欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (2): 570-582.doi: 10.3724/SP.J.1006.2023.21008

• 研究简报 • 上一篇    

基于不同发育阶段协同的小麦品种抗旱性综合评判

孟雨1(), 田文仲2, 温鹏飞1, 丁志强2, 张学品2, 贺利1, 段剑钊1, 刘万代1, 郭天财1, 冯伟1,*()   

  1. 1河南农业大学农学院 / 河南省小麦技术创新中心, 河南郑州 450046
    2洛阳农林科学院小麦研究所, 河南洛阳 471000
  • 收稿日期:2022-01-28 接受日期:2022-05-05 出版日期:2022-05-26 网络出版日期:2022-05-26
  • 通讯作者: 冯伟
  • 作者简介:E-mail: mengyu9540@163.com
  • 基金资助:
    “十三五”国家重点研发计划项目“粮食丰产增效科技创新项目”(2017YFD0300204);国家自然科学基金项目(32271991)

Comprehensive evaluation of drought resistance of wheat varieties based on synergy of different developmental stages

MENG Yu1(), TIAN Wen-Zhong2, WEN Peng-Fei1, DING Zhi-Qiang2, ZHANG Xue-Pin2, HE Li1, DUAN Jian-Zhao1, LIU Wan-Dai1, GUO Tian-Cai1, FENG Wei1,*()   

  1. 1Agronomy College of Henan Agriculture University / Henna Technology Innovation Centre of Wheat, Zhengzhou 450046, Henan, China
    2Wheat Research Institute, Luoyang Academy of Agricultural and Forestry Sciences, Luoyang 471000, Henan, China
  • Received:2022-01-28 Accepted:2022-05-05 Published:2022-05-26 Published online:2022-05-26
  • Contact: FENG Wei
  • Supported by:
    National “13th Five-Year” Key Research and Development Program of China(2017YFD0300204);National Natural Science Foundation of China(32271991)

摘要:

筛选抗旱性鉴定指标并建立评价模型, 可以为抗旱小麦品种的选育以及布局提供依据。以黄淮海麦区主推的23个冬小麦品种为试验材料, 设置干旱胁迫和充分灌溉2种处理, 在拔节、孕穗、开花和灌浆期测定小麦12项形态生理指标, 计算各项指标的抗旱系数, 采用主成分分析、隶属函数法、灰色关联度法、聚类分析和逐步回归分析方法对小麦品种的抗旱性进行综合评价。结果表明, 干旱胁迫下孕穗期和灌浆期各性状变异幅度较大(7.4%~41.7%), 而拔节期和开花期的性状变幅相对较小(9.63%~31.63%)。通过对12个指标的相关分析发现, 在各时期下各指标之间均存在显著或极显著相关性。进一步利用主成分分析分别将拔节期、孕穗期和开花期的12个性状参数转换为6个相互独立的综合指标, 而将灌浆期转换为5个相互独立的综合指标, 4个时期的累积贡献率依次达到89.03%、88.69%、87.68%和85.83%。利用隶属函数法计算各时期的综合抗旱评价值(SD值), 并对各时期SD值与产量抗旱指数(DRI)间进行定量关系分析, 开花期拟合精度最高(0.744), 而灌浆期最低(0.679)。为更好地将不同时期的抗旱性信息综合起来, 通过灰色关联度分别选取各时期与SD值关联度最高的前4个指标组合成全生育期评价指标体系, 再次进行主成分和隶属函数分析得到全生育期抗旱综合评价值(MD值), 其可以解释87.8%的DRI变异, 较最佳单时期的R2提高了18.1%。根据MD值进行品种聚类分析, 可划分为4类: 中等、中等稍弱、弱以及极弱抗旱类型。通过逐步回归分析方程建立了全生育期综合评价数学模型(R2=0.995), 分别筛选出拔节期的株高和叶片含水量、孕穗期的脯氨酸、株高和叶绿素a、开花期的叶绿素a和可溶性糖以及灌浆期的脯氨酸和叶片含水量作为综合抗旱鉴定指标。本研究为小麦抗旱亲本的早期选择、品种鉴定以及适域推广应用提供理论指导和信息支撑。

关键词: 冬小麦, 抗旱性, 主成分分析, 不同时期, 综合评价

Abstract:

