作物学报 ›› 2023, Vol. 49 ›› Issue (3): 647-661.doi: 10.3724/SP.J.1006.2023.23023
马雅杰1(), 鲍建喜1(), 高悦欣1, 李雅楠1, 秦文萱1, 王彦博1, 龙艳1, 李金萍2, 董振营1,2,*(), 万向元1,2,*()
MA Ya-Jie1(), BAO Jian-Xi1(), GAO Yue-Xin1, LI Ya-Nan1, QIN Wen-Xuan1, WANG Yan-Bo1, LONG Yan1, LI Jin-Ping2, DONG Zhen-Ying1,2,*(), WAN Xiang-Yuan1,2,*()
摘要:
适宜的株高和穗位高可提高植株的养分利用效率及抗倒伏性, 对玉米增产和稳产具有重要意义。为揭示玉米株高和穗位高遗传机制, 本研究以854份玉米自交系为关联群体, 利用均匀分布于玉米10条染色体的2795个SNP标记对4个环境下玉米株高、穗位高以及穗位系数进行全基因组关联分析(genome-wide association study, GWAS)。共定位到81个显著关联SNP位点(P<0.0001), 其中与株高显著关联的SNP为35个, 单个位点表型解释率为0.02%~6.23%; 与穗位高显著关联SNP为31个, 单个位点表型变异解释率为0.03%~3.06%; 与穗位系数显著关联的SNP位点为24个, 单个位点表型变异解释率为0.03%~6.64%。进一步鉴定出15个可在2个及以上环境共定位的稳定SNP, 其中6个为本研究首次发现, 9个位于前人定位QTL区间或/和关联SNP位点2 Mb范围内。在15个稳定SNP位点上下游各200 kb的置信区间共发现83个功能注释基因, 结合文献分析筛选出了每个位点最有可能的候选基因, 这些候选基因主要参与激素合成与信号转导、糖类代谢、细胞分裂调控等途径。鉴定出6个主效SNP位点, 并发现1个可同时调控株高、穗位高和穗位系数的一因多效位点。本研究可为分子标记辅助选择育种提供有效遗传位点, 为精细定位和克隆株高与穗位高相关性状基因提供参考。
[1] |
Prasanna B M. Diversity in global maize germplasm: characterization and utilization. J Biosci, 2012, 37: 843-855.
doi: 10.1007/s12038-012-9227-1 |
[2] |
Tang J H, Teng W T, Yan J B, Ma X Q, Meng Y J, Dai J R, Li J S. Genetic dissection of plant height by molecular markers using a population of recombinant inbred lines in maize. Euphytica, 2007, 155: 117-124.
doi: 10.1007/s10681-006-9312-3 |
[3] |
徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性. 作物学报, 2022, 48: 1526-1536.
doi: 10.3724/SP.J.1006.2022.13036 |
Xu T J, Zhang Y, Zhao J R, Wang R H, Lyu T F, Liu Y E, Cai W T, Liu H W, Chen C Y, Wang Y D. Canopy structure, photosynthesis, grain filling, and dehydration characteristics of maize varieties suitable for grain mechanical harvesting. Acta Agron Sin, 2022, 48: 1526-1536. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.13036 |
|
[4] |
崔爱民, 张久刚, 张虎, 单皓, 陈伟. 我国玉米生产现状及发展变革. 中国农业科技导报, 2020, 22(7): 10-19.
doi: doi:10.13304/j.nykjdb.2019.0508 |
Cui A M, Zhang J G, Zhang H, Shan H, Chen W. Preliminary exploration on current situation and development of maize production in China. J Agric Sci Technol, 2020, 22(7): 10-19. (in Chinese with English abstract) | |
[5] |
宋振伟, 齐华, 张振平, 钱春荣, 郭金瑞, 邓艾兴, 张卫建. 春玉米中单909农艺性状和产量对密植的响应及其在东北不同区域的差异. 作物学报, 2012, 38: 2267-2277.
