欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (4): 1140-1150.doi: 10.3724/SP.J.1006.2023.23013

• 研究简报 • 上一篇    

基于高产与高效条件下鲜食玉米鲜食大豆带状间作田间配置技术优化

舒泽兵(), 罗万宇, 蒲甜, 陈国鹏, 梁冰, 杨文钰, 王小春*()   

  1. 四川农业大学农学院/农业农村部西南作物生理生态与耕作重点实验室/作物生理生态及栽培四川省重点实验室, 四川成都 611130
  • 收稿日期:2022-01-30 接受日期:2022-09-05 出版日期:2023-04-12 网络出版日期:2022-09-15
  • 通讯作者: *王小春, E-mail: xchwang@sicau.edu.cn
  • 作者简介:E-mail: 1776909016@qq.com
  • 基金资助:
    四川省育种攻关项目(2021YFYZ0005);玉-豆-畜关键技术研究与集成示范项目(2021YFQ0015)

Optimization of field configuration technology of strip intercropping of fresh corn and fresh soybean based on high yield and high efficiency

SHU Ze-Bing(), LUO Wan-Yu, PU Tian, CHEN Guo-Peng, LIANG Bing, YANG Wen-Yu, WANG Xiao-Chun*()   

  1. College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs/Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, Sichuan, China
  • Received:2022-01-30 Accepted:2022-09-05 Published:2023-04-12 Published online:2022-09-15
  • Contact: *E-mail: xchwang@sicau.edu.cn
  • Supported by:
    Breeding Research Project of Sichuan(2021YFYZ0005);Key Technology Research and Integration Demonstration Project of Jade Bean Livestock(2021YFQ0015)

摘要:

为了明确西南地区鲜食玉米鲜食大豆带状间作的高产与利于机械化实现高效的田间配置技术, 以2个株高差异较大的鲜食玉米品种为材料, 采用两因素裂区设计, 综合分析2种带宽(高产带宽2 m和宜机械化高效带宽2.4 m)与玉米种植密度(37,500、45,000、52,500和60,000株 hm-2)对鲜食玉米-大豆带状间作系统中群体产量、商品品质及种植效益的影响, 明确了高产高效最优田间配置。结果表明, 鲜食玉米产量受玉米密度的影响更显著, 而鲜食大豆产量主要受带宽的影响。带宽和玉米密度显著影响鲜食玉米商品品质, 随着带宽增加, 矮秆玉米品种一级果穗率2年平均降低25.78%, 秃尖长2年平均增加9.55%, 高秆玉米品种则一级果穗率降低11.76%, 秃尖长增加17.54%; 随着玉米密度增加, 2种带宽下矮秆和高秆玉米品种一级果穗率均显著降低, 秃尖长均显著增加, 2019年2 m带宽下矮秆和高秆玉米种植密度从52,500株 hm-2增至60,000株 hm-2, 一级果穗率分别降低46.16%、27.78%, 秃尖长分别增加19.44%、14.17%, 2.4 m带宽下则一级果穗率分别降低25.01%、23.60%, 秃尖长分别增加16.46%、11.53%。带宽、密度对鲜食大豆2粒荚率和3粒荚率的影响达显著水平, 随着带宽增加, 带状间作大豆2粒和3粒荚率均显著增加, 与矮秆和高秆玉米品种间作的大豆2粒荚率和3粒荚率2年平均分别增加7.94%和18.88%、8.10%和16.71%; 随玉米密度增加, 大豆2粒和3粒荚率均显著降低, 2019年玉米密度从52,500株 hm-2增至60,000株 hm-2, 高秆玉米间作大豆2粒荚率降幅为6.19%~9.09%, 3粒荚率降幅为11.94%~14.39%。通过主成分综合评价得分和DTOPSIS法综合评价结果表明, 高产和高效带宽下, 矮秆和高秆玉米品种带状间作鲜食大豆均以52,500株 hm-2和45,000株 hm-2玉米密度各性状接近理想值, 综合性状表现好, 种植效益分别可实现8.44万元 hm-2和10.09万元 hm-2

关键词: 鲜食玉米, 鲜食大豆, 带状间作, 带宽, 密度, 群体产量, 商品品质

Abstract:

To clarify the high yield of strip intercropping of fresh corn and fresh soybean in Southwest China and to realize efficient field configuration technology for mechanization, two fresh corn varieties with large plant height differences were used as the materials, and two factor split zone design was adopted. The effects of two kinds of bandwidth (high-yield bandwidth 2 m and high-efficiency bandwidth suitable for mechanization 2.4 m) and maize planting density (37,500, 45,000, 52,500, and 60,000 plants hm-2) on population yield, commodity quality, and planting benefit in the strip intercropping system of fresh corn and soybean were comprehensively analyzed, and the optimal field configuration of high-yield and high-efficiency was determined. The results showed that the yield of fresh corn and fresh soybean were more affected by corn planting density and bandwidth, respectively. With the increase of bandwidth, the first-class ear rate of dwarf maize varieties decreased by 25.78%, the bald tip length increased by 9.55%, and the first-class ear rate of tall maize varieties decreased by 11.76% and the bald tip length increased by 17.54%. With the increase of maize density, the first-class ear rate, bald tip length of dwarf, and tall maize varieties decreased significantly under the two bandwidth, and the planting density of dwarf and tall maize increased from 52,500 plants hm-2 to 60,000 plants hm-2 in 2019. The first-class ear rate decreased by 46.16% and 27.78%, the bald tip length increased by 19.44% and 14.17%, and the first-class ear rate decreased by 25.01% and 23.60% under the 2.4 m bandwidth, and the bald tip length increased by 16.46% and 11.53%, respectively. The effects of bandwidth and density on the 2-pod rate and 3-pod rate of fresh soybean reached a significant level. With the increase of bandwidth, the 2-pod rate and 3-pod rate of strip intercropping soybean increased significantly. The 2-pod rate and 3-pod rate of soybean intercropped with dwarf and high stalk maize varieties increased by 7.94% and 18.88%, 8.10% and 16.71%, respectively. With the increase of corn density, the 2-pod rate and 3-pod rate of soybean decreased significantly. In 2019, the corn density increased from 52,500 plants hm-2 to 60,000 plants hm-2. The 2-pod rate of soybean intercropped with high stalk corn decreased by 6.19%-9.09%, and the 3-pod rate decreased by 11.94%-14.39%. The comprehensive evaluation score of principal component and DTOPSIS method showed that under the high-yield and high-efficiency bandwidth, the corn density of 52,500 plants hm-2 and 45,000 plants hm-2 of strip intercropping fresh soybean of dwarf and tall maize varieties were close to the ideal value of maize density, the comprehensive characters performance was good. The planting benefits could reach 84,400 Yuan hm-2 and 100,900 Yuan hm-2, respectively.

Key words: fresh corn, fresh soybeans, banded intercropping, bandwidth, density, population yield, commodity quality

图1

玉米大豆带状间作田间布局图"

图2

产量与带宽、密度的关系"

表1

带宽、密度对鲜食玉米商品品质的影响(2018年)"

品种
Variety
带宽
Bandwidth (cm)
密度
Density
(×104 hm-2)
单穗重
Single spike weight (g)
果穗整齐度
Maize ear uniformity
穗粗
Ear diameter (mm)
秃尖长
Barren tip length (cm)
出苞率
Bract rate (%)
一级果穗率
One-level ear rate (%)
矮秆型 200 3.75 306.67 a 53.12 51.10 a 1.03 c 87.43 a 70.00 a
Dwarf type 4.50 294.33 ab 48.83 51.00 a 1.12 b 83.45 b 53.33 b
5.25 283.33 b 37.10 50.55 a 1.24 a 81.09 b 46.67 c
240 3.75 291.33 a 45.87 50.57 a 1.06 c 84.45 a 63.33 a
4.50 281.67 a 36.88 50.48 a 1.20 b 79.62 b 36.67 b
5.25 278.33 a 18.22 50.55 a 1.36 a 78.16 b 33.33 b
F A 7.93 10.15 3.39* 15.05 97.58*
F-value B 5.83* 0.73 20.56** 16.10** 66.16**
A×B 0.50 0.77 1.19 0.10 2.13
高秆型 200 3.75 494.00 a 25.58 55.32 a 1.91 b 76.49 a 92.22 a
Tall type 4.50 475.00 ab 21.79 54.56 ab 2.60 a 73.03 b 88.89 b
5.25 451.33 b 19.00 53.88 b 2.75 a 72.25 b 76.07 c
240 3.75 488.33 a 24.97 54.91 a 2.39 b 74.12 a 85.56 a
4.50 475.33 ab 21.12 53.70 a 2.86 a 71.17 b 82.22 a
5.25 442.33 b 17.43 52.29 b 2.96 a 69.34 c 63.33 b
F A 0.46 30.89* 23.27* 29.53* 19.47*
F-value B 4.55* 10.87** 74.83** 56.04** 173.60**
A×B 0.05 0.93 2.65 0.72 5.08

表2

带宽、密度对鲜食玉米商品品质的影响(2019年)"