Screening of drought resistance identification indicators and establishment of evaluation models can provide a basis for the selection and optimization of drought-resistant wheat varieties. Taking 23 winter wheat varieties mainly promoted in Huanghuaihai wheat area as the test materials, setting two treatments of drought and full irrigation, measuring 12 morphological and physiological parameters of wheat at the jointing, booting, flowering, and grain filling stages, and calculating drought resistance coefficient for each morphological and physiological trait. Principal component analysis, membership function method, grey relational degree method, cluster analysis, and stepwise regression analysis were used to comprehensively evaluate the drought resistance of wheat varieties. The results showed that under drought stress, the variation range of traits at booting and filling stages was relatively large (7.4%-41.7%), while the variation range of traits at jointing and flowering stage was relatively small (9.63%-31.63%). The correlation analysis revealed that there was a significant or extremely significant correlation between the measured agronomic parameters at each growth stage. Further, principal component analysis was used to convert the 12 trait parameters into 6 mutually independent comprehensive indicators at jointing, booting, and flowering stages, and 5 mutually independent comprehensive indicators at filling stage, and the cumulative contribution rate reached 89.03%, 88.69%, 87.68%, and 85.83% for above four stages, respectively. The membership function method was introduced to calculate the comprehensive drought resistance evaluation value (SD value) for each growth stage, and the quantitative relationship between SD value and yield drought resistance index (DRI) was analyzed, and the fitting precision of the simulation equation were the highest 0.744 at anthesis and the lowest 0.679 at filling. In order to better integrate the information of drought resistance at different stages, the first four parameters with the highest correlation with SD value at each stage were selected through the grey correlation degree and combined to form an evaluation index system for the whole growth period. The principal component and membership function analysis were carried out again to calculate the comprehensive evaluation value of drought resistance based on whole growth stages (MD), and this derived MD value can explain 87.8% of DRI variation, which represented an 18.1% increase over determinative coefficient of the best single stage. According to MD value, the varieties can be divided into four categories, moderate drought resistance, moderately weak drought resistance, weak drought resistance, and extremely weak drought resistance. A comprehensive evaluation mathematical model (R2=0.995) for the whole growth stage was established through the stepwise regression analysis, and the plant height and leaf water content at jointing, proline, plant height, and chlorophyll a at booting, chlorophyll a and soluble sugar at anthesis, and proline and leaf water content at filling were selected as a set of screening indicators. This study provides the theoretical guidance and information support for the early selection of drought-resistant material of wheat and the identification and promotion in suitable areas.

Key words: winter wheat, drought resistance, principal component analysis, different stage, comprehensive evaluation

表1

不同抗旱性小麦品种产量及产量抗旱指数"

品种
Cultivar
2017-2018 2018-2019 2020-2021
产量GY (kg hm-2) 抗旱指数
DI
产量GY (kg hm-2) 抗旱指数
DI
产量GY (kg hm-2) 抗旱指数
DI
干旱
Drought
对照
Control
干旱
Drought
对照
Control
干旱
Drought
对照
Control
洛旱19 Luohan 19 4116.30 6511.65 0.98 4497.41 9626.30 1.08 5232.84 7924.74 1.07
洛旱22 Luohan 22 4465.50 6712.65 1.12 4629.63 9771.00 1.13 5512.60 8426.90 1.11
洛麦26 Luomai 26 3865.50 6796.95 0.83 4188.70 9740.74 0.93 4964.37 9015.75 0.84
中麦175 Zhongmai 175 3715.80 6522.45 0.80 4001.85 9718.52 0.85 4849.92 8381.60 0.87
百农207 Bainong 207 3622.80 6265.35 0.79 3914.44 8518.52 0.93 4730.24 7771.28 0.89
晋麦47 Jinmai 47 4136.10 6463.05 1.00 4000.01 8259.26 1.00 5175.54 8279.02 1.00
周麦27 Zhoumai 27 2899.65 6366.45 0.50 4015.93 9037.04 0.92 5177.82 8639.05 0.96
中麦895 Zhongmai 895 2485.65 4782.45 0.49 3407.41 8740.74 0.69 4458.67 8921.62 0.69
新科麦169 Xinkemai 169 2955.45 5914.20 0.56 3949.81 8370.37 0.96 4817.19 8981.66 0.80
安农0711 Annong 0711 3843.60 6191.40 0.90 4007.96 8925.93 0.93 5133.58 9256.37 0.88
良星99 Liangxing 99 3801.30 6188.40 0.88 4327.22 9048.70 1.07 4387.07 8062.51 0.74
化成3366 Huacheng 3366 2661.45 5985.45 0.45 3942.78 9296.30 0.86 4411.63 7524.62 0.80
丰德存麦21 Fengdecunmai 21 4082.96 6714.92 0.94 4208.15 9777.78 0.93 4385.17 8371.15 0.71
淮麦33 Huaimai 33 3895.80 5870.10 0.98 3870.37 9185.19 0.84 4646.40 7279.30 0.94
丰德存麦5号 Fengdecunmai 5 3595.80 6722.10 0.73 4008.89 9185.19 0.90 4522.10 7446.05 0.92
郑麦136 Zhengmai 136 3358.35 6592.05 0.65 4031.85 9185.19 0.91
新麦36 Xinmai 36 3481.48 9222.22 0.68 5135.30 9311.73 0.88
丰德存麦1号 Fengdecunmai 1 4177.22 9296.30 0.97 5206.64 8760.67 0.96
周麦32 Zhoumai 32 3159.15 6426.45 0.59
郑麦7698 Zhoumai 7698 3153.45 5208.60 0.72
洛旱7号 Luohan 7 3958.35 6261.45 0.95
郑麦369 Zhengmai 369 3670.19 9407.41 0.74
豫农516 Yunong 516 4011.48 9477.27 0.88

