylopectin and amylose structure on the swelling of starch granules. Food Hydrocoll, 2020, 103: 105663.
doi: 10.1016/j.foodhyd.2020.105663
[44] Li H Y, Wen Y Y, Wang J, Sun B G. The molecular structures of leached starch during rice cooking are controlled by thermodynamic effects, rather than kinetic effects. Food Hydrocoll, 2017, 73: 295-299.
doi: 10.1016/j.foodhyd.2017.07.015
[1] 陶钰, 姚宇, 王坤庭, 邢志鹏, 翟海涛, 冯源, 刘秋员, 胡雅杰, 郭保卫, 魏海燕, 张洪程. 穗肥氮素用量与结实期遮光复合作用对常规粳稻品质的影响[J]. 作物学报, 2022, 48(7): 1730-1745.
[2] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[3] 张军, 周冬冬, 许轲, 李必忠, 刘忠红, 周年兵, 方书亮, 张永进, 汤洁, 安礼政. 淮北地区麦茬机插优质食味粳稻氮肥减量的精确运筹[J]. 作物学报, 2022, 48(2): 410-422.
[4] 袁玉洁, 张丝琪, 王明玥, 罗霄, 曾钰涵, 宋璐炘, 卢慧, 陈虹, 陶有凤, 邓飞, 任万军. 蒸煮米水比对不同直链淀粉含量杂交籼稻米粒微观结构和食味特性的影响[J]. 作物学报, 2022, 48(12): 3225-3233.
[5] 胡雅杰, 余恩唯, 丛舒敏, 李娈, 薛建涛, 夏陈钰, 郭保卫, 邢志鹏. 结实期动态温度对软米粳稻产量和品质的影响[J]. 作物学报, 2022, 48(12): 3155-3165.
[6] 李博, 张驰, 曾玉玲, 李秋萍, 任洪超, 卢慧, 杨帆, 陈虹, 王丽, 陈勇, 任万军, 邓飞. 播期对四川盆地杂交籼稻米饭食味品质的影响[J]. 作物学报, 2021, 47(7): 1360-1371.
[7] 刘秋员, 周磊, 田晋钰, 程爽, 陶钰, 邢志鹏, 刘国栋, 魏海燕, 张洪程. 长江中下游地区常规中熟粳稻产量、品质及氮素吸收性状的相互关系分析[J]. 作物学报, 2021, 47(5): 904-914.
[8] 黄恒, 姜恒鑫, 刘光明, 袁嘉琦, 汪源, 赵灿, 王维领, 霍中洋, 许轲, 戴其根, 张洪程, 李德剑, 刘国林. 侧深施氮对水稻产量及氮素吸收利用的影响[J]. 作物学报, 2021, 47(11): 2232-2249.
[9] 姜树坤,王立志,杨贤莉,李波,母伟杰,董世晨,车韦才,李忠杰,迟力勇,李明贤,张喜娟,姜辉,李锐,赵茜,李文华. 基于高密度SNP遗传图谱的粳稻芽期耐低温QTL鉴定[J]. 作物学报, 2020, 46(8): 1174-1184.
[10] 赵春芳,岳红亮,田铮,顾明超,赵凌,赵庆勇,朱镇,陈涛,周丽慧,姚姝,梁文化,路凯,张亚东,王才林. 江苏和东北粳稻稻米理化特性及WxOsSSIIa基因序列分析[J]. 作物学报, 2020, 46(6): 878-888.
[11] 卫平洋,裘实,唐健,肖丹丹,朱盈,刘国栋,邢志鹏,胡雅杰,郭保卫,高尚勤,魏海燕,张洪程. 安徽沿淮地区优质高产常规粳稻品种筛选及特征特性[J]. 作物学报, 2020, 46(4): 571-585.
[12] 姚姝, 张亚东, 刘燕清, 赵春芳, 周丽慧, 陈涛, 赵庆勇, 朱镇, Balakrishna Pillay, 王才林. 水稻Wxmp背景下SSIIaSSIIIa等位变异及其互作对蒸煮食味品质的影响[J]. 作物学报, 2020, 46(11): 1690-1702.
[13] 王艳,易军,高继平,张丽娜,杨继芬,赵艳泽,辛威,甄晓溪,张文忠. 不同叶龄蘖、穗氮肥组合对粳稻产量及氮素利用的影响[J]. 作物学报, 2020, 46(01): 102-116.
[14] 王旭虹,李鸣晓,张群,金峰,马秀芳,姜树坤,徐正进,陈温福. 籼型血缘对籼粳稻杂交后代产量和加工及外观品质的影响[J]. 作物学报, 2019, 45(4): 538-545.
[15] 朱盈,徐栋,胡蕾,花辰,陈志峰,张振振,周年兵,刘国栋,张洪程,魏海燕. 江淮优良食味高产中熟常规粳稻品种的特征[J]. 作物学报, 2019, 45(4): 578-588.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[4] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[5] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[6] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[7] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[8] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[9] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[10] 秦治翔;杨佑明;张春华;徐楚年;翟志席. 棉纤维次生壁增厚相关基因的cDNA克隆与分析[J]. 作物学报, 2003, 29(06): 860 -866 .