品种
Variety
带宽
Bandwidth (cm)
密度
Density
(×104 hm-2)
单穗重
Single spike weight (g)
果穗整齐度
Maize ear uniformity
穗粗
Ear diameter (mm)
秃尖长
Barren tip length (cm)
出苞率
Bract rate (%)
一级果穗率
One-level ear rate (%)
矮秆型 200 4.5 294.00 a 42.44 52.27 a 1.03 c 88.19 a 50.00 a
Dwarf type 5.25 278.67 b 34.48 51.71 a 1.16 b 85.69 b 43.33 b
6 257.67 c 31.64 50.59 b 1.44 a 83.17 c 23.33 c
240 4.5 274.00 a 19.57 51.89 a 1.13 c 84.21 a 35.00 a
5.25 255.33 b 19.17 50.81 b 1.32 b 82.21 a 26.67 b
6 246.00 c 15.75 49.88 c 1.58 a 81.88 a 20.00 c
F A 4.25 2.31 30.00* 7.01 36.96*
F-value B 66.50** 32.39* 49.55** 8.91** 174.23**
A×B 4.30 0.65 0.26 1.32 20.80
高秆型 200 4.5 428.00 a 28.34 52.67 a 1.93 c 81.20 a 83.33 a
Tall type 5.25 391.33 ab 27.58 50.84 b 2.18 b 80.27 a 60.00 b
6 368.00 b 15.14 50.82 b 2.54 a 76.80 b 43.33 c
240 4.5 396.00 a 19.80 51.80 a 2.05 c 78.07 a 68.89 a
5.25 372.00 a 18.03 50.77 ab 2.84 b 77.68 a 53.81 b
6 366.00 a 12.49 49.70 b 3.21 a 76.24 a 41.11 c
F A 7.06 88.58 18.96* 493.58* 79.91*
F-value B 5.55* 7.50* 36.35** 8.24* 176.16**
A×B 0.60 0.54 4.70 1.40 5.93

表3

带宽、密度对鲜食大豆荚果商品性的影响"

年份Year 带宽
Bandwidth
(cm)
密度
Density
(×104 hm-2)
矮秆型/大豆Dwarf maize/soybean 高秆型/大豆Tall maize/soybean
单株荚数
Effective pod number per plant
2粒荚率
Two-pod rate per plan (%)
3粒荚率
Three-pod rate per plant (%)
单株荚数
Effective pod number per plant
2粒荚率
Two-pod rate per plant (%)
3粒荚率
Three-pod rate per plant (%)
2018 200 3.75 20.77 a 49.48 a 17.64 a 17.05 a 43.37 a 12.15 a
4.50 20.57 a 47.22 b 16.91 a 16.25 a 42.20 a 11.17 a
5.25 19.65 a 46.97 b 15.97 a 15.03 a 40.40 b 11.57 a
240 3.75 22.70 a 52.49 a 21.12 a 17.87 a 45.63 a 15.55 a
4.50 22.20 a 51.09 a 21.24 a 17.67 a 44.00 a 12.56 b
5.25 21.80 a 48.78 b 16.91 b 17.27 a 44.29 a 12.78 b
F A 8.63 11.87* 140.30* 2.59 15.22* 58.37*
F-value B 0.48 12.74* 13.64* 1.10 4.25* 6.19*
A×B 0.03 1.39 4.08 0.32 1.08 2.02
2019 200 4.50 19.18 a 46.48 a 14.93 b 15.70 a 48.50 a 15.64 a
5.25 20.17 a 50.54 a 17.81 a 15.37 a 47.72 a 14.18 ab
6.00 19.40 a 47.88 a 16.02 ab 14.43 a 46.00 b 12.31 b
240 4.50 20.20 a 50.08 a 24.00 a 17.83 a 56.83 a 18.70 a
5.25 21.03 a 56.01 a 20.74 ab 17.50 a 51.09 b 16.06 b
6.00 22.15 a 58.33 a 18.58 b 17.53 a 50.55 b 17.09 ab
F A 12.09 23.32* 19.35* 3.27 66.46* 22.60*
F-value B 1.52 1.50 2.79 0.19 23.64* 5.03*
A×B 0.56 0.59 6.48* 0.09 7.62* 1.52

表4

鲜食玉米和鲜食大豆产量及商品品质的主成分分析"