doi: 10.3724/SP.J.1006.2012.02267 |
Song Z W, Qi H, Zhang Z P, Qian C R, Guo J R, Deng A X, Zhang W J. Effects of plant density on agronomic traits and yield in spring maize Zhongdan 909 and their regional differences in northeast China. Acta Agron Sin, 2012, 38: 2267-2277. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2012.02267 |
|
[6] |
Khush G S. Green revolution: the way forward. Nat Rev Genet, 2001, 2: 815-822.
doi: 10.1038/35093585 pmid: 11584298 |
[7] |
Donald C M. The breeding of crop ideotypes. Euphytica, 1968, 17: 385-403.
doi: 10.1007/BF00056241 |
[8] |
Salas Fernandez M G, Becraft P W, Yin Y H, Lübberstedt T. From dwarves to giants? Plant height manipulation for biomass yield. Trends Plant Sci, 2009, 14: 454-461.
doi: 10.1016/j.tplants.2009.06.005 pmid: 19616467 |
[9] |
郑德波, 杨小红, 李建生, 严建兵, 张士龙, 贺正华, 黄益勤. 基于SNP标记的玉米株高及穗位高QTL定位. 作物学报, 2013, 39: 549-556.
doi: 10.3724/SP.J.1006.2013.00549 |
Zheng D B, Yang X H, Li J S, Yan J B, Zhang S L, He Z H, Huang Y Q. QTL identification for plant height and ear height based on SNP mapping in maize (Zea mays L.). Acta Agron Sin, 2013, 39: 549-556. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.00549 |
|
[10] | 薛军, 王克如, 谢瑞芝, 勾玲, 张旺锋, 明博, 侯鹏, 李少昆. 玉米生长后期倒伏研究进展. 中国农业科学, 2018, 51: 1845-1854. |
Xue J, Wang K R, Xie R Z, Gou L, Zhang W F, Ming B, Hou P, Li S K. Research progress of maize lodging during late stage. Sci Agric Sin, 2018, 51: 1845-1854 (in Chinese with English abstract). | |
[11] | 刘忠祥, 杨梅, 殷鹏程, 周玉乾, 何海军, 邱法展. 玉米株高主效QTL qPH3.2精细定位及遗传效应分析. 作物学报, 2018, 44: 1357-1366. |
Liu Z X, Yang M, Yin P C, Zhou Y Q, He H J, Qiu F Z. Fine mapping and genetic effect analysis of a major QTL qPH3.2 associated with plant height in maize (Zea mays L.). Acta Agron Sin, 2018, 44: 1357-1366. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.01357 |
|
[12] |
刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定. 作物学报, 2022, 48: 886-895.
doi: 10.3724/SP.J.1006.2022.13026 |
Liu L, Zhan W M, Ding W S, Liu T, Cui L H, Jiang L L, Zhang Y P, Yang J P. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize. Acta Agron Sin, 2022, 48: 886-895. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.13026 |
|
[13] | 于芮苏, 田小康, 刘斌斌, 段迎新, 李婷, 张秀英, 张兴华, 郝引川, 李勤, 薛吉全, 徐淑兔. 玉米抗倒伏相关性状QTL的关联和连锁分析. 作物学报, 2022, 48: 138-150. |
Yu R S, Tian X K, Liu B B, Duan Y X, Li T, Zhang X Y, Zhang X H, Hao Y C, Li Q, Xue J Q, Xu S T. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize. Acta Agron Sin, 2022, 48: 138-150. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.03072 |
|
[14] |
Beavis W D, Grant D, Albertsen M, Fincher R. Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theor Appl Genet, 1991, 83: 141-145.
doi: 10.1007/BF00226242 pmid: 24202349 |
[15] |
Yan J B, Tang H, Huang Y Q, Shi Y G, Li J S, Zheng Y L. Dynamic analysis of QTL for plant height at different developmental stages in maize (Zea mays L.). Chin Sci Bull, 2003, 48: 2601-2607.
doi: 10.1360/03wc0044 |
[16] |
Weng J F, Xie C X, Hao Z F, Wang J J, Liu C L, Li M S, Zhang D G, Bai L, Zhang S H, Li X H. Genome-wide association study identifies candidate genes that affect plant height in Chinese elite maize (Zea mays L.) inbred lines. PLoS One, 2011, 6: e29229.
