作物学报 ›› 2023, Vol. 49 ›› Issue (3): 634-646.doi: 10.3724/SP.J.1006.2023.22005
李秋平1(), 张春龙1, 杨宏1, 王拓1, 李娟1, 金寿林1, 黄大军1, 李丹丹1,2,*(), 文建成1,*()
LI Qiu-Ping1(), ZHANG Chun-Long1, YANG Hong1, WANG Tuo1, LI Juan1, JIN Shou-Lin1, HUANG Da-Jun1, LI Dan-Dan1,2,*(), WEN Jian-Cheng1,*()
摘要:
以水稻花粉半育性突变体lsm与籼稻93-11构建的高世代回交导入系semi-fertility plant 10 (sfp10)为研究对象, 与野生型93-11相比, 突变体在在株高、叶长、叶宽、分蘖数、花粉数量等农艺性状上均未发现显著差异, 但花粉育性却显著下降。花粉镜检及花粉发育后期的扫描电镜观察结果显示, sfp10突变体部分花粉在发育后期淀粉积累减少并最终败育。花粉发育相关生理指标检测结果表明, 突变体花药中脯氨酸和淀粉的含量显著下降; 蔗糖在突变体穗部上游组织(源叶、库叶、茎)中积累量显著增加, 但穗部含量却明显减少, 说明蔗糖到穗部的运输过程受到影响。遗传分析表明, sfp10突变体性状受1对隐性核基因控制, 基因初定位将突变位点定位于水稻10号染色体RM25389和RM25404之间的398 kb区间内, 该区间包含3个与蔗糖转运相关的基因和1个与淀粉合成相关的基因。本研究为进一步开展花粉半育性调控基因的精细定位、基因功能及调控机制的深入研究奠定基础。
[1] |
Ren D Y, Li Y F, He G H, Qian Q. Multifloret spikelet improves rice yield. New Phytol, 2020, 225: 2301-2306.
doi: 10.1111/nph.16303 pmid: 31677165 |
[2] |
Lin H, Yu J, Pearce S P, Zhang D B. Rice anther net: a gene co-expression network for identifying anther and pollen development genes. Plant J, 2017, 92: 1076-1091.
doi: 10.1111/tpj.13744 |
[3] | 冯九焕, 卢永根, 刘向东, 徐雪宾. 水稻花粉发育过程及其分期. 中国水稻科学, 2001, 15: 21-28. |
Feng J H, Lu Y G, Liu X D, Xu X B. Pollen development and its stages in rice (Oryza sativa L.). Chin J Rice Sci, 2001, 15: 21-28 (in Chinese with English abstract). | |
[4] |
Borg M, Brownfield L, Twell D. Male gametophyte development: a molecular perspective. J Exp Bot, 2009, 60: 1465-1478.
doi: 10.1093/jxb/ern355 pmid: 19213812 |
[5] | Hamilton D A, Mascarenhas J P. Gene expression during pollen development. In: Shivanna K R, Shivanna K R, Sawhney V K, eds. Pollen Biotechnology for Crop Production and Improvement. Cambridge: Cambridge UP, 1997. pp 40-58. |
[6] |
Lee S K, Eom J S, Hwang S K, Shin D, An G, Okita T W, Jeon J S. Plastidic phosphoglucomutase and ADP-glucose pyrophosphorylase mutants impair starch synthesis in rice pollen grains and cause male sterility. J Exp Bot, 2016, 67: 5557-5569.
doi: 10.1093/jxb/erw324 |
[7] |
Li T, Gong C Y, Wang T. RA68 is required for postmeiotic pollen development in Oryza sativa. Plant Mol Biol, 2010, 72: 265-277.
doi: 10.1007/s11103-009-9566-y |
[8] |
Cho J I, Ryoo N, Eom J S, Lee D W, Kim H B, Jeong S W, Lee Y H, Kwon Y K, Cho M H, Bhoo S H, Hahn T R, Park Y I, Hwang I, Sheen J, Jeon J S. Role of the rice hexokinases OsHXK5 and OsHXK6 as glucose sensors. Plant Physiol, 2009, 149: 745-759.
doi: 10.1104/pp.108.131227 |
[9] |
Datta R, Chamusco K C, Chourey P S. Starch biosynthesis during pollen maturation is associated with altered patterns of gene expression in maize. Plant Physiol, 2002, 130: 1645-1656.