指标
Index
矮秆型玉米-大豆 Dwarf maize-soybean 高秆型玉米-大豆 Tall maize-soybean
2018 2019 2018 2019
F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2
鲜食玉米产量
Fresh corn yield (Z1)
-0.139 0.858 -0.461 0.500 -0.640 0.582 -0.608 -0.399 0.681 0.264 -0.636
穗长
Ear length (Z2)
0.953 -0.224 -0.088 0.861 0.479 -0.116 0.860 -0.207 0.156 0.955 0.238
穗粗
Ear diameter (Z3)
0.804 -0.334 0.062 0.830 0.481 -0.168 0.754 -0.450 -0.404 0.900 0.204
秃尖长
Barren tip length (Z4)
-0.877 0.424 -0.118 -0.964 -0.190 0.141 -0.544 0.514 0.651 -0.905 -0.019
出苞率
Bract rate (Z5)
-0.845 0.225 0.443 -0.469 0.775 0.381 0.119 0.959 -0.198 -0.113 0.942
单穗重
Single ear weight (Z6)
-0.787 -0.588 0.185 -0.838 0.226 0.464 0.323 0.903 -0.133 -0.269 0.897
果穗整齐度
Maize ear uniformity (Z7)
-0.618 -0.278 0.708 -0.814 0.360 0.362 0.206 0.954 0.136 0.007 0.977
一级果穗率
One-level ear rate (Z8)
0.720 -0.588 0.364 0.911 0.305 -0.147 0.812 -0.194 0.549 0.953 -0.170
鲜食大豆产量
Fresh soybean yield (Z9)
0.483 0.780 0.315 0.797 0.027 0.580 0.966 0.166 0.157 0.967 0.139
单株荚数
Number of pods per plant (Z10)
0.514 0.581 0.618 0.888 -0.324 0.209 0.918 0.174 0.350 0.939 -0.182
多粒荚率
Multiple pod rate (Z11)
0.310 0.896 0.293 0.826 0.194 0.524 0.965 -0.218 0.061 0.951 0.294
特征值
Eigenvalues
5.170 3.643 1.670 7.130 1.923 1.568 5.502 3.456 1.602 6.320 3.319
贡献率
Contribution (%)
47.001 33.117 15.185 64.822 17.481 14.253 50.016 31.419 14.563 57.457 30.177
累计贡献率
Cumulative contribution (%)
47.001 80.117 95.302 64.822 82.303 96.556 50.016 81.434 95.997 57.457 87.634

表5

鲜食玉米和鲜食大豆产量及商品品质的主成分综合评价得分"

年份Year 带宽
Bandwidth
(cm)
密度
Density
(×104 hm-2)
矮秆型玉米-大豆Dwarf maize-soybean 高秆型玉米-大豆Tall maize-soybean
F1 F2 F3 评价得分Evaluation score F1 F2 F3 评价得分
Evaluation score
2018 200 3.75 2.834 -1.090 1.039 1.185 1.635 -1.887 -1.344 0.031
4.50 1.704 -0.609 -1.320 0.419 2.338 -0.604 1.485 1.246
5.25 1.470 2.830 -0.149 1.685 -2.318 -2.221 0.773 -1.817
240 3.75 -0.387 -1.997 1.326 -1.167 0.376 1.044 -1.674 0.284
4.50 -2.037 -1.030 -1.742 -1.640 1.413 2.386 0.774 1.634
5.25 -2.585 1.896 0.846 -0.481 -3.444 1.282 -0.015 -1.377
F1 F2 F3 得分 Score F1 F2 得分 Score
2019 200 4.50 2.606 -0.187 1.730 1.971 3.870 -0.134 2.491
5.25 3.354 0.848 -0.745 2.295 1.402 -1.850 0.282
6.00 0.044 -2.510 -1.150 -0.595 -1.635 -2.088 -1.791
240 4.50 -0.700 1.571 -1.275 -0.374 0.790 2.826 1.491
5.25 -1.416 -0.026 1.112 -0.791 -1.330 0.750 -0.614
6.00 -3.888 0.304 0.328 -2.506 -3.098 0.496 -1.860

表6

鲜食玉米和鲜食大豆产量及商品品质的综合评价"

年份
Year
带宽
Bandwidth
(cm)
密度
Density
(×104 hm-2)
矮秆型玉米-大豆Dwarf maize-soybean 高秆型玉米-大豆Tall maize-soybean
$S_{i}^{+}$ $S_{i}^{-}$ Ci $S_{i}^{+}$ $S_{i}^{-}$ Ci
2018 200 3.75 0.1221 0.0652 0.3480 0.0763 0.0666 0.4660
4.50 0.0535 0.0985 0.6482 0.0523 0.0712 0.5765
5.25 0.0510 0.1312 0.7200 0.0646 0.0609 0.4852
240 3.75 0.1292 0.0614 0.3220 0.0728 0.0559 0.4346
4.50 0.0743 0.0819 0.5244 0.0598 0.0808 0.5747
5.25 0.0653 0.1169 0.6415 0.0772 0.0687 0.4709
2019 200 4.50 0.0506 0.0858 0.6290 0.0579 0.1097 0.6544
5.25 0.0255 0.1080 0.8092 0.0686 0.0901 0.5677
6.00 0.0756 0.0703 0.4818 0.1240 0.0190 0.1326
240 4.50 0.1001 0.0464 0.3165 0.0815 0.0850 0.5103
5.25 0.0667 0.0660 0.4973 0.0845 0.0604 0.4166
6.00 0.0937 0.0534 0.3633 0.1209 0.0327 0.2131