doi: 10.1371/journal.pone.0029229 |
[17] | Bai W, Zhang H, Zhang Z, Teng F, Wang L, Tao Y, Zheng Y. The evidence for non-additive effect as the main genetic component of plant height and ear height in maize using introgression line populations. Plant Breed, 2009, 129: 376-384. |
[18] |
Vanous A, Gardner C, Blanco M, Blanco M, Schwarze A M, Lipka A E, Garcia S F, Bohn M, Edward J, Lübberstedt T. Association mapping of flowering and height traits in germplasm enhancement of maize doubled haploid (GEM-DH) lines. Plant Genome, 2018, 11: 170083.
doi: 10.3835/plantgenome2017.09.0083 |
[19] |
Wang B B, Liu H, Liu Z P, Dong X M, Guo J J, Li W, Chen J, Gao C, Zhu Y B, Zheng X M, Chen Z L, Chen J, Song W B, Hauck A, Lai J S. Identification of minor effect QTLs for plant architecture related traits using super high density genotyping and large recombinant inbred population in maize (Zea mays). BMC Plant Biol, 2018, 18: 17.
doi: 10.1186/s12870-018-1233-5 pmid: 29347909 |
[20] | 刘坤, 张雪海, 孙高阳, 闫鹏帅, 郭海平, 陈思远, 薛亚东, 郭战勇, 谢惠玲, 汤继华, 李卫华. 玉米株型相关性状的全基因组关联分析. 中国农业科学, 2018, 51: 821-834. |
Liu K, Zhang X H, Sun G Y, Yan P S, Guo H P, Chen S Y, Xue Y D, Guo Z Y, Xie H L, Tang J H, Li W H. Genome-wide association studies of plant type traits in maize. Sci Agric Sin, 2018, 51: 821-834. (in Chinese with English abstract) | |
[21] |
Knapp S J, Stroup W W, Ross W M. Exact confidence intervals for heritability on a progeny mean basis. Crop Sci, 1985, 25: 192-194.
doi: 10.2135/cropsci1985.0011183X002500010046x |
[22] |
Chen D H, Ronald P C. A rapid DNA minipreparation method suitable for AFLP and other PCR application. Plant Mol Biol Rep, 1999, 17: 53-57.
doi: 10.1023/A:1007585532036 |
[23] |
Tian H L, Wang F G, Zhao J R, Yi H M, Wang L, Wang R. Yang Y, Song W. Development of maize SNP3072, a high-throughput compatible SNP array, for DNA fingerprinting identification of Chinese maize varieties. Mol Breed, 2015, 35: 136.
doi: 10.1007/s11032-015-0335-0 |
[24] |
Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945-959.
doi: 10.1093/genetics/155.2.945 pmid: 10835412 |
[25] | Liu X L, Huang M, Fan B, Buckler E S, Zhang Z W. Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet, 2016, 12: e1005767. |
[26] |
Wang M, Yan J B, Zhao J R, Song W, Zhang X B, Xiao Y N, Zheng Y L. Genome-wide association study (GWAS) of resistance to head smut in maize. Plant Sci, 2012, 196: 125-131.
doi: 10.1016/j.plantsci.2012.08.004 pmid: 23017907 |
[27] | 贺建波, 刘方东, 邢光南, 王吴彬, 赵团结, 管荣展, 盖钧镒. 限制性两阶段多位点全基因组关联分析方法的特点与计算程序. 作物学报, 2018, 44: 1274-1289. |
He J B, Liu F D, Xing G N, Wang W B, Zhao T J, Guan R Z, Gai J Y. Characterization and analytical programs of the restricted two-stage multi-locus genome-wide association analysis. Acta Agron Sin, 2018, 44: 1274-1289 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.01274 |
|
[28] |
Li X P, Zhou Z J, Ding J Q, Wu Y B, Zhou B, Wang R X, Ma J L, Wang S W, Zhang X C, Xia Z L, Chen J F, Wu J Y. Combined linkage and association mapping reveals QTL and candidate genes for plant and ear height in maize. Front Plant Sci, 2016, 7: 833.