表2

干旱处理对小麦主要生理性状的影响"

植株性状
Plant trait
处理
Treatment
拔节期 Jointing 孕穗期 Booting 开花期 Anthesis 灌浆期 Filling
均值±标准差 Mean±SD 变异系数
CV (%)
均值±标准差 Mean±SD 变异系数
CV (%)
均值±标准差 Mean±SD 变异系数
CV (%)
均值±标准差 Mean±SD 变异系数
CV (%)
株高 干旱处理 Drought 36.80±10.55 28.66 61.8±23.19 37.52 79.07±11.64 14.78 80.27±13.03 16.22
Plant height (cm) 灌溉处理 Irrigation 40.20±4.63 11.51 72.93±10.87 14.91 82.67±6.71 8.12 84.33±8.90 10.55
脯氨酸 干旱处理 Drought 132.28±34.40 26.01 150.04±43.16 28.77 172.40±47.31 27.44 212.85±88.81 41.72
Proline (mg g‒1) 灌溉处理 Irrigation 75.79±11.77 15.53 78.68±15.43 19.62 86.06±15.65 17.49 103.43±21.68 20.97
游离氨基酸 干旱处理 Drought 0.60±0.11 16.94 0.63±0.09 15.65 0.55±0.11 21.22 0.65±0.17 27.01
Free amino acids (mg g‒1) 灌溉处理 Irrigation 0.49±0.05 9.43 0.49±0.07 14.54 0.45±0.07 16.42 0.57±0.10 17.62
可溶性糖 干旱处理 Drought 42.06±8.98 21.37 59.37±11.23 18.93 66.63±15.65 23.52 80.93±21.67 26.77
Soluble sugar (mg g‒1) 灌溉处理 Irrigation 27.56±5.16 18.72 38.24±6.20 16.21 46.67±8.88 19.02 54.83±8.86 16.17
叶氮含量 干旱处理 Drought 2.45±0.33 13.42 2.98±0.22 7.4 2.60±0.25 9.63 2.57±0.27 10.56
Leaf N content (%) 灌溉处理 Irrigation 3.00±0.30 10.12 3.25±0.29 8.86 3.27±0.28 8.78 3.15±0.26 8.74
叶水含量 干旱处理 Drought 77.57±24.54 31.63 72.78±15.47 21.26 68.95±13.60 19.72 63.51±22.39 35.26
Leaf water content (%) 灌溉处理 Irrigation 81.65±14.39 17.63 78.38±9.69 12.36 75.07±8.09 10.78 72.33±14.27 19.73
叶面积指数 干旱处理 Drought 1.78±0.30 16.9 2.16±0.37 17.09 1.88±0.30 16.09 1.71±0.31 18.46
Leaf area index 灌溉处理 Irrigation 1.93±0.28 15.01 2.36±0.35 14.86 2.38±0.29 12.13 2.43±0.36 14.81
植株含水量 干旱处理 Drought 79.55±17.54 22.05 74.94±13.85 18.48 67.03±12.99 19.38 62.69±12.59 20.09
Plant water content (%) 灌溉处理 Irrigation 81.08±8.67 10.69 77.95±7.69 9.86 72.59±8.63 11.9 69.24±8.91 12.87
地上干物质 干旱处理 Drought 2474.80±359.09 13.57 4488.80±609.33 14.51 5769.76±725.44 12.57 5304.62±746.69 14.08
Aboveground biomass (kg hm‒2) 灌溉处理 Irrigation 2735.80±264.02 16.46 4998.50±768.06 9.65 6325.79±1147.03 18.13 6267.79±753.72 12.03
叶绿素a含量 干旱处理 Drought 1.83±0.40 21.77 2.01±0.54 27.08 2.55±0.79 31.14 2.36±0.57 24.23
Chlorophyll a (mg g‒1) 灌溉处理 Irrigation 2.29±0.31 13.46 2.74±0.43 15.57 3.37±0.66 19.61 3.17±0.46 14.47
类胡萝卜素 干旱处理 Drought 0.39±0.07 17.39 0.39±0.07 18.38 0.47±0.09 19.15 0.41±0.08 18.43
Carotenoids (mg g‒1) 灌溉处理 Irrigation 0.46±0.05 11.64 0.52±0.07 13.87 0.57±0.07 12.48 0.63±0.09 14.82
等效水厚度 干旱处理 Drought 0.13±0.02 16.8 0.07±0.01 18.86 0.07±0.02 26.83 0.05±0.01 25.71
Equivalent water thickness (g cm‒2) 灌溉处理 Irrigation 0.14±0.02 11.74 0.08±0.01 13.38 0.09±0.02 21.95 0.06±0.01 20.42

