欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (11): 2813-2825.doi: 10.3724/SP.J.1006.2022.12069

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于高密度遗传图谱对水稻粒形QTL定位及分析

宋博文1(), 王朝欢1, 赵哲1, 陈淳1, 黄明1, 陈伟雄2, 梁克勤1,*(), 肖武名1,*()   

  1. 1华南农业大学 / 国家植物航天育种工程技术研究中心, 广东广州 510642
    2广州市农业科学研究院, 广东广州 510338
  • 收稿日期:2021-10-06 接受日期:2022-03-25 出版日期:2022-11-12 网络出版日期:2022-04-20
  • 通讯作者: 梁克勤,肖武名
  • 作者简介:第一作者联系方式: E-mail: 1476399189@qq.com
  • 基金资助:
    本研究由广州市科技计划项目重点研发计划(202103000083);广东省重点领域研发计划基金项目(2020B020219004)

Mapping and analysis of QTLs for grain size in rice based on high density genetic map

SONG Bo-Wen1(), WANG Chao-Huan1, ZHAO Zhe1, CHEN Chun1, HUANG Ming1, CHEN Wei-Xiong2, LIANG Ke-Qin1,*(), XIAO Wu-Ming1,*()   

  1. 1South China Agricultural University / National Engineering Research Center of Plant Space Breeding, Guangzhou 510642, Guangdong, China
    2Guangzhou Academy of Agricultural Sciences, Guangzhou 510338, Guangdong, China
  • Received:2021-10-06 Accepted:2022-03-25 Published:2022-11-12 Published online:2022-04-20
  • Contact: LIANG Ke-Qin,XIAO Wu-Ming
  • Supported by:
    Key Research & Development program of Guangzhou Science and Technology Project(202103000083);The Guangdong Provincial Key Research and Development Program(2020B020219004)

摘要:

通过对水稻粒形相关性状进行QTL定位和不同位点的聚合效应分析, 为后续辅助育种、粒形相关基因的精细定位奠定基础。在3个不同的季节种植籼稻品种魔大穗与航恢315的192个重组自交系群体, 根据全基因组重测序技术构建的高密度遗传图谱, 利用完备区间作图法(inclusive composite interval mapping, ICIM)定位水稻粒形性状QTL, 并用复合区间作图法(CIM)对结果进行验证。对粒长、粒宽、长宽比、千粒重、谷粒截面积、谷粒周长进行QTL定位, ICIM法和CIM法分别检测到65个和81个QTL, 其中有40个QTL能同时被检测到, 成簇分布于2号、3号、5号、7号、8号、9号染色体上。将其归类为6个QTL簇, 其中Loci5、Loci7、Loci9能被重复定位到, 且控制至少4个性状, 表型贡献率最高分别为15.74%、54.07%、15.89%, 这些位点是后续基因功能研究的候选位点。根据bin标记分型结果将不同子代在各个QTL区间分为航恢315型和魔大穗型, 在重组自交系后代进行聚合效应分析。经处理及数据分析发现聚合增效等位基因数量越多的个体, 其在不同环境对应的表型值也越高。鉴定到携带多个增效等位基因的株系, 可作为育种实践中增效等位基因的供体亲本。

关键词: 水稻, 重组自交系, 高密度遗传图谱, 粒形, QTL定位

Abstract:

In this study, QTL mapping of grain size related traits and pyramided effect analysis of different sites were carried out to lay a foundation for marker-assisted breeding and fine mapping of grain size related genes. A total of 192 recombinant inbred lines derived from indica rice cultivars Modasui and Hanghui 315 were planted in three different seasons. A high-density genetic map was constructed based on whole-genome resequencing technology, and the QTLs for grain shape traits were mapped by complete interval mapping (ICIM) and verified by composite interval mapping (CIM). QTL mapping was carried out for grain length, grain width, length-width ratio, 1000-grain weight, cross-sectional area, and grain circumference. 50 and 81 QTLs were detected by ICIM and CIM, respectively, and 43 QTLs could be detected simultaneously. They were clustered on chromosome 2, 3, 5, 7, 8, and 9. Their highest phenotypic contribution rates were 15.74%, 54.07%, and 15.89%, respectively. These loci could be the candidate loci for subsequent gene function studies. According to the genotyping of bin markers, different progenies were divided into Hanghui 315 type and Modasui type in each QTL interval. Further data processing and analysis were performed to analyze the pyramided effect of QTLs. It was found that individuals with more pyramided synergistic alleles showed higher phenotypic values in different environments. The identified lines with multiple synergistic alleles can be used as donor parents in breeding practices.