doi: 10.3389/fpls.2016.00833 pmid: 27379126 |
[29] | 李博, 张焕欣, 杨小艳, 吕颖颖, 江培顺, 郝转芳, 吕香玲, 王宏伟, 翁建峰. 玉米穗位高全基因组关联分析及其候选基因预测. 作物杂志, 2013, (2): 27-32. |
Li B, Zhang H X, Yang X Y, Lyu Y Y, Jiang P S, Hao Z F, Lyu X L, Wang H W, Weng J F. Genome-wide association study and candidate gene prediction of ear height in maize (Zea mays L.). Crops, 2013, (2): 27-32. (in Chinese with English abstract) | |
[30] |
张焕欣, 翁建峰, 张晓聪, 刘昌林, 雍洪军, 郝转芳, 李新海. 玉米穗行数全基因组关联分析. 作物学报, 2014, 40: 1-6.
doi: 10.3724/SP.J.1006.2014.00001 |
Zhang H X, Weng J F, Zhang X C, Liu C L, Yong H J, Hao Z F, Li X H. Genome-wide association analysis of kernel row number in maize. Acta Agron Sin, 2014, 40: 1-6. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.00001 |
|
[31] |
Pandis N. Linear regression. Am J Orthod Dentofac, 2016, 149: 431-434.
doi: 10.1016/j.ajodo.2015.11.019 pmid: 26926032 |
[32] | 袁亮, 孟鑫, 汪亚龙, 廖长见, 李高科, 吕桂华, 宋军, 邱正高, 林海建. 镉胁迫下甜、糯玉米开花期性状的全基因组关联分析. 植物遗传资源学报, 2021, 22: 438-447. |
Yuan L, Meng X, Wang Y L, Liao C J, Li G K, Lyu G H, Song J, Qiu Z G, Lin H J. Genome wide association analysis of flowering traits in sweet and waxy maize under cadmium stress. J Plant Genet Resour, 2021, 22: 438-447 (in Chinese with English abstract). | |
[33] | 马雅杰, 高悦欣, 李依萍, 龙艳, 董振营, 万向元. 玉米株高和穗位高的遗传基础与分子机制. 中国生物工程杂志, 2021, 41(12): 61-73. |
Ma Y J, Gao Y X, Li Y P, Long Y, Dong Z Y, Wan X Y. Progress on genetic analysis and molecular dissection on maize plant height and ear height. China Biotechnol, 2021, 41(12): 61-73. (in Chinese with English abstract) | |
[34] |
Ertiro B T, Labuschagne M, Olsen M, Das B, Prasanna B M, Gowda M. Genetic dissection of nitrogen use efficiency in tropical maize through genome-wide association and genomic prediction. Front Plant Sci, 2020, 11: 474.
doi: 10.3389/fpls.2020.00474 pmid: 32411159 |
[35] | Zhu C, Gore M, Buckler E S, Yu J M. Status and prospects of association mapping in plants. Plant Genome, 2008, 1: 5-20. |
[36] |
An Y X, Chen L, Li Y X, Li C H, Shi Y S, Zhang D F, Li Y, Wang T Y. Genome-wide association studies and whole-genome prediction reveal the genetic architecture of KRN in maize. BMC Plant Biol, 2020, 20: 490.
doi: 10.1186/s12870-020-02676-x pmid: 33109077 |
[37] |
Zhang Y, Wan J Y, He L, Lan H, Li L J. Genome-wide association analysis of plant height using the maize F1 population. Plants (Basel), 2019, 8: 432.
doi: 10.3390/plants8100432 |
[38] |
渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构. 作物学报, 2022, 48: 304-319.
doi: 10.3724/SP.J.1006.2022.13002 |
Qu J Z, Feng W H, Zhang X H, Xu S T, Xue J Q. Dissecting the genetic architecture of maize kernel size based on genome-wide association study. Acta Agron Sin, 2022, 48: 304-319. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.13002 |
|
[39] |
Zhao Y, Wang H S, Bo C, Dai W, Zhang X G, Cai R H, Gu L J, Ma Q, Jiang H Y, Zhu J, Cheng B J. Genome-wide association study of maize plant architecture using F1 populations. Plant Mol Biol, 2019, 99: 1-15.