表7

带宽、密度对经济效益的影响"

年份
Year
带宽
Bandwidth
(cm)
密度
Density
(×104 hm-2)
经济效益 Economic benefits (×104 Yuan hm-2)
矮秆型玉米-大豆 Dwarf maize-soybean 高秆型玉米-大豆 Tall maize-soybean
玉米Maize 大豆Soybean 总计Total 玉米Maize 大豆Soybean 总计Total
2018 200 3.75 4.74 3.48 8.22 7.12 2.85 9.97
4.50 5.28 3.31 8.59 7.84 2.74 10.58
5.25 5.49 3.15 8.65 7.69 2.62 10.31
240 3.75 4.47 3.81 8.27 6.82 3.40 10.23
4.50 4.65 3.69 8.33 7.01 3.32 10.33
5.25 5.02 3.55 8.57 6.88 3.10 9.97
2019 200 4.50 4.88 3.12 8.00 7.19 2.41 9.60
5.25 5.05 3.18 8.23 7.17 2.38 9.55
6.00 3.99 2.71 6.70 5.55 2.21 7.76
240 4.50 3.85 3.30 7.14 6.46 2.94 9.40
5.25 4.32 3.26 7.58 5.96 2.79 8.75
6.00 3.66 3.49 7.16 5.19 2.60 7.79
[1] Yang F, Huang S, Gao R, Liu W, Yong T, Wang X, Wu X, Yang W. Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red: far-red ratio. Field Crops Res, 2014, 155: 245-253.
doi: 10.1016/j.fcr.2013.08.011
[2] 邓小燕, 王小春, 杨文钰, 宋春, 文熙宸, 张群, 毛树明. 玉米/大豆和玉米/甘薯模式下玉米磷素吸收特征及种间相互作用. 作物学报, 2013, 39: 1891-1898.
doi: 10.3724/SP.J.1006.2013.01891
Deng X Y, Wang X C, Yang W Y, Song C, Wen X C, Zhang Q, Mao S M. Characteristics of phosphorus uptake and interspecific interaction in maize, soybean and sweet potato. Acta Agron Sin, 2013, 39: 1891-1898. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.01891
[3] 雍太文, 陈小容, 杨文钰, 向达兵, 樊高琼. 小麦/玉米/大豆三熟套作体系中小麦根系分泌特性及氮素吸收研究. 作物学报, 2010, 36: 477-485.
doi: 10.3724/SP.J.1006.2010.00477
Yong T W, Chen X R, Yang W Y, Xiang D B, Fan G Q. Study on secretion characteristics and nitrogen absorption of wheat root system in wheat corn soybean triple cropping system. Acta Agron Sin, 2010, 36: 477-485. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.00477
[4] 罗万宇, 唐庄峻, 任永福, 杨文钰, 王小春. 带宽、行比对鲜食玉米间作鲜食大豆群体产量效益的影响. 四川农业大学学报, 2019, 37: 442-451.
Luo W Y, Tang Z J, Ren Y F, Yang W Y, Wang X C. Effects of bandwidth and row ratio on population yield and benefit of fresh corn intercropping and fresh soybean intercropping. Sichuan Agric Univ, 2019, 37: 442-451. (in Chinese with English abstract)
[5] Qin Y, Guo H J, Yang J. Analysis on waxy corn/soybean intercropping pattern and economic benefit. J Anhui Agric Sci, 2015, 17: 55-56.
[6] 叶林, 杨峰, 苏本营, 张静, 刘卫国, 杨文钰. 不同田间配置对玉豆带状套作系统水分分布及水分利用率的影响. 干旱地区农业研究, 2015, 33(4): 41-48.
Ye L, Yang F, Su B Y, Zhang J, Liu W G, Yang W Y. Effects of different field configurations on water distribution and water use efficiency of corn soybean strip intercropping system. Agric Res Arid Areas, 2015, 33(4): 41-48. (in Chinese with English abstract)
[7] 王一帆, 秦亚洲, 冯福学, 赵财, 于爱忠, 刘畅, 柴强. 根间作用与密度协同作用对小麦间作玉米产量及产量构成的影响. 作物学报, 2017, 43: 754-762.
Wang Y F, Qin Y Z, Feng F X, Zhao C, Yu A Z, Liu C, Chai Q. Effects of root interaction and density synergy on Yield and yield composition of wheat intercropping maize. Acta Agron Sin, 2017, 43: 754-762. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.00754
