欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (2): 561-569.doi: 10.3724/SP.J.1006.2023.22008

• 研究简报 • 上一篇    下一篇

GsERF6基因过表达对水稻耐盐碱性的影响

才晓溪(), 胡冰霜(), 沈阳, 王研, 陈悦, 孙明哲, 贾博为, 孙晓丽()   

  1. 黑龙江八一农垦大学农学院 / 作物逆境分子生物学实验室, 黑龙江大庆 163319
  • 收稿日期:2022-01-28 接受日期:2022-06-07 出版日期:2022-06-21 网络出版日期:2022-06-21
  • 通讯作者: 孙晓丽
  • 作者简介:才晓溪, E-mail: 18746616279@163.com
    胡冰霜, E-mail: alisa961102@gmail.com第一联系人:

    **同等贡献

  • 基金资助:
    国家自然科学基金项目(32101672);国家自然科学基金项目(31971826);国家自然科学基金项目(U20A2025);中央支持地方高校改革发展资金人才培养支持计划项目(202201005)

Effects of GsERF6 overexpression on salt-alkaline tolerance in rice

CAI Xiao-Xi(), HU Bing-Shuang(), SHEN Yang, WANG Yan, CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, SUN Xiao-Li()   

  1. Crop Stress Molecular Biology Laboratory, College of Agriculture, Heilongjiang Bayi Agriculture University, Daqing 163319, Heilongjiang, China
  • Received:2022-01-28 Accepted:2022-06-07 Published:2022-06-21 Published online:2022-06-21
  • Contact: SUN Xiao-Li
  • About author:First author contact:

    **Contributed equally to this work

  • Supported by:
    National Natural Science Foundation of China(32101672);National Natural Science Foundation of China(31971826);National Natural Science Foundation of China(U20A2025);Special Funds from the Central Finance to Support the Development of Local Universities(202201005)

摘要:

乙烯响应因子(ERF)是植物特有的一类转录因子, 在响应非生物胁迫中具有重要作用。本研究通过生物信息学发现, 野生大豆耐盐碱ERF转录因子GsERF6与水稻ERF同源蛋白的氨基酸序列相似性很高, 均包含1个高度保守的AP2结构域。为探究GsERF6基因在水稻耐盐碱应答中的作用, 通过遗传转化、PCR和半定量RT-PCR鉴定, 获得了2个纯合的GsERF6过表达转基因水稻株系。表型鉴定表明, 200 mmol L-1 NaHCO3处理下GsERF6转基因水稻的存活率、相对含水量、超氧化物歧化酶、过氧化物酶、过氧化氢酶活性、可溶性糖和脯氨酸含量均显著高于对照, 活性氧积累则反之。实时荧光定量PCR分析表明, 40 mmol L-1 NaHCO3处理6 h后渗透调节基因OsP5CS2OsLEA14GsERF6转基因水稻中的表达量显著高于对照。本研究表明, 水稻中GsERF6的过表达可通过提高ROS清除水平、渗透调节能力及胁迫应答基因的表达来提高其耐盐碱性。

关键词: 水稻, 耐盐碱, 乙烯响应因子, 野生大豆, GsERF6

Abstract:

Ethylene response factors (ERFs) are a family of plant specific transcription factors that play important roles in abiotic stress. Bioinformatic analysis revealed that GsERF6, a Glycine soja ERF transcription factor that positively regulated salt-alkaline tolerance, shared high sequence identity with homologous ERF proteins with one highly conserved AP2 domain in rice. To explore the effect of GsERF6 overexpression on the salt-alkaline tolerance in rice, we transformed GsERF6 into rice and obtained two homozygous transgenic lines via PCR and RT-PCR. Phenotypical and physiological assays indicated that, compared with the wild type rice under 200 mmol L-1 NaHCO3 treatment, the survival rate, relative water content, the activities of SOD, POD, and CAT, the soluble sugar and proline contents, were significantly increased, while ROS accumulation was significantly decreased in GsERF6 overexpression lines. The qRT-PCR showed that transcript levels of OsP5CS2 and OsLEA14 were significantly up-regulated in GsERF6 transgenic line after 40 mmol L-1 NaHCO3 treatment for 6 hours. In summary, GsERF6 overexpression in rice contributed to ROS scavenging, osmotic regulation, and activation of stress responsive genes, thus improving the salt-alkaline tolerance of transgenic rice.