doi: 10.1007/s11103-018-0797-7 |
[40] |
Zhou Z Q, Zhang C S, Lu X H, Wang L W, Hao Z F, Li M S, Zhang D G, Yong H J, Zhu H Y, Weng J F, Li X H. Dissecting the genetic basis underlying combining ability of plant height related traits in maize. Front Plant Sci, 2018, 9: 1117.
doi: 10.3389/fpls.2018.01117 pmid: 30116252 |
[41] | 杨晓军, 路明, 张世煌, 周芳, 曲延英, 谢传晓. 玉米株高和穗位高的QTL定位. 遗传, 2008, 30: 1477-1486. |
Yang X J, Lu M, Zhang S H, Zhou F, Qu Y Y, Xie C X. QTL mapping of plant height and ear position in maize (Zea mays L.). Hereditas (Beijing), 2008, 30: 1477-1486. (in Chinese with English abstract) | |
[42] |
Zhang Z M, Zhao M J, Ding H P, Rong T Z, Pan G T. Quantitative trait loci analysis of plant height and ear height in maize (Zea mays L.). Russ J Genet, 2006, 42: 306-310.
doi: 10.1134/S1022795406030112 |
[43] |
Hu S L, Wang C L, Sanchez D L, Lipka A E, Liu P, Yin Y H, Blanco M, Lübberstedt T. Gibberellins promote brassinosteroids action and both increase heterosis for plant height in maize (Zea mays L.). Front Plant Sci, 2017, 8: 1039.
doi: 10.3389/fpls.2017.01039 |
[44] |
Tang Z X, Yang Z F, Hu Z Q, Zhang D, Lu X, Jia B, Deng D X, Xu C W. Cytonuclear epistatic quantitative trait locus mapping for plant height and ear height in maize. Mol Breed, 2013, 31: 1-14.
doi: 10.1007/s11032-012-9762-3 |
[45] |
Liu H J, Wang X Q, Xiao Y J, Luo J Y, Qiao F, Yang W Y, Zhang R Y, Meng Y J, Sun J M, Yan S J, Peng Y, Niu L Y, Jian L M, Song W, Yan J L, Li C H, Zhao Y X, Liu Y, Warburton M L, Zhao J R, Yan J B. CUBIC: an atlas of genetic architecture promises directed maize improvement. Genome Biol, 2020, 21: 20.
doi: 10.1186/s13059-020-1930-x |
[46] |
Dell’Acqua M, Gatti D M, Pea G, Cattonaro F, Coppens F, Magris G, Hlaing A L, Aung H H, Nelissen H, Baute J, Frascaroli E, Churchill G A, Inzé D, Morgante M, Pè M E. Genetic properties of the MAGIC maize population: a new platform for high definition QTL mapping in Zea mays. Genome Biol, 2015, 16: 167.
doi: 10.1186/s13059-015-0716-z |
[47] |
Park K J, Sa K J, Kim B W, Koh H J, Lee J K. Genetic mapping and QTL analysis for yield and agronomic traits with an F2:3population derived from a waxy corn × sweet corn cross. Genes Genom, 2014, 36: 179-189.
doi: 10.1007/s13258-013-0157-6 |
[48] |
Pan Q C, Xu Y C, Li K, Peng Y, Zhan W, Li W Q, Li L, Yan J B. The genetic basis of plant architecture in 10 maize recombinant inbred line populations. Plant Physiol, 2017, 175: 858-873.
doi: 10.1104/pp.17.00709 pmid: 28838954 |
[49] |
Li Y L, Dong Y B, Niu S Z, Cui D Q. The genetic relationship among plant-height traits found using multiple-trait QTL mapping of a dent corn and popcorn cross. Genome, 2007, 50: 357-364.
pmid: 17546094 |
[50] | 李卫华. 玉米多种抗病基因的分子聚合育种. 中国科学院遗传与发育生物学研究所博士学位论文, 北京, 2008. |
Li W H. Pyramiding Breeding of Resistance Genes to Maize Diseases with Marker-assisted Selection. PhD Dissertation of Institute of Genetics and Developmental Biology, Chinese Academy of Sciences,Beijing, China, 2008 (in Chinese with English abstract). | |
[51] |
Xu X Z, Wan W, Jiang G B, Xi Y, Huang H J, Cai J J, Chang Y N, Duan C G, Mangrauthia S K, Peng X X, Zhu J K, Zhu G H. Nucleocytoplasmic trafficking of the Arabidopsis WD40 repeat protein XIW1 regulates ABI5 stability and abscisic acid responses. Mol Plant, 2019, 12: 1598-1611.