Key words: rice, recombinant inbred lines, high density genetic map, grain size, QTL mapping

表1

亲本及重组自交系群体在3个环境下粒形性状的表型分布"

性状
Trait
季节
Season
亲本Parents 重组自交系RILs 广义遗传力
h2 (%)
R315 MDS 均值±标准差
Mean ± SD
变异系数
CV (%)
最大值
Maximum
最小值
Minimum
偏度
Skewness
峰度
Kurtosis
粒长
GL (mm)
2019L 10.93** 8.62 9.59±0.72 7.54 11.37 7.97 0.09 -0.56 96.68
2020E 10.70** 8.57 9.69±0.65 6.65 11.21 8.24 -0.05 -0.68
2020L 11.06** 8.57 9.66±0.72 7.49 11.22 8.10 -0.06 -0.78
粒宽
GW (mm)
2019L 2.11 2.27** 2.14±0.16 7.64 2.52 1.81 0.22 -0.76 94.14
2020E 1.99 2.17** 2.11±0.17 7.94 2.52 1.73 0.06 -1.02
2020L 2.06 2.22** 2.09±0.16 7.83 2.61 1.78 0.28 -0.74
长宽比
GLWR
2019L 5.20** 3.82 4.55±0.58 12.81 6.03 3.43 0.01 -1.34 97.28
2020E 5.42** 3.96 4.66±0.62 13.21 5.86 3.60 0.08 -1.41
2020L 5.40** 3.89 4.70±0.64 13.56 5.81 3.64 -0.03 -1.54
千粒重
TGW (g)
2019L 18.86** 18.47 17.85±1.91 10.69 23.20 13.10 0.22 -0.32 92.69
2020E 20.49** 19.09 19.48±1.89 9.68 24.04 14.43 -0.08 -0.23
2020L 21.60** 20.01 19.37±2.14 11.03 26.67 12.00 0.05 0.77
谷粒截面积
GAS (mm2)
2019L 17.89** 15.53 16.07±1.28 7.98 19.25 12.70 0.20 -0.26 88.80
2020E 16.66* 14.79 16.00±1.03 6.43 18.87 13.30 0.19 -0.11
2020L 17.73** 14.85 15.77±1.11 7.05 18.22 13.10 0.13 -0.44
谷粒周长
GPL (mm)
2019L 24.67** 19.92 21.78±1.48 6.79 25.54 18.39 0.10 -0.35 96.30
2020E 24.08** 19.75 21.99±1.30 5.91 25.39 18.82 -0.04 -0.48
2020L 24.94** 19.76 21.97±1.48 6.75 25.16 18.57 -0.07 -0.62

图1

3个环境下RIL群体中水稻粒形性状表型分布 缩写同表1。"

表2

重组自交系群体粒形性状的相关性分析"

性状
Trait
粒长
GL
粒宽
GW
长宽比
GLWR
千粒重
TGW
谷粒截面积
GAS
谷粒周长
GPL
粒长GL 1 -0.592** 0.887** -0.049 0.454** 0.997**
粒宽GW -0.592** 1 -0.895** 0.731** 0.443** -0.535**
长宽比GLWR 0.887** -0.895** 1 -0.446** -0.005 0.853**
千粒重TGW -0.049 0.731** -0.446** 1 0.755** 0.01
谷粒截面积GAS 0.454** 0.443** -0.005 0.755** 1 0.514**
谷粒周长GPL 0.997** -0.535** 0.853** 0.010 0.514** 1

表3

3个环境下检测到的水稻粒形QTL定位结果"