Key words: rice, salt-alkaline tolerance, ethylene response factors, Glycine soja, GsERF6

表1

本研究所用的引物"

引物名称
Primer name
正向序列
Forward sequence (5′-3′)
反向序列
Reverse sequence (5′-3′)
GsERF6-F/R GGCTTAAUATGGCTAACGCTGCTG GGTTTAAUTCACACAGCCACGAGCGGT
GsERF6-PCR-F/R ATAAGGAAGTTCATTTCATTTGGA TCTTCGGAACAGCGATTAGCAG
GsERF6-RT-F/R CTGGCCACTCCCCAAAACAAA GAAGGTTCCGAGCCAAACCC
OsElf1-α-F/R GCACGCTCTTCTTGCTTTCAC TCTTGTCAGGGTTGTAGCCGAC
OsP5CS2-F/R GTGGCTTGTGAAGGAGCTGT TTTGACATGCTTTCGTGCTC
OsLEA14-F/R TCGGGATGTCAGGCGATAA GCTTGTAGGTGCTGGTGTCCTT

图1

GsERF6与水稻中同源ERF蛋白进化关系分析 “?”代表水稻ERF基因; “Δ”代表野生大豆ERF基因。"

图2

GsERF6与水稻中同源ERF蛋白序列比对"

图3

GsERF6植物超量表达载体的构建 A: GsERF6过表达载体示意图; B: GsERF6基因的克隆; M: DNA marker; 1~3: GsERF6 PCR产物; C: pC35SU-GsERF6菌落PCR鉴定; M: DNA marker; ?: 阴性H2O对照; +: 阳性质粒对照; 1: pC35SU-GsERF6。"

图4

GsERF6转基因株系的分子检测 A: 转GsERF6基因抗性植株PCR检测; B: 转GsERF6基因植株RT-PCR检测; M: DNA marker; ?: 阴性H2O对照; +: 阳性质粒对照; WT: 野生型对照; #1~#8: 独立株系。"

图5

GsERF6转基因水稻幼苗期耐盐碱性分析 A: NaHCO3处理前后各株系生长状态; B: 水稻幼苗存活率; C: 水稻幼苗相对含水量。差异显著性分析采用t-test方法。"

图6

GsERF6转基因水稻盐碱胁迫下ROS积累及抗氧化物酶活分析 A: DAB染色; B: NBT染色; C: SOD活性; D: POD活性; E: CAT活性。差异显著性分析采用t-test方法。"

图7

GsERF6转基因水稻盐碱胁迫后渗透调节物质含量分析 A: 可溶性糖含量; B: 脯氨酸含量。差异显著性分析采用t-test方法。"

图8

GsERF6转基因水稻盐碱应答基因表达分析 A: OsLEA14基因表达量变化; B: OsP5CS2基因表达量变化。差异显著性分析采用t-test方法。"