doi: 10.1016/j.molp.2019.07.001 |
[52] | 戚义东, 秦华, 高雅迪, 王芳芳, 黄荣峰, 权瑞党. 脱落酸拮抗赤霉素抑制水稻地上部生长的研究. 生物技术进展, 2019, 9: 483-489. |
Qi Y D, Qin H, Gao Y D, Wang F F, Huang R F, Quan R D. Study on antagonizing regulation of shoot growth by abscisic acid and gibberellic acid in rice. Curr Biotech, 2019, 9: 483-489. (in Chinese with English abstract) | |
[53] |
Russin W A, Evert R F, Vanderveer P J, Sharkey T D, Briggs S P. Modification of a specific class of plasmodesmata and loss of sucrose export ability in the sucrose export defective1 maize mutant. Plant Cell, 1996, 8: 645-658.
doi: 10.2307/3870341 |
[54] | 覃碧. 泛素蛋白酶体途径及其对植物激素信号转导的调控. 热带农业科学, 2013, 33: 39-45. |
Qin B. Ubiquitin-proteasome pathway and its regulation of plant hormone signaling. Chin J Trop Agric, 2013, 33: 39-45. (in Chinese with English abstract) | |
[55] | 冯玥. 棉花岩藻糖基转移酶家族基因(FucT)的发掘和FucT4功能初步分析. 南京农业大学博士学位论文, 江苏南京, 2016. |
Feng Y. Genome-wide Identification of Fucosyltransferase (FucT) Gene Family and Functional Analysis of FucT4 in Cotton. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2016. (in Chinese with English abstract) | |
[56] |
Skirycz A, Radziejwoski A, Busch W, Hannah M A, Czeszejko J, Kwasniewski M, Zanor M I, Lohmann J U, Veylder L D, Witt I, Roeber B M. The DOF transcription factor OBP1 is involved in cell cycle regulation in Arabidopsis thaliana. Plant J, 2008, 56: 779-792.
doi: 10.1111/j.1365-313X.2008.03641.x |
[57] | 王凯. 拟南芥和水稻CPP转录因子家族的生物信息学分析. 生物技术通报, 2010, (2): 76-84. |
Wang K. Bioinformatic analysis of the CPP transcription factors family in Arabidopsis and rice. Biotech Bull, 2010, (2): 76-84. (in Chinese with English abstract) | |
[58] |
何亮, 李富华, 沙莉娜, 付凤玲, 李晚忱. 玉米2C型丝氨酸/苏氨酸蛋白磷酸酶(PP2C)活性与耐旱性的关系. 作物学报, 2008, 34: 899-903.
doi: 10.3724/SP.J.1006.2008.00899 |
He L, Li F H, Sha L N, Fu F L, Li W C. Activity of serine/threonine protein phosphatase type-2C (PP2C) and its relationships to drought tolerance in maize. Acta Agron Sin, 2008, 34: 899-903. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2008.00899 |
|
[59] | 卫卓赟, 黎家. 受体激酶介导的油菜素内酯信号转导途径. 生命科学, 2011, 23: 1106-1113. |
Wei Z Y, Li J. Receptor kinases mediated brassinosteroid signal transduction in plants. Chin Bull Life Sci, 2011, 23: 1106-1113. (in Chinese with English abstract) | |
[60] |
Kir G, Ye H X, Nelissen H, Neelakandan A K, Kusnandar A S, Luo A, Inzé D, Sylvester A W, Yin Y H, Becraft P W. RNA interference knockdown of BRASSINOSTEROID INSENSITIVE1 in maize reveals novel functions for brassinosteroid signaling in controlling plant architecture. Plant Physiol, 2015, 169: 826-839.