[8] 曹庆军, 姜晓莉, 杨粉团, 毛刚, 王富刚, 曹欣欣, 孔凡丽, 李刚. 种植密度对甜玉米与鲜食糯玉米产量与品质性状的影响. 玉米科学, 2018, 26(6): 94-98.
Cao Q J, Jiang X L, Yang F T, Mao G, Wang F G, Cao X X, Kong F L, Li G. Effects of planting density on Yield and quality traits of sweet corn and fresh waxy corn. J Maize Sci, 2018, 26(6): 94-98. (in Chinese with English abstract)
[9] 徐丽, 卢柏山, 史亚兴, 席胜利, 赵久然. 不同密度对超甜玉米产量、商品性及可溶性固形物含量的影响. 玉米科学, 2018, 26(3): 102-107.
Xu L, Lu B S, Shi Y X, Xi S L, Zhao J R. Effects of different densities on yield, marketability and soluble solid content of super sweet corn. J Maize Sci, 2018, 26(3): 102-107. (in Chinese with English abstract)
[10] 王竹, 杨文钰, 伍晓燕, 吴其林. 玉米株型和幅宽对套作大豆初花期形态建成及产量的影响. 应用生态学报, 2008, 19: 323-329.
pmid: 18464638
Wang Z, Yang W Y, Wu X Y, Wu Q L. Effects of plant type and width of Maize on morphogenesis and yield of intercropping soybean at early flowering stage. Chin J Appl Ecol, 2008, 19: 323-329. (in Chinese with English abstract)
pmid: 18464638
[11] 马艳玮, 蒲甜, 李丽, 曾瑾汐, 彭霄, 陈诚, 冯骏, 杨文钰, 王小春. 玉米/大豆带状套作高产玉米品种的形态特征. 玉米科学, 2019, 27(4): 93-99.
Ma Y W, Pu T, Li L, Zeng J X, Peng X, Chen C, Feng J, Yang W Y, Wang X C. Morphological characteristics of maize soybean strip intercropping high yield maize varieties. J Maize Sci, 2019, 27(4): 93-99. (in Chinese with English abstract)
[12] 刘亚利, 杨耀迥, 苏琪, 陈坤, 卢生乔, 张述宽, 程伟东. 不同基因型鲜食玉米品种适宜种植密度研究. 安徽农业科学, 2013, 41: 11626-11628.
Liu Y L, Yang Y J, Su Q, Chen K, Lu S Q, Zhang S K, Cheng W D. Study on suitable planting density of fresh corn varieties with different genotypes. J Anhui Agric Sci, 2013, 41: 11626-11628. (in Chinese with English abstract)
[13] 方萍, 刘卫国, 邹俊林, 汪扬媚, 任梦露, 张超凡, 邓榆川, 杨文钰. 间作对鲜食大豆生长发育及产量形成的影响. 大豆科学, 2015, 34: 601-605.
Fang P, Liu W G, Zou J L, Wang Y M, Ren M L, Zhang C F, Deng Y C, Yang W Y. Effects of intercropping on growth and yield formation of fresh soybean. Soybean Sci, 2015, 34: 601-605. (in Chinese with English abstract)
[14] 包斐, 赵福成, 谭禾平, 韩海亮, 王桂跃. 鲜食玉米、鲜食大豆间作栽培产量产值分析. 浙江农业科学, 2017, 58: 567-576.
Bao F, Zhao F C, Tan H P, Han H L, Wang G Y. Analysis of output value of intercropping cultivation of fresh corn and fresh soybean. J Zhejiang Agric Sci, 2017, 58: 567-576. (in Chinese with English abstract)
[15] 邵美红, 程楚, 程思明, 韩海亮, 黄惠芳, 赵福成. 运用DTOPSIS法对鲜食甜玉米新品种在浙西北地区适应性的综合评价. 江西农业学报, 2017, 29(6): 25-28.
Shao M H, Cheng C, Cheng S M, Han H L, Huang H F, Zhao F C. DTOPSIS method was used to comprehensively evaluate the adaptability of new fresh sweet corn varieties in northwest Zhejiang. Acta Agric Jiangxi, 2017, 29(6): 25-28. (in Chinese with English abstract)
[16] 刘艳昆, 阎旭东, 徐玉鹏, 岳明强, 刘振敏. DTOPSIS法综合评价玉米间作大豆的密度配置和品种选择. 天津农业科学, 2014, 20(11): 83-87.
Liu Y K, Yan X D, Xu Y P, Yue M Q, Liu Z M. DTOPSIS method was used to comprehensively evaluate the density allocation and variety selection of corn intercropping soybean. J Tianjin Agric Sci, 2014, 20(11): 83-87. (in Chinese with English abstract)