[1] 李健, 王逸茹, 张凌霄, 孙明昊, 秦阳, 郑军. 玉米ZmCIPK24-2基因在盐胁迫应答中的功能研究. 作物学报, 2020, 46: 1351-1358.
doi: 10.3724/SP.J.1006.2020.03008
Li J, Wang Y R, Zhang L X, Sun M H, Qin Y, Zheng J. Functional analysis of ZmCIPK24-2 gene from maize in response to salt stress. Acta Agron Sin, 2020, 46: 1351-1358. (in Chinese with English abstract)
[2] 刘奕媺, 于洋, 方军. 盐碱胁迫及植物耐盐碱分子机制研究. 土壤与作物, 2018, (7): 201-211.
Liu Y M, Yu Y, Fang J. Saline-alkali stress and molecular mechanism of saline-alkali tolerance in plants. Soils Crops, 2018, (7): 201-211. (in Chinese with English abstract)
[3] 邵玺文, 冉成, 金峰, 郭丽颖, 耿艳秋. 松嫩平原苏打盐碱地水稻栽培技术研究进展与展望. 吉林农业大学学报, 2018, 40: 379-382.
Shao X W, Ran C, Jin F, Guo L Y, Geng Y Q. Advances and prospects in research of rice cultivation technology in saline- sodic soil of Songnen plain. J Jilin Agric Univ, 2018, 40: 379-382. (in Chinese with English abstract)
[4] Deokar A A, Kondawar V, Kohli D, Aslam M, Jain P K, Karuppayil S M, Varshney R K, Srinivasan R. The CarERF genes in chickpea (Cicer arietinum L.) and the identification of CarERF116 as abiotic stress responsive transcription factor. Funct Integr Genomics, 2015, 15: 27-46.
doi: 10.1007/s10142-014-0399-7
[5] Bui L T, Giuntoli B, Kosmacz M, Parlanti S, Licausi F. Constitutively expressed ERF-VII transcription factors redundantly activate the core anaerobic response in Arabidopsis thaliana. Plant Sci, 2015, 236: 37-43.
doi: 10.1016/j.plantsci.2015.03.008 pmid: 26025519
[6] Wang P, Du Y, Zhao X, Miao Y, Song C P. The MPK6-ERF6-ROS-responsive cis-acting element7/GCC box complex modulates oxidative gene transcription and the oxidative response in Arabidopsis. Plant Physiol, 2013, 161: 1392-1408.
doi: 10.1104/pp.112.210724
[7] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展. 作物学报, 2022, 48: 781-790.
doi: 10.3724/SP.J.1006.2022.12026
Chen Y, Sun M Z, Jia B W, Leng Y, Sun X L. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response. Acta Agron Sin, 2022, 48: 781-790. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.12026
[8] Yao W, Wang L, Zhou B, Wang S, Li R, Jiang T. Over-expression of poplar transcription factor ERF76 gene confers salt tolerance in transgenic tobacco. J Plant Physiol, 2016, 198: 23-31.
doi: 10.1016/j.jplph.2016.03.015
[9] Zhang G, Chen M, Chen X, Xu Z, Li L, Guo J, Ma Y. Isolation and characterization of a novel EAR-motif-containing gene GmERF4 from soybean (Glycine max L.). Mol Biol Rep, 2010, 37: 809-818.
doi: 10.1007/s11033-009-9616-1
[10] Zhang Y, Ming R, Khan M, Wang Y, Dahro B, Xiao W, Li C, Liu J H. ERF9 of Poncirus trifoliata (L.) Raf. undergoes feedback regulation by ethylene and modulates cold tolerance via regulating a glutathione S-transferase U17 gene. Plant Biotechnol J, 2022, 20: 183-200.