doi: 10.1104/pp.006908 pmid: 12481048 |
[10] |
Tetlow I J, Morell M K, Emes M J. Recent developments in understanding the regulation of starch metabolism in higher plants. J Exp Bot, 2004, 55: 2131-2145.
doi: 10.1093/jxb/erh248 pmid: 15361536 |
[11] | Hu Z, Tang Z, Zhang Y, Niu L, Yang F, Zhang D, Hu Y. Rice SUT and SWEET Transporters. Int J Mol Med, 2021, 22: 11198. |
[12] | Wu Y, Fang W, Peng W, Jiang M, Chen G, Xiong F. Sucrose transporter in rice. Plant Signal Behav, 2021, 16: 1952373. |
[13] |
David M B. SWEET! The pathway is complete. Science, 2012, 335: 173-174.
doi: 10.1126/science.1216828 pmid: 22246760 |
[14] |
Karrer E E, Rodriguez R L. Metabolic regulation of rice α-amylase and sucrose synthase genes in planta. Plant J, 1992, 2: 517-523.
pmid: 1344888 |
[15] |
Long W, Dong B, Wang Y, Pan P, Wang Y, Liu L, Chen X, Liu X, Liu S, Tian Y, Chen L, Wan J. FLOURY ENDOSPERM8 encoding the UDP-glucose pyrophosphorylase 1, affects the synthesis and structure of starch in rice endosper. J Plant Biol, 2017, 60: 513-522.
doi: 10.1007/s12374-017-0066-3 |
[16] |
Tang X J, Peng C, Zhang J, Cai Y, You X M, Kong F, Yan H G, Wang G X, Wang L, Jin J, Chen W W, Chen X G, Ma J, Wang P, Jiang L, Zhang W W, Wan J M. ADP-glucose pyrophosphorylase large subunit 2 is essential for storage substance accumulation and subunit interactions in rice endosperm. Plant Sci, 2016, 249: 70-83.
doi: 10.1016/j.plantsci.2016.05.010 |
[17] | 贺和初. 滇1型和BT型杂交稻育性遗传和不育机理研究. 云南农业大学学报, 1988, (1): 54-68. |
He H C. A preliminary study on the fertility inheritance and male sterile mechanism of hybrid rice of Dian 1 type and BT type. J Yunnan Agric Univ, 1988, (1): 54-68. (in Chinese with English abstract) | |
[18] |
Li W, Jiang L, Zhou S, Wang C, Liu L, Chen L, Ikehashi H, Wan J M. Fine mapping of pss1, a pollen semi-sterile gene in rice (Oryza sativa L.). Theor Appl Genet, 2007, 114: 939-946.
doi: 10.1007/s00122-006-0491-z |
[19] | Li S C, Li W, Huang B, Cao X, Zhou X, Ye S, Li C, Gao F, Zou T, Xie K, Ren Y, Ai P, Tang Y, Li X, Deng Q, Wang S, Zheng A, Zhu J, Liu H, Wang L, Li P. Natural variation in PTB1 regulates rice seed setting rate by controlling pollen tube growth. Nat Commun, 2013, 4: 1-13. |
[20] | 李利军, 孔红星, 陆丹梅. 蒽酮-硫酸法快速测定蔗糖的研究及应用. 食品工业科技, 2003, (10): 145-149. |
Li L J, Kong H X, Lu D M. Study and application of rapid determination of sucrose by anthrone colorimetric method. Sci Technol Food Ind, 2003, (10): 145-149. (in Chinese) | |
[21] |
Rogers S O, Bendich A J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol, 1985, 5: 69-76.
doi: 10.1007/BF00020088 pmid: 24306565 |
[22] |
汪结明, 张建, 江海洋, 朱苏文, 范军, 程备久. RNA干扰水稻SBE3基因的表达对籽粒淀粉合成及其关键酶活性的影响. 作物学报, 2010, 36: 313-320.
doi: 10.3724/SP.J.1006.2010.00313 |
Wang J M, Zhang J, Jiang H Y, Zhu S W, Fan J, Cheng B J. Effects of RNA interference of SBE3 gene expression on starch accumulation and key enzymes activities involved in starch synthesis in transgenic rice grain. Acta Agron Sin, 2010, 36: 313-320. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.00313 |
|
[23] | Tappiban P, Ying Y, Xu F, Bao J. Proteomics and post- translational modifications of starch biosynthesis-related proteins in developing seeds of rice. Int J Mol Med, 2021, 22: 1-25. |
[24] |
Hirose T, Zhang Z, Miyao A, Hirochika H, Ohsugi R, Terao T. Disruption of a gene for rice sucrose transporter, OsSUT1, impairs pollen function but pollen maturation is unaffected. J Exp Bot, 2010, 61: 3639-2646.