[17] 费永红, 钟维, 向英, 韦德斌, 黄宇. 糯玉米新品种DTOPSIS法综合评价. 广东农业科学, 2017, 44(3): 17-22.
Fei Y H, Zhong W, Xiang Y, Wei D B, Huang Y. Comprehensive evaluation of new waxy maize varieties by DTOPSIS method. Guangdong Agric Sci, 2017, 44(3): 17-22. (in Chinese with English abstract)
[18] 卢华兵, 郭国锦, 吕桂华, 徐秀红, 郭勇, 胡贤女, 金英燕, 石丽敏. DTOPSIS法在综合评价鲜食糯玉米新品种中的应用. 浙江农业科学, 2012, 53: 938-941.
Lu H B, Guo G J, Lyu G H, Xu X H, Guo Y, Hu X N, Jin Y Y, Shi L M. Application of DTOPSIS Method in comprehensive evaluation of new fresh waxy maize varieties. J Zhejiang Agric Sci, 2012, 53: 938-941. (in Chinese with English abstract)
[19] 杨峰, 娄莹, 廖敦平, 高仁才, 雍太文, 王小春, 刘卫国, 杨文钰. 玉米-大豆带状套作行距配置对作物生物量、根系形态及产量的影响. 作物学报, 2015, 41: 642-650.
doi: 10.3724/SP.J.1006.2015.00642
Yang F, Lou Y, Liao D P, Gao R C, Yong T W, Wang X C, Liu W G, Yang W Y. Effects of row spacing on crop biomass, root morphology and yield in maize soybean strip intercropping. Acta Agron Sin, 2015, 41: 642-650. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.00642
[20] 瓮巧云, 黄新军, 许翰林, 刘瑶, 袁晓峰, 马海莲, 袁进成, 刘颖慧. 玉米/大豆间作模式对青贮玉米产量、品质及土壤营养、根际微生物的影响. 核农学报, 2021, 35: 462-470.
doi: 10.11869/j.issn.100-8551.2021.02.0462
Weng Q W, Huang X J, Xu H L, Liu Y, Yuan X F, Ma H L, Yuan J C, Liu Y H. Effects of corn soybean intercropping model on yield, quality, soil nutrition and rhizosphere microorganisms of silage corn. Acta Agric Nucl Sin, 2021, 35: 462-470. (in Chinese with English abstract)
[21] 代希茜, 詹和明, 赵银月, 王铁军. 玉/豆间作模式下幅宽和玉米密度配置优化研究. 西南农业学报, 2018, 31: 39-43.
Dai X X, Zhan H M, Zhao Y Y, Wang T J. Study on Optimization of width and maize density allocation under jade bean intercropping mode. Southwest China J Agric Sci, 2018, 31: 39-43. (in Chinese with English abstract)
[22] Maddonni G A, Otegui M E. Intra-specific competition in maize: early establishment of hierarchies among plants affects final kernel set. Field Crops Res, 2004, 85: 1-13.
doi: 10.1016/S0378-4290(03)00104-7
[23] 李植, 秦向阳, 王晓光, 李兴涛, 王建辉, 曹敏建. 大豆/玉米间作对大豆叶片光合特性和叶绿素荧光动力学参数的影响. 大豆科学, 2010, 29: 809-811.
Li Z, Qin X Y, Wang X G, Li X T, Wang J H, Cao M J. Effects of soybean maize intercropping on photosynthetic characteristics and chlorophyll fluorescence kinetic parameters of soybean leaves. Soybean Sci, 2010, 29: 809-811. (in Chinese with English abstract)
[24] 王竹, 杨继芝, 杨文钰. 套作模式下玉米播期和密度对后作大豆茎叶形态及产量的影响. 西南农业学报, 2014, 27: 549-554.
Wang Z, Yang J Z, Yang W Y. Effects of maize sowing date and density on stem and leaf morphology and yield of post cropping soybean under intercropping mode. Southwest China J Agric Sci, 2014, 27: 549-554. (in Chinese with English abstract)
[25] 刘永安, 潘彬荣, 岳高红, 梅喜雪, 许立奎, 张宗宸, 周志辉. 温州不同甜玉米/毛豆间作模式的农艺性状、产量与间作优势初探. 浙江农业科学, 2016, 57: 13-16.