doi: 10.1111/pbi.13705
[11] Khan M, Hu J, Dahro B, Ming R, Zhang Y, Wang Y, Alhag A, Li C, Liu J H. ERF108 from Poncirus trifoliata (L.) Raf. functions in cold tolerance by modulating raffinose synthesis through transcriptional regulation of PtrRafS. Plant J, 2021, 108: 705-724.
doi: 10.1111/tpj.15465
[12] Wang M, Dai W, Du J, Ming R, Dahro B, Liu J H. ERF109 of trifoliate orange (Poncirus trifoliata (L.) Raf.) contributes to cold tolerance by directly regulating expression of Prx1 involved in antioxidative process. Plant Biotechnol J, 2019, 17: 1316-1332.
doi: 10.1111/pbi.13056 pmid: 30575255
[13] Zhang Z, Wang J, Zhang R, Huang R. The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis. Plant J, 2012, 71: 273-287.
doi: 10.1111/j.1365-313X.2012.04996.x
[14] Serra T S, Figueiredo D D, Cordeiro A M, Almeida D M, Tiago L, Isabel A A, Alvaro S, Lisete F, Bruno C M, Oliveira M M, Nelson J M. OsRMC, a negative regulator of salt stress response in rice, is regulated by two AP2/ERF transcription factors. Plant Mol Biol, 2013, 82: 439-455.
doi: 10.1007/s11103-013-0073-9 pmid: 23703395
[15] Liu D, Chen X, Liu J, Ye J, Guo Z. The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. J Exp Bot, 2012, 63: 3899-3911.
doi: 10.1093/jxb/ers079
[16] 葛瑛, 朱延明, 吕德康, 董婷婷, 王维世, 谭上进, 刘彩虹, 邹平. 野生大豆碱胁迫反应的研究. 草业科学, 2009, 26(2): 47-52.
Ge Y, Zhu Y M, Lyu D K, Dong T T, Wang W J, Tan S J, Liu C H, Zou P. Research on responses of wild soybean to alkaline stress. Pratac Sci, 2009, 26(2): 47-52 (in Chinese with English abstract).
[17] Yu Y, Liu A L, Duan X B, Wang S T, Sun X L, Duanmu H Z, Zhu D, Chen C, Cao L, Xiao J L, Li Q, Nisa Z U, Zhu Y M, Ding X D. GsERF6, an ethylene-responsive factor from Glycine soja, mediates the regulation of plant bicarbonate tolerance in Arabidopsis. Planta, 2016, 244: 681-698.
doi: 10.1007/s00425-016-2532-4
[18] Yu Y, Duan X B, Ding X D, Chen C, Zhu D, Yin K D, Cao L, Song X W, Zhu P H, Li Q, Nisa Z U, Yu J Y, Du J Y, Song Y, Li H Q, Liu B D, Zhu Y M. A novel AP2/ERF family transcription factor from Glycine soja, GsERF71, is a DNA binding protein that positively regulates alkaline stress tolerance in Arabidopsis. Plant Mol Biol, 2017, 94: 509-530.
doi: 10.1007/s11103-017-0623-7
[19] Jensen J K, Hansen B G, Halkier B A, Norholm M H H, Nour E H H. Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments. Nucleic Acids Res, 2006, 34: e122.
doi: 10.1093/nar/gkl635 pmid: 17000637
[20] 李晶岚, 陈鑫欣, 石翠翠, 刘方惠, 孙静, 葛荣朝. OsRPK1基因过表达和RNA干涉对水稻苗期耐盐性的影响. 作物学报, 2020, 46: 1217-1224.
doi: 10.3724/SP.J.1006.2020.92060