doi: 10.1093/jxb/erq175 |
[25] |
He Z Y, Zou T, Xiao Q, Yuan G Q, Liu M M, Tao Y, Zhou D, Zhang X, Deng Q, Wang S Q, Zheng A, Zhu J, Liang Y, Yu X, Wang A, Liu H, Wang L X, Li P, Li S C. An L-type lectin receptor-like kinase promotes starch accumulation during rice pollen maturation. Development, 2021, 148: 1-16.
doi: 10.1242/dev.200265 |
[26] | Peng X, Wang M, Li Y, Yan W, Chang Z, Chen Z, Xu C, Yang C, Deng X W, Wu J, Tang X. Lectin receptor kinase OsLecRK-S.7 is required for pollen development and male fertility. Int J Mol Med, 2020, 62: 1227-1245. |
[27] |
Wang B, Fang R, Zhang J, Han J, Chen F, He F, Liu Y G, Chen L. Rice LecRK5 phosphorylates a UGPase to regulate callose biosynthesis during pollen development. J Exp Bot, 2020, 71: 4033-4041.
doi: 10.1093/jxb/eraa180 pmid: 32270203 |
[28] |
Zhang X, Zhao G C, Tan Q, Yuan H, Betts N, Zhu L, Zhang D, Liang W Q. Rice pollen aperture formation is regulated by the interplay between OsINP1 and OsDAF1. Nat Plants, 2020, 6: 394-403.
doi: 10.1038/s41477-020-0630-6 pmid: 32284546 |
[29] |
Mu H, Ke J H, Liu W, Zhuang C X, Yip W K. UDP-glucose pyrophosphorylase2 (OsUgp2), a pollen-preferential gene in rice, plays a critical role in starch accumulation during pollen maturation. Sci Bull, 2009, 54: 234-243.
doi: 10.1007/s11434-008-0568-y |
[30] | 陶龙兴, 王熹, 俞美玉, 黄效林. CM268诱导水稻雄性不育的效果及作用机理研究. 作物学报, 2001, 27: 178-184. |
Tao L X, Wang X, Yu M Y, Huang X L. Bio-effects and mechanism of CM268 on inducing rice male sterility. Acta Agron Sin, 2001, 27: 178-184. (in Chinese with English abstract) | |
[31] |
Lehmann S, Funck D, Szabados L, Rentsch D. Proline metabolism and transport in plant development. Amino Acids, 2010, 39: 949-962.
doi: 10.1007/s00726-010-0525-3 pmid: 20204435 |
[32] |
Chen P F, Chen L, Jiang Z R, Wang G P, Wang S H, Ding Y F. Sucrose is involved in the regulation of iron deficiency responses in rice (Oryza sativa L.). Plant Cell Rep, 2018, 37: 789-798.
doi: 10.1007/s00299-018-2267-8 |
[33] |
Yang J, Kim S R, Lee S K, Choi H, Jeon J S, An G. Alanine aminotransferase 1 (OsAlaAT1) plays an essential role in the regulation of starch storage in rice endosperm. Plant Sci, 2015, 240: 79-89.
doi: 10.1016/j.plantsci.2015.07.027 pmid: 26475189 |
[34] |
Khan I, Khan S, Zhang Y, Zhou J. Genome-wide analysis and functional characterization of the Dof transcription factor family in rice (Oryza sativa L.). Planta, 2021, 253: 101.
doi: 10.1007/s00425-021-03627-y |
[35] |
Hu Y, Li S L, Fan X, Song S, Zhou X, Weng X Y, Xiao J H, Li X H, Xiong L Z, You A Q, Xing Y Z. OsHOX1 and OsHOX28 redundantly shape rice tiller angle by reducing HSFA2D expression and auxin content. Plant Physiol, 2020, 184: 1424-1437.
doi: 10.1104/pp.20.00536 |
[36] |
Li Z, Ao Y, Feng D, Liu J, Wang J, Wang H B, Liu B. OsRLCK57, OsRLCK107 and OsRLCK118 positively regulate chitin- and PGN-induced immunity in rice. Rice, 2017, 10: 6-10.
doi: 10.1186/s12284-017-0145-6 |
[37] |
Vij S, Giri J, Dansana P K, Kapoor S, Tyagi A K. The receptor-like cytoplasmic kinase (OsRLCK) gene family in rice: organization, phylogenetic relationship, and expression during development and stress. Mol Plant, 2008, 1: 732-750.