图1

不同生育期下生理指标抗旱系数间相关性分析 A、B、C、D分别代表拔节期、孕穗期、开花期和灌浆期; 不同颜色表示相关性的强度, 越接近红色(正)或蓝色(负)说明相关性越高, 圆形直径越大说明相关系数越大, ×表示没有显著相关性, 显示水平(P < 0.05); V1: 株高; V2: 脯氨酸; V3: 游离氨基酸; V4: 可溶性糖; V5: 叶片氮含量; V6: 叶片含水量; V7: 叶面积指数; V8: 植株含水量; V9: 生物量; V10: 叶绿素a; V11: 类胡萝卜素; V12: 等效水厚度。"

表3

各小麦品种在不同时期的主成分分析"

生育时期
Growth stage
项目
Item
主成分Principal component
CI1 CI2 CI3 CI4 CI5 CI6
拔节期
Jointing
特征值 Eigenvalue 6.377 1.217 0.992 0.826 0.708 0.564
贡献率 Contribution rate (%) 53.141 10.141 8.269 6.880 5.897 4.700
累积贡献率 Accumulative contribution rate (%) 53.141 63.282 71.552 78.432 84.329 89.030
权重Index weight (Wj) 0.597 0.114 0.093 0.077 0.066 0.053
孕穗期
Booting
特征值 Eigenvalue 6.171 1.416 0.955 0.795 0.684 0.623
贡献率 Contribution rate (%) 51.422 11.799 7.955 6.626 5.702 5.188
累积贡献率 Accumulative contribution rate (%) 51.422 63.221 71.176 77.802 83.504 88.692
权重Index weight (Wj) 0.580 0.133 0.090 0.075 0.064 0.058
开花期
Anthesis
特征值 Eigenvalue 5.918 1.636 1.024 0.752 0.691 0.501
贡献率 Contribution rate (%) 49.317 13.636 8.529 6.263 5.759 4.174
累积贡献率 Accumulative contribution rate (%) 49.317 62.953 71.482 77.746 83.505 87.679
权重Index weight (Wj) 0.562 0.156 0.097 0.071 0.066 0.048
灌浆期
Grain filling
特征值 Eigenvalue 5.606 2.418 0.969 0.721 0.586
贡献率 Contribution rate (%) 46.717 20.148 8.076 6.010 4.880
累积贡献率 Accumulative contribution rate (%) 46.717 66.865 74.941 80.951 85.831
权重Index weight (Wj) 0.544 0.235 0.094 0.070 0.057

图2

各小麦品种在不同时期抗旱性综合评价值的变化"

图3

不同生育时期条件下综合评价值与产量抗旱指数间定量关系"

表4

各时期生理指标的灰色关联度分析"

性状
Trait
拔节期 Jointing 孕穗期 Booting 开花期 Anthesis 灌浆期 Filling
关联度 Correlation degree 位次 Rank 关联度 Correlation degree 位次 Rank 关联度 Correlation degree 位次 Rank 关联度 Correlation degree 位次 Rank
株高 Plant height 0.7891 1 0.8328 2 0.6304 9 0.7004 7
脯氨酸 Proline 0.7177 7 0.7776 9 0.6574 4 0.7074 5
游离氨基酸 Free amino acids 0.7213 5 0.8426 1 0.6593 3 0.7421 1
可溶性糖 Soluble sugar 0.7002 9 0.7711 10 0.6457 6 0.7120 3
叶片氮含量 Leaf nitrogen content 0.6427 12 0.7067 12 0.6346 8 0.6877 8
叶片含水量 Leaf water content 0.7592 3 0.7921 4 0.6261 10 0.7333 2
叶面积系数 Leaf area index 0.7291 4 0.7164 11 0.6135 11 0.7008 6
植株含水量 Plant water content 0.6962 11 0.7846 7 0.5841 12 0.6846 9
地上部生物量 Aboveground biomass 0.7148 8 0.7835 8 0.6750 2 0.7084 4
叶绿素a Chlorophyll a 0.7886 2 0.8319 3 0.6978 1 0.6107 12
类胡萝卜素 Carotenoids 0.6997 10 0.7876 5 0.6558 5 0.6492 10
等效水厚度 Equivalent water thickness 0.7181 6 0.7871 6 0.6423 7 0.6492 11