Li J L, Chen G X, Shi C C, Liu F H, Sun J, Ge R C. Effects of OsRPK1 gene overexpression and RNAi on the salt-tolerance at seedling stage in rice. Acta Agron Sin, 2020, 46: 1217-1224. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.92060
[21] 潘欣. 转OsMAPK4OsCDPK7基因耐盐碱水稻的筛选与抗性分析. 东北农业大学硕士学位论文,黑龙江哈尔滨, 2010.
Pan X. Analysis of Tolerance and Screening of Rice with OsMAPK4 and OsCDPK7 Gene on Salt Stress and Alkali Stress. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2010. (in Chinese with English abstract)
[22] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 167-169, 184-185.
Li H S. Principles and Techniques of Plant Physiological Biochemical Experimental. Beijing: Higher Education Press, 2000. pp 167-169, 184-185. (in Chinese)
[23] Kaur N, Sharma I, Kirat K, Pati P K. Detection of reactive oxygen species in Oryza sativa L. (rice). Bio-Protocol, 2016, 24: e2061.
[24] 张宪政. 作物生理研究法. 北京: 中国农业出版社, 1992. pp 201-202.
Zhang X Z. Crop Physiology Research Method. Beijing: China Agriculture Press, 1992. pp 201-202. (in Chinese)
[25] Jung S E, Bang S W, Kim S H, Seo J S, Yoon H B, Kim Y S, Kim J K. Overexpression of OsERF83, a vascular tissue-specific transcription factor gene, confers drought tolerance in rice. Int J Mol Sci, 2021, 22: 7656.
doi: 10.3390/ijms22147656
[26] 张霞, 唐维, 刘嘉, 刘永胜. 过量表达水稻OsP5CS1OsP5CS2基因提高烟草脯氨酸的生物合成及其非生物胁迫抗性. 应用与环境生物学报, 2014, 20: 717-722.
Zhang X, Tang W, Liu J, Liu Y S. Co-expression of rice OsP5CS1 and OsP5CS2 genes in transgenic tobacco resulted in elevated proline biosynthesis and enhanced abiotic stress tolerance. Chin J Appl Environ Biol, 2014, 20: 717-722. (in Chinese with English abstract)
[27] Kumar M, Choi J, An G, Kim S R. Ectopic expression of OsSta2 enhances salt stress tolerance in rice. Front Plant Sci, 2017, 8: 316.
doi: 10.3389/fpls.2017.00316 pmid: 28344585
[28] Cao Y F, Wu Y F, Zheng Z, Song F M. Overexpression of the rice EREBP-like gene OsBIERF3 enhances disease resistance and salt tolerance in transgenic tobacco. Physiol Mol Plant Pathol, 2005, 67: 202-211.
doi: 10.1016/j.pmpp.2006.01.004
[29] Zhuang J, Jiang H H, Wang F, Peng R H, Yao Q H, Xiong A S. A rice OsAP23, functioning as an AP2/ERF transcription factor, reduces salt tolerance in transgenic Arabidopsis. Plant Mol Biol Rep, 2013, 31: 1336-1345.
doi: 10.1007/s11105-013-0610-3
[30] Angelos E, Brandizzi F. NADPH oxidase activity is required for ER stress survival in plants. Plant J, 2018, 96: 1106-1120.
doi: 10.1111/tpj.14091
[31] Sun X L, Sun M Z, Jia B W, Qin Z W, Yang K J, Chen C, Yu Q Y, Zhu Y M. A Glycine soja methionine sulfoxide reductase B5a interacts with the Ca2+/CAM-binding kinase GsCBRLK and activates ROS signaling under carbonate alkaline stress. Plant J, 2016, 86: 514-529.