Liu Y A, Pan B R, Yue G H, Mei X X, Xu L K, Zhang Z C, Zhou Z H. Preliminary study on agronomic characters, yield and intercropping advantages of different sweet corn soybean intercropping models in Wenzhou. J Zhejiang Agric Sci, 2016, 57: 13-16. (in Chinese with English abstract)
[26] 任丽娟, 赵连生, 陈雅坤, 王建平, 卜登攀. 基于主成分分析和聚类分析方法综合评价东北地区不同品种全株玉米青贮饲料的青贮品质. 动物营养学报, 2020, 32: 3856-3868.
doi: 10.3969/j.issn.1006-267x.2020.08.044
Ren L J, Zhao L S, Chen Y K, Wang J P, Bu D P. Comprehensive evaluation of silage quality of different varieties of whole plant corn silage in Northeast China based on principal component analysis and cluster analysis. Anim Nutr Sci, 2020, 32: 3856-3868. (in Chinese with English abstract)
[27] 任佰朝, 李利利, 董树亭, 刘鹏, 赵斌, 杨今胜, 王丁波, 张吉旺. 种植密度对不同株高夏玉米品种茎秆性状与抗倒伏能力的影响. 作物学报, 2016, 42: 1864-1872.
doi: 10.3724/SP.J.1006.2016.01864
Ren B Z, Li L L, Dong S T, Liu P, Zhao B, Yang J S, Wang D B, Zhang J W. Effects of plant density on stem traits and lodging resistance of summer maize hybrids with different plant heights. Acta Agron Sin, 2016, 42: 1864-1872. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.01864
[28] Ciampitti I A, Vyn T J. A comprehensive study of plant density consequences on nitrogen uptake dynamics of maize plants from vegetative to reproductive stages. Field Crops Res, 2011, 121: 2-18.
doi: 10.1016/j.fcr.2010.10.009
[29] Gardiol J M, Serio L A, Della Maggiora A I. Modelling evapotranspiration of corn (Zea mays) under different plant densities. J Hydrol, 2003, 271: 188-196.
doi: 10.1016/S0022-1694(02)00347-5
[1] 吴希, 王家瑞, 郝淼艺, 张宏军, 张仁和. 种植密度对不同生育期玉米品种光温资源利用率和产量的影响[J]. 作物学报, 2023, 49(4): 1065-1078.
[2] 杨俊芳, 王宙, 乔麟轶, 王亚, 赵宜婷, 张宏斌, 申登高, 王宏伟, 曹越. 基于高密度遗传图谱的蓖麻种子大小性状QTL定位[J]. 作物学报, 2023, 49(3): 719-730.
[3] 刘俊华, 吴正锋, 党彦学, 于天一, 郑永美, 万书波, 王才斌, 李林. 密度对不同株型花生单粒精播群体质量及产量的影响[J]. 作物学报, 2023, 49(2): 459-471.
[4] 赵凌, 梁文化, 赵春芳, 魏晓东, 周丽慧, 姚姝, 王才林, 张亚东. 利用高密度Bin遗传图谱定位水稻抽穗期QTL[J]. 作物学报, 2023, 49(1): 119-128.
[5] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[6] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[7] 宋博文, 王朝欢, 赵哲, 陈淳, 黄明, 陈伟雄, 梁克勤, 肖武名. 基于高密度遗传图谱对水稻粒形QTL定位及分析[J]. 作物学报, 2022, 48(11): 2813-2825.
[8] 王利青, 于晓芳, 高聚林, 马达灵, 胡树平, 郭怀怀, 刘爱业. 不同年代玉米品种籽粒产量形成对种植密度的响应[J]. 作物学报, 2022, 48(10): 2625-2637.
[9] 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740.
[10] 陈云, 刘昆, 张宏路, 李思宇, 张亚军, 韦佳利, 张耗, 顾骏飞, 刘立军, 杨建昌. 机插密度和穗肥减量对优质食味水稻品种籽粒淀粉合成的影响[J]. 作物学报, 2021, 47(8): 1540-1550.
[11] 郑迎霞, 陈杜, 魏鹏程, 卢平, 杨锦越, 罗上轲, 叶开梅, 宋碧. 种植密度对贵州春玉米茎秆抗倒伏性能及籽粒产量的影响[J]. 作物学报, 2021, 47(4): 738-751.
[12] 董二伟, 王劲松, 武爱莲, 王媛, 王立革, 韩雄, 郭珺, 焦晓燕. 行距和密度对高粱籽粒灌浆、淀粉及氮磷钾累积特征的影响[J]. 作物学报, 2021, 47(12): 2459-2470.
[13] 张金丹, 范虹, 杜进勇, 殷文, 樊志龙, 胡发龙, 柴强. 小麦玉米同步增密有利于优化种间关系而提高间作产量[J]. 作物学报, 2021, 47(12): 2481-2489.
[14] 任媛媛, 张莉, 郁耀闯, 张彦军, 张岁岐. 大豆种植密度对玉米/大豆间作系统产量形成的竞争效应分析[J]. 作物学报, 2021, 47(10): 1978-1987.
[15] 赵小红,白羿雄,王凯,姚有华,姚晓华,吴昆仑. 种植密度对2个青稞品种抗倒伏及秸秆饲用特性的影响[J]. 作物学报, 2020, 46(4): 586-595.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!