图4

入选不同指标数量的MD值与产量抗旱指数间线性决定系数"

表5

小麦全生育时期优化组合指标的主成分分析"

项目
Item
主成分Principal component
CI1 CI2 CI3 CI4 CI5 CI6
特征值 Eigenvalue 9.959 1.095 1.007 0.778 0.635 0.565
贡献率 Contribution rate (%) 62.243 6.842 6.294 4.862 3.967 3.528
累积贡献率 Accumulative contribution rate (%) 62.243 69.086 75.380 80.242 84.209 87.737
权重Index weight (Wj) 0.709 0.078 0.072 0.055 0.045 0.040

图5

全时期抗旱综合评价MD值与产量抗旱指数DRI间定量关系"

图6

基于MD值的不同小麦品种聚类分析 ①、②、③分别代表2017-2018、2018-2019和2020-2021年。"

[1] Davidson D. Gaps in agricultural climate adaptation research. Nat Clim Chang, 2016, 6: 433-435.
doi: 10.1038/nclimate3007
[2] Erice G, Louahlia S, Irigoyen J J, Sanchez-Diaz M, Avice J C. Biomass partitioning, morphology and water status of four alfalfa genotypes submitted to progressive drought and subsequent recovery. J Plant Physiol, 2010, 167: 114-120.
doi: 10.1016/j.jplph.2009.07.016
[3] Mo X G, Hu S, Lin Z H, Liu S X, Xia J. Impacts of climate change on agricultural water resources and adaptation on the North China Plain. Adv Clim Chang Res, 2017, 8: 93-98.
[4] Curtis T, Halford N G. Food security: the challenge of increasing wheat yield and the importance of not compromising food safety. Ann Appl Biol, 2014, 164: 354-372.
pmid: 25540461
[5] Guo Z J, Shi Y, Yu Z W, Zhang Y L. Supplemental irrigation affected flag leaves senescence post-anthesis and grain yield of winter wheat in the Huang-Huai-Hai Plain of China. Field Crops Res, 2015, 180: 100-109.
doi: 10.1016/j.fcr.2015.05.015
[6] 李瑞雪, 孙任洁, 汪泰初, 陈丹丹, 李荣芳, 李龙, 赵卫国. 植物抗旱性鉴定评价方法及抗旱机制研究进展. 生物技术通报, 2017, 33(7): 40-48.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0023
Li R X, Sun R J, Wang T C, Chen D D, Li R F, Li L, Zhao W G. Research progress on identification and evaluation methods, and mechanism of drought resistance in plants. Biotechnol Bull, 2017, 33(7): 44-48. (in Chinese with English abstract)
[7] Blum A. Drought resistance, water-use efficiency, and yield potential are they compatible, dissonant, or mutually exclusive? Aust J Agric Res, 2005, 56: 1159-1168.
doi: 10.1071/AR05069
[8] Nouri-ganbalani A, Nouri-ganbalani G, Hassanpanah D. Effects of drought stress condition on the yield and yield components of advanced wheat genotypes in Ardabil, Iran. J Food Agric Environ, 2009, 7: 228-234.
[9] Almeselmani M, Deshmukh P S, Sairam R K, Kushwaha S R, Singh T P. Protective role of antioxidant enzymes under high temperature stress. Plant Sci, 2006, 171: 382-388.
doi: 10.1016/j.plantsci.2006.04.009 pmid: 22980208
[10] 赵佳佳, 乔玲, 武棒棒, 葛川, 乔麟轶, 张树伟, 闫素仙, 郑兴卫, 郑军. 山西省小麦苗期根系性状及抗旱特性分析. 作物学报, 2021, 47: 714-727.
doi: 10.3724/SP.J.1006.2021.01048
Zhao J J, Qiao L, Wu B B, Ge C, Qiao L Y, Zhang S W, Yan S X, Zheng X W, Zheng J. Seedling root characteristics and drought resistance of wheat in Shanxi province. Acta Agron Sin, 2021, 47: 714-727. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.01048
[11] 李阳阳, 李驰, 任俊洋, 李志, 张晋峰, 吕蓉蓉, 张恒, 吴丹, 王芹, 周清元, 殷家明, 李加纳, 刘列钊, 唐章林. 甘蓝型油菜苗期耐旱性综合评价与耐旱性鉴定指标筛选. 中国生态农业学报, 2021, 29: 1327-1338.