doi: 10.1111/tpj.13187
[32] Zhang H M, Zhu J H, Gong Z Z, Zhu J K. Abiotic stress responses in plants. Nat Rev Genet, 2022, 23: 104-119.
doi: 10.1038/s41576-021-00413-0
[33] 张春霄. AP2/EREBP家族MfERF049基因对提高豆科植物生物胁迫和非生物胁迫抗性的功能分析. 内蒙古大学硕士学位论文,内蒙古呼和浩特, 2019.
Zhang C X. The Functional Analysis of MfERF049 Gene in AP2/EREBP Family with Improve Biological and Abiotic Stress Resistance about Leguminous Plant. MS Thesis of Inner Mongolia University, Hohhot, Inner Mongolia, China, 2019. (in Chinese with English abstract)
[34] Jin Y, Pan W, Zheng X, Cheng X, Liu M, Ma H, Ge X. OsERF101, an ERF family transcription factor, regulates drought stress response in reproductive tissues. Plant Mol Biol, 2018, 98: 51-65.
doi: 10.1007/s11103-018-0762-5 pmid: 30143992
[35] Lu L, Qanmber G, Li J, Pu M, Chen G, Li S, Liu L, Qin W, Ma S, Wang Y, Chen Q, Liu Z. Identification and characterization of the ERF subfamily B3 group revealed GhERF13.12 improves salt tolerance in upland cotton. Front Plant Sci, 2021, 12: 705883.
doi: 10.3389/fpls.2021.705883
[1] 向思茜, 李儒香, 徐光益, 邓岢莉, 余金琎, 李苗苗, 杨正林, 凌英华, 桑贤春, 何光华, 赵芳明. 基于水稻长大粒染色体片段代换系Z66的粒型QTL的鉴定及其聚合分析[J]. 作物学报, 2023, 49(3): 731-743.
[2] 刘立军, 周沈琪, 刘昆, 张伟杨, 杨建昌. 水稻大穗形成及其调控的研究进展[J]. 作物学报, 2023, 49(3): 585-596.
[3] 朱晓彤, 叶亚峰, 郭均瑶, 杨惠杰, 王紫瑶, 詹玥, 吴跃进, 陶亮之, 马伯军, 陈析丰, 刘斌美. 水稻早衰基因ESL8的遗传与定位[J]. 作物学报, 2023, 49(3): 662-671.
[4] 方娅婷, 任涛, 张顺涛, 周橡棋, 赵剑, 廖世鹏, 丛日环, 鲁剑巍. 氮磷钾肥对旱地和水田油菜产量及养分利用的影响差异[J]. 作物学报, 2023, 49(3): 772-783.
[5] 李秋平, 张春龙, 杨 宏, 王拓, 李娟, 金寿林, 黄大军, 李丹丹, 文建成. 水稻半育突变体sfp10的生理特征分析及基因定位[J]. 作物学报, 2023, 49(3): 634-646.
[6] 陈赛华, 彭盛, 尤仪雯, 张路遥, 王凯, 薛明, 杨远柱, 万建民. 水稻不育系湘陵628S不同组合感光性差异的遗传解析[J]. 作物学报, 2023, 49(2): 332-342.
[7] 杨晓祎, 王慧慧, 张艳雯, 侯典云, 张红晓, 康国章, 胥华伟. 利用CRISPR/Cas9探究水稻OsPIN5c基因功能[J]. 作物学报, 2023, 49(2): 354-364.
[8] 李兆伟, 莫祖意, 孙聪颖, 师宇, 尚平, 林伟伟, 范凯, 林文雄. OsNAC2d基因编辑水稻突变体的创建及其对干旱胁迫的响应[J]. 作物学报, 2023, 49(2): 365-376.
[9] 赵凌, 梁文化, 赵春芳, 魏晓东, 周丽慧, 姚姝, 王才林, 张亚东. 利用高密度Bin遗传图谱定位水稻抽穗期QTL[J]. 作物学报, 2023, 49(1): 119-128.
[10] 徐凯, 郑兴飞, 张红燕, 胡中立, 宁子岚, 李兰芝. 基于NCII遗传交配设计的籼稻抽穗期全基因组关联分析[J]. 作物学报, 2023, 49(1): 86-96.
[11] 薛皦, 卢东柏, 刘维, 陆展华, 王石光, 王晓飞, 方志强, 何秀英. 优质稻“粤农丝苗”白叶枯病抗性遗传分析及主效QTL qBB-11-1的精细定位[J]. 作物学报, 2022, 48(9): 2210-2220.
[12] 黄祎雯, 孙滨, 程灿, 牛付安, 周继华, 张安鹏, 涂荣剑, 李瑶, 姚瑶, 代雨婷, 谢开珍, 陈小荣, 曹黎明, 储黄伟. 对水稻种子耐储性QTL的研究[J]. 作物学报, 2022, 48(9): 2255-2264.
[13] 邬腊梅, 杨浩娜, 王立峰, 李祖任, 邓希乐, 柏连阳. 除草型麻地膜在水稻秧田的应用及对水稻的影响[J]. 作物学报, 2022, 48(9): 2315-2324.
[14] 陈志青, 冯源, 王锐, 崔培媛, 卢豪, 魏海燕, 张海鹏, 张洪程. 外源钼对水稻产量形成及氮素利用的影响[J]. 作物学报, 2022, 48(9): 2325-2338.
[15] 王权, 王乐乐, 朱铁忠, 任浩杰, 王辉, 陈婷婷, 金萍, 武立权, 杨茹, 尤翠翠, 柯健, 何海兵. 离体饲养下HgCl2影响水稻叶片光合特性及其生理机制研究[J]. 作物学报, 2022, 48(9): 2377-2389.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!