doi: 10.1093/mp/ssn047 pmid: 19825577 |
[1] | 张晨晖, 章岩, 李国辉, 杨子君, 查莹莹, 周驰燕, 许轲, 霍中洋, 戴其根, 郭保卫. 侧深施肥下水稻高产形成的根系形态及其生理变化特征[J]. 作物学报, 2023, 49(4): 1039-1051. |
[2] | 严昕, 项超, 刘荣, 李冠, 李孟伟, 李正丽, 宗绪晓, 杨涛. 基于BSA-seq技术对豌豆花色基因的精细定位[J]. 作物学报, 2023, 49(4): 1006-1015. |
[3] | 唐文强, 张文龙, 朱晓乔, 董必正, 李勇成, 杨楠, 张耀, 王云月, 韩光煜. 多样性混合间栽对水稻根际细菌群落结构与功能的影响[J]. 作物学报, 2023, 49(4): 1111-1121. |
[4] | 向思茜, 李儒香, 徐光益, 邓岢莉, 余金琎, 李苗苗, 杨正林, 凌英华, 桑贤春, 何光华, 赵芳明. 基于水稻长大粒染色体片段代换系Z66的粒型QTL的鉴定及其聚合分析[J]. 作物学报, 2023, 49(3): 731-743. |
[5] | 刘立军, 周沈琪, 刘昆, 张伟杨, 杨建昌. 水稻大穗形成及其调控的研究进展[J]. 作物学报, 2023, 49(3): 585-596. |
[6] | 朱晓彤, 叶亚峰, 郭均瑶, 杨惠杰, 王紫瑶, 詹玥, 吴跃进, 陶亮之, 马伯军, 陈析丰, 刘斌美. 水稻早衰基因ESL8的遗传与定位[J]. 作物学报, 2023, 49(3): 662-671. |
[7] | 付景, 王亚, 杨文博, 王越涛, 李本银, 王付华, 王生轩, 白涛, 尹海庆. 干湿交替灌溉耦合施氮量对水稻籽粒灌浆生理和根系生理的影响[J]. 作物学报, 2023, 49(3): 808-820. |
[8] | 方娅婷, 任涛, 张顺涛, 周橡棋, 赵剑, 廖世鹏, 丛日环, 鲁剑巍. 氮磷钾肥对旱地和水田油菜产量及养分利用的影响差异[J]. 作物学报, 2023, 49(3): 772-783. |
[9] | 才晓溪, 胡冰霜, 沈阳, 王研, 陈悦, 孙明哲, 贾博为, 孙晓丽. GsERF6基因过表达对水稻耐盐碱性的影响[J]. 作物学报, 2023, 49(2): 561-569. |
[10] | 陈赛华, 彭盛, 尤仪雯, 张路遥, 王凯, 薛明, 杨远柱, 万建民. 水稻不育系湘陵628S不同组合感光性差异的遗传解析[J]. 作物学报, 2023, 49(2): 332-342. |
[11] | 杨晓祎, 王慧慧, 张艳雯, 侯典云, 张红晓, 康国章, 胥华伟. 利用CRISPR/Cas9探究水稻OsPIN5c基因功能[J]. 作物学报, 2023, 49(2): 354-364. |
[12] | 李兆伟, 莫祖意, 孙聪颖, 师宇, 尚平, 林伟伟, 范凯, 林文雄. OsNAC2d基因编辑水稻突变体的创建及其对干旱胁迫的响应[J]. 作物学报, 2023, 49(2): 365-376. |
[13] | 赵凌, 梁文化, 赵春芳, 魏晓东, 周丽慧, 姚姝, 王才林, 张亚东. 利用高密度Bin遗传图谱定位水稻抽穗期QTL[J]. 作物学报, 2023, 49(1): 119-128. |
[14] | 徐凯, 郑兴飞, 张红燕, 胡中立, 宁子岚, 李兰芝. 基于NCII遗传交配设计的籼稻抽穗期全基因组关联分析[J]. 作物学报, 2023, 49(1): 86-96. |
[15] | 薛皦, 卢东柏, 刘维, 陆展华, 王石光, 王晓飞, 方志强, 何秀英. 优质稻“粤农丝苗”白叶枯病抗性遗传分析及主效QTL qBB-11-1的精细定位[J]. 作物学报, 2022, 48(9): 2210-2220. |
|