Li Y Y, Li C, Ren J Y, Li Z, Zhang J F, Lyu R R, Zhang H, Wu D, Wang Q, Zhou Q Y, Yin J M, Li J N, Liu L Z, Tang Z L. Comprehensive evaluation and identification trait selection of drought resistance at the seedling stage of Brassica napus L. Chin J Eco-Agric, 2021, 29: 1327-1338 (in Chinese with English abstract).
[12] 徐银萍, 潘永东, 刘强德, 姚元虎, 贾延春, 任诚, 火克仓, 陈文庆, 赵锋, 包奇军, 张华瑜. 大麦种质资源成株期抗旱性鉴定及抗旱指标筛选. 作物学报, 2020, 46: 448-461.
doi: 10.3724/SP.J.1006.2020.91031
Xu Y P, Pan Y D, Liu Q D, Yao Y H, Jia Y C, Ren C, Huo K C, Chen W Q, Zhao F, Bao Q J, Zhang H Y. Drought resistance identification and drought resistance indexes screening of barley resources at mature period. Acta Agron Sin, 2020, 46: 448-461. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.91031
[13] 冯朋飞, 远红杰, 郭晋杰, 冯佳, 赵永锋, 陈景堂, 祝丽英. 不同玉米自交系苗期抗旱性鉴定. 广东农业科学, 2013, 40(9): 9-13.
Feng P F, Yuan H J, Guo J J, Feng J, Zhao Y F, Chen J T, Zhu L Y. Evaluation for seeding drought resistance of different genotype maize inbred lines. Guangdong Agric Sci, 2013, 40(9): 9-13. (in Chinese with English abstract)
[14] 罗俊杰, 欧巧明, 叶春雷, 王方, 王镛臻, 陈玉梁. 重要胡麻栽培品种的抗旱性综合评价及指标筛选. 作物学报, 2014, 40: 1259-1273.
Luo J J, Ou H J, Ye C L, Wang F, Wang Y Z, Chen Y L. Comprehensive valuation of drought resistance and screening of indices of important flax cultivars. Acta Agron Sin, 2014, 40: 1259-1273. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.01259
[15] 李龙, 毛新国, 王景一, 昌小平, 柳玉平, 景蕊莲. 小麦种质资源抗旱性鉴定评价. 作物学报, 2018, 44: 988-999.
Li L, Miao X G, Wang J Y, Chang X P, Liu Y P, Jing R L. Drought tolerance evaluation of wheat germplasm resources. Acta Agron Sin, 2018, 44: 988-999. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00988
[16] Shamsun N, Lingaraj S, Bhaben T. Screening of drought tolerant rice through morpho-physiological and biochemical approaches. Biocatal Agric Biotechnol, 2018, 15: 150-159.
doi: 10.1016/j.bcab.2018.06.002
[17] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 184-185, 195-197, 261-263.
Li H S. Technique on Plant Physiology and Biochemistry. Beijing: Higher Education Press, 2000. pp 184-185, 195-197, 261-263. (in Chinese)
[18] 中国科学院上海植物生理研究所. 现代植物生理学实验指南, 北京: 科学出版社, 1999. p 303.
Shanghai Institute of Plant Physiology, Chinese Academy of Sciences. Modern Plant Physiology Laboratory Manual. Beijing: Science Press, 1999. p 303.(in Chinese)
[19] 王士强, 胡银岗, 佘奎军, 周琳璘, 孟凡磊. 小麦抗旱相关农艺性状和生理生化性状的灰色关联度分析. 中国农业科学, 2007, 11: 2452-2459.
Wang S Q, Hu Y G, She K J, Zhou L L, Meng F L. Gray relational grade analysis of agronomical and physi-biochemical traits related to drought tolerance in wheat. Sci Agric Sin, 2007, 11: 2452-2459. (in Chinese with English abstract)
[20] Ahmed K, Shabbir G, Ahmed M, Shah K N. Phenotyping for drought resistance in bread wheat using physiological and biochemical traits. Sci Total Environ, 2020, 729: 139082.
doi: 10.1016/j.scitotenv.2020.139082
[21] Mardeh A S S, Ahmadi A, Poustini K, Mohammadi V. Evaluation of drought resistance indices under various environmental conditions. Field Crops Res, 2006, 98: 222-229.
doi: 10.1016/j.fcr.2006.02.001
[22] 徐蕊, 王启柏, 张春庆, 吴承来. 玉米自交系抗旱性评价指标体系的建立. 中国农业科学, 2009, 42: 72-84.