doi: 10.1104/pp.15.00367 |
[1] | 张金鑫, 葛均筑, 马玮, 丁在松, 王新兵, 李从锋, 周宝元, 赵明. 华北平原冬小麦-夏玉米种植体系周年水分高效利用研究进展[J]. 作物学报, 2023, 49(4): 879-892. |
[2] | 朱治, 李龙, 李超男, 毛新国, 郝晨阳, 朱婷, 王景一, 常建忠, 景蕊莲. 小麦转录因子TaMYB5-3B与株高和千粒重相关[J]. 作物学报, 2023, 49(4): 906-916. |
[3] | 舒泽兵, 罗万宇, 蒲甜, 陈国鹏, 梁冰, 杨文钰, 王小春. 基于高产与高效条件下鲜食玉米鲜食大豆带状间作田间配置技术优化[J]. 作物学报, 2023, 49(4): 1140-1150. |
[4] | 栾奕, 白岩, 卢实, 李磊鑫, 王德强, 高婷婷, 石洁, 杨洪明, 路明. “十三五”国家东华北春玉米区域试验品种抗病性评价[J]. 作物学报, 2023, 49(4): 1122-1131. |
[5] | 吴希, 王家瑞, 郝淼艺, 张宏军, 张仁和. 种植密度对不同生育期玉米品种光温资源利用率和产量的影响[J]. 作物学报, 2023, 49(4): 1065-1078. |
[6] | 杨俊芳, 王宙, 乔麟轶, 王亚, 赵宜婷, 张宏斌, 申登高, 王宏伟, 曹越. 基于高密度遗传图谱的蓖麻种子大小性状QTL定位[J]. 作物学报, 2023, 49(3): 719-730. |
[7] | 许加波, 吴鹏昊, 黄博文, 陈占辉, 马月虹, 任姣姣. 利用F2:3家系来源单倍体定位玉米雄穗相关性状QTL及全基因组选择[J]. 作物学报, 2023, 49(3): 622-633. |
[8] | 刘月, 明博, 李姚姚, 王克如, 侯鹏, 薛军, 李少昆, 谢瑞芝. 基于根冠协调发展的东北春玉米高产种植密度分析[J]. 作物学报, 2023, 49(3): 795-807. |
[9] | 刘姗姗, 庞婷, 袁晓婷, 罗凯, 陈平, 付智丹, 王小春, 杨峰, 雍太文, 杨文钰. 种间距对不同结瘤特性套作大豆根瘤生长及固氮潜力的影响[J]. 作物学报, 2023, 49(3): 833-844. |
[10] | 方娅婷, 任涛, 张顺涛, 周橡棋, 赵剑, 廖世鹏, 丛日环, 鲁剑巍. 氮磷钾肥对旱地和水田油菜产量及养分利用的影响差异[J]. 作物学报, 2023, 49(3): 772-783. |
[11] | 邓照, 蒋环琪, 程丽沙, 刘睿, 黄敏, 李曼菲, 杜何为. 利用WGCNA鉴定玉米非生物胁迫相关基因共表达网络[J]. 作物学报, 2023, 49(3): 672-686. |
[12] | 宋杰, 王少祥, 李亮, 黄金苓, 赵斌, 张吉旺, 任佰朝, 刘鹏. 施钾量对夏玉米氮、磷、钾吸收利用和籽粒产量的影响[J]. 作物学报, 2023, 49(2): 539-551. |
[13] | 刘梦, 张垚, 葛均筑, 周宝元, 吴锡冬, 杨永安, 侯海鹏. 不同降雨年型施氮量与收获期对夏玉米产量及氮肥利用效率的影响[J]. 作物学报, 2023, 49(2): 497-510. |
[14] | 徐彤, 吕艳杰, 邵玺文, 耿艳秋, 王永军. 不同时期化控对密植玉米冠层结构及籽粒灌浆特性的影响[J]. 作物学报, 2023, 49(2): 472-484. |
[15] | 杨硕, 武阳春, 刘鑫磊, 唐晓飞, 薛永国, 曹旦, 王婉, 刘亭萱, 祁航, 栾晓燕, 邱丽娟. 大豆蛋白含量主效位点qPRO-20-1的精细定位[J]. 作物学报, 2023, 49(2): 310-320. |
|