Xu R, Wang Q B, Zhang C Q, Wu C L. Drought-resistance evaluation system of maize inbred. Sci Agric Sin, 2009, 42: 72-84. (in Chinese with English abstract)
[23] 胡标林, 余守武, 万勇, 张铮, 邱兵余, 谢建坤. 东乡普通野生稻全生育期抗旱性鉴定. 作物学报, 2007, 33: 425-432.
Hu B L, Yu S W, Wan Y, Zhang Z, Qiu B Y, Xie J K. Drought-resistance identification of Dongxiang common wild rice (Oryza rufipogon Griff) in whole growth period. Acta Agron Sin, 2007, 33: 425-432. (in Chinese with English abstract)
[24] Sairam R K, Chandrasekhar V, Srivastava G C. Comparison of hexaploid and tetraploid wheat cultivars in their responses to water stress. Biol Plant, 2001, 44: 89-94.
doi: 10.1023/A:1017926522514
[25] Zou J, Hu W, Li Y X, He J Q, Zhu H H, Zhou Z G. Screening of drought resistance indices and evaluation of drought resistance in cotton (Gossypium hirsutum L.). J Integr Agric, 2020, 19: 495-508.
doi: 10.1016/S2095-3119(19)62696-1
[26] 周广生, 梅方竹, 周竹青, 朱旭彤. 小麦不同品种耐湿性生理指标综合评价及其预测. 中国农业科学, 2003, 36: 1378-1382.
Zhou G S, Mei F Z, Zhou Z Q, Zhu X T. Comprehensive evaluation and forecast on physiological indices of waterlogging resistance of different wheat varieties. Sci Agric Sin, 2003, 36: 1378-1382. (in Chinese with English abstract)
[27] Biju S, Fuentes S, Gupta D. The use of infrared thermal imaging as a non-destructive screening tool for identifying drought- tolerant lentil genotypes. Plant Physiol Biochem, 2018, 127: 11-24.
doi: 10.1016/j.plaphy.2018.03.005
[28] Liu C Y, Yang Z Y, Hu Y G. Drought resistance of wheat alien chromosome addition lines evaluated by membership function value based on multiple traits and drought resistance index of grain yield. Field Crops Res, 2015, 179: 103-112.
doi: 10.1016/j.fcr.2015.04.016
[29] 王曙光, 朱俊刚, 孙黛珍, 史雨刚, 曹亚萍, 范华, 贾寿山. 山西小麦地方品种幼苗期抗旱性的鉴定. 中国农业大学学报, 2013, 18(1): 39-45.
Wang S G, Zhu J G, Sun D Z, Shi Y G, Cao Y P, Fan H, Jia S S. Analysis of drought resistance of Shanxi wheat at seedling stage. J China Agric Univ, 2013, 18(1): 39-45. (in Chinese with English abstract)
[30] Feng S W, Gu S B, Zhang H B, Wang D. Root vertical distribution is important to improve water use efficiency and grain yield of wheat. Field Crops Res, 2017, 214: 131-141.
doi: 10.1016/j.fcr.2017.08.007
[31] 孙现军, 姜奇彦, 胡正, 张惠媛, 徐长兵, 邸一桓, 韩龙植, 张辉. 水稻资源全生育期耐盐性鉴定筛选. 作物学报, 2019, 45: 1656-1663.
doi: 10.3724/SP.J.1006.2019.92012
Sun X J, Jiang Q Y, Hu Z, Zhang H Y, Xu C B, Di Y H, Han L Z, Zhang H. Screening and identification of salt-tolerant rice germplasm in whole growth period. Acta Agron Sin, 2019, 45: 1656-1663. (in Chinese with English abstract)
[32] 胡雯媚, 王思宇, 樊高琼, 刘运军, 郑文, 王强生, 马宏亮. 西南麦区小麦品种苗期抗旱性鉴定及其指标筛选. 麦类作物学报, 2016, 36: 182-189.
Hu W M, Wang S Y, Fan G Q, Liu Y J, Zheng W, Wang Q S, Ma H L. Analysis on the drought resistance and screening of drought resistance appraisal indexes of wheat cultivars in seedling stage in southwest area. J Triticeae Crops, 2016, 36: 182-189. (in Chinese with English abstract)
[33] Song Q H, Liu C Y, Bachir D G, Chen L, Hu Y G. Drought resistance of new synthetic hexaploid wheat accessions evaluated by multiple traits and antioxidant enzyme activity. Field Crops Res, 2017, 210: 91-103.
doi: 10.1016/j.fcr.2017.05.028
[34] 张龙龙, 杨明明, 董剑, 赵万春, 高翔, 陈冬阳. 三个小麦新品种不同生育阶段抗旱性的综合评价. 麦类作物学报, 2016, 36: 426-434.
Zhang L L, Yang M M, Dong J, Zhao W C, Gao X, Chen D Y. Comprehensive analysis of drought resistance of three new wheat cultivars at different growth stage. J Triticeae Crops, 2016, 36: 426-434. (in Chinese with English abstract)
[35] 武仙山, 王正航, 昌小平, 景蕊莲. 用株高旱胁迫系数分析小麦发育中的抗旱性动态. 作物学报, 2008, 34: 2010-2018.
doi: 10.3724/SP.J.1006.2008.02010
Wu X S, Wang Z H, Chang X P, Jing R L. Dynamics of drought resistance based on drought stress coefficient derived from plant height in wheat development. Acta Agron Sin, 2008, 34: 2010-2018. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2008.02010
[36] Komivi D, Louis W Y, Benoit C L L N, Diaga D, Boshou L, Zhang X R, Ndiaga C, Joseph M B. Comprehensive screening of some west and central African sesame genotypes for drought resistance probing by agromorphological, physiological, biochemical and seed quality traits. Agronomy, 2017, 7: 83.
doi: 10.3390/agronomy7040083
[37] 李德全, 郭清福, 张以勤, 邹琦, 程炳嵩. 冬小麦抗旱生理特性的研究. 作物学报, 1993, 19: 125-132.
Li D Q, Guo Q F, Zhang Y Q, Zou Q, Cheng B S. Studies on the physiological characteristics of drought resistance in winter wheat. Acta Agron Sin, 1993, 19: 125-132. (in Chinese with English abstract)
[38] Chen K, Horton R M, Bader D A, Lesk C, Jiang L W, Jones B, Zhou L, Chen X D, Bi J, Kinney P L. Impact of climate change on heat-related mortality in Jiangsu province, China. Environ Pollut, 2017, 224: 317-325.
doi: S0269-7491(16)31930-3 pmid: 28237309
[1] 王雪, 谷淑波, 林祥, 王威雁, 张保军, 朱俊科, 王东. 微喷补灌水肥一体化对冬小麦产量及水分和氮素利用效率的影响[J]. 作物学报, 2023, 49(3): 784-794.
[2] 高春华, 冯波, 李国芳, 李宗新, 李升东, 曹芳, 慈文亮, 赵海军. 施氮量对花后高温胁迫下冬小麦籽粒淀粉合成的影响[J]. 作物学报, 2023, 49(3): 821-832.
[3] 张翔宇, 胡鑫慧, 谷淑波, 林祥, 殷复伟, 王东. 减氮条件下分期施钾对冬小麦籽粒产量和氮素利用效率的影响[J]. 作物学报, 2023, 49(2): 447-458.
[4] 陈嘉军, 林祥, 谷淑波, 王威雁, 张保军, 朱俊科, 王东. 花后叶面喷施尿素对冬小麦氮素吸收利用和产量的影响[J]. 作物学报, 2023, 49(1): 277-285.
[5] 王云奇, 高福莉, 李傲, 郭同济, 戚留冉, 曾寰宇, 赵建云, 王笑鸽, 高国英, 杨佳鹏, 白金泽, 马亚欢, 梁月馨, 张睿. 小麦花后穗部温度变化规律及其与产量的关系[J]. 作物学报, 2022, 48(9): 2400-2408.
[6] 李佩婷, 赵振丽, 黄潮华, 黄国强, 徐良年, 邓祖湖, 张玉, 赵新旺. 基于转录组及WGCNA的甘蔗干旱响应调控网络分析[J]. 作物学报, 2022, 48(7): 1583-1600.
[7] 祝令晓, 宋世佳, 李浩然, 孙红春, 张永江, 白志英, 张科, 李安昌, 刘连涛, 李存东. 基于耐低氮综合指数的棉花苗期耐低氮品种筛选[J]. 作物学报, 2022, 48(7): 1800-1812.
[8] 张少华, 段剑钊, 贺利, 井宇航, 郭天财, 王永华, 冯伟. 基于无人机平台多模态数据融合的小麦产量估算研究[J]. 作物学报, 2022, 48(7): 1746-1760.
[9] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[10] 王兴荣, 李玥, 张彦军, 李永生, 汪军成, 徐银萍, 祁旭升. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2022, 48(5): 1279-1287.
[11] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379.
[12] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[13] 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528.
[14] 朱亚迪, 王慧琴, 王洪章, 任昊, 吕建华, 赵斌, 张吉旺, 任佰朝, 殷复伟, 刘鹏. 不同夏玉米品种大喇叭口期耐热性评价和鉴定指标筛选[J]. 作物学报, 2022, 48(12): 3130-3143.
[15] 郑云普, 常志杰, 韩怡, 卢云泽, 陈文娜, 田银帅, 殷嘉伟, 郝立华. 土壤水分亏缺和大气CO2浓度升高对冬小麦光合特性的影响[J]. 作物学报, 2022, 48(11): 2920-2933.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!