性状
Trait
QTL 染色体
Chr.
位置
Position
LOD值
LOD score
加性效应
Additive
贡献率
PVE (%)
环境
Environment
置信区间
Confidence interval (cM)
标记区间
Marker interval
粒长
GL
qGL2-1 2 56.2 7.36 -0.13 3.12 2020L 55.75-56.95 bin550-bin551
qGL2-2 2 70.9 8.03 -0.15 4.23 2019L 70.65-71.25 bin579-bin580
qGL2-3 2 95.1 3.83 -0.10 2.29 2020E 94.75-97.05 bin622-bin623
qGL3 3 8.9 5.96 0.13 3.06 2019L 7.75-9.45 bin700-bin701
qGL5-1 5 94.1 11.33 -0.18 6.22 2019L 93.85-94.35 bin1179-bin1180
94.1 4.27 -0.10 2.57 2020E 93.85-94.35 bin1179-bin1180
qGL5-2 5 95.6 6.69 -0.12 2.81 2020L 95.15-95.95 bin1182-bin1183
qGL7 7 93.6 54.3 -0.54 53.42 2019L 93.45-93.95 bin1444-bin1445
93.6 52.13 -0.49 59.48 2020E
93.6 66.74 -0.59 64.97 2020L
qGL8-1 8 38.2 4.91 -0.10 2.02 2020L 37.75-38.25 bin1520-bin1521
粒长
GL
qGL8-2 8 39.9 7.05 -0.14 3.67 2019L 39.05-41.85 bin1524-bin1525
40.8 8.70 -0.15 5.62 2020E
qGL9-1 9 82.0 5.17 -0.11 3.17 2020E 80.85-86.85 bin1743-bin1744
82.6 6.37 -0.14 3.39 2019L
qGL9-2 9 91.3 12.4 -0.19 6.35 2020L 88.45-93.85 bin1744-bin1745
qGL12-1 12 14.1 5.15 -0.11 2.13 2020L 13.65-14.55 bin396-bin397
qGL12-2 12 36.9 5.03 -0.12 2.56 2019L 36.85-37.25 bin424-bin426
粒宽
GW
qGW2 2 30.8 3.60 -0.02 2.09 2019L 30.15-31.75 bin523-bin524
qGW3-1 3 137.8 42.68 -0.10 20.62 2020L 137.75-138.15 bin847-bin848
qGW3-2 3 138.8 34.26 0.08 14.40 2020L 138.45-139.35 bin850-bin851
qGW4-1 4 58.1 9.56 -0.04 2.90 2020L 57.95-58.55 bin1028-bin1029
qGW4-2 4 62.9 5.35 -0.04 4.44 2020E 62.65-63.35 bin1013-bin1033
qGW4-3 4 65.2 9.36 -0.04 5.84 2019L 65.05-65.35 bin1011-bin1010
qGW5-1 5 96.5 4.25 -0.03 2.49 2019L 95.95-97.05 bin1185-bin1186
qGW5-2 5 109.1 4.17 -0.03 1.61 2020L 99.75-114.55 bin1191-bin1192
qGW7 7 93.3 45.47 0.13 61.86 2020E 93.05-93.65 bin1443-bin1445
93.5 61.42 0.14 38.26 2020L
93.6 55.35 0.13 63.57 2019L
长宽比
LWR
qLWR1-1 1 137.0 4.07 -0.07 1.07 2020L 135.85-138.95 bin170-bin171
qLWR1-2 1 166.1 3.30 -0.08 1.50 2020E 165.85-166.75 bin185-bin186
qLWR4-1 4 68.9 7.93 0.10 2.18 2020L 68.35-68.95 bin1004-bin1002
qLWR4-2 4 73.2 10.32 0.12 3.62 2019L 72.75-73.45 bin991-bin992
73.2 5.41 0.11 2.53 2020E
qLWR7 7 93.6 82.93 -0.53 81.10 2019L 93.45-93.95 bin1444-bin1445
93.6 66.96 -0.55 72.45 2020E
93.6 91.42 -0.58 84.89 2020L
qLWR11 11 52.8 3.55 0.08 1.62 2020E 52.15-52.95 bin356-bin357
千粒重
TGW
qTGW2-1 2 30.5 4.22 -0.38 4.47 2019L 29.45-33.25 bin523-bin526
32.6 5.26 -0.54 6.76 2020L
qTGW2-2 2 77.9 3.27 -0.36 3.45 2020E 77.35-77.95 bin594-bin596
qTGW3 3 137.2 4.10 -0.40 4.38 2020E 136.85-137.65 bin846-bin847
qTGW4-1 4 58.0 5.59 -0.58 7.08 2020L 57.95-58.65 bin1027-bin1028
qTGW4-2 4 64.8 5.36 -0.48 6.23 2019L 64.15-65.15 bin1033-bin1012
qTGW5 5 96.5 4.19 -0.40 4.46 2020E 95.95-98.65 bin1185-bin1186
97.0 6.91 -0.49 7.37 2019L
97.0 5.28 -0.54 6.67 2020L
qTGW7-1 7 67.6 3.78 0.36 3.99 2019L 67.45-67.75 bin1400-bin1399
qTGW7-2 7 93.5 16.32 0.80 19.64 2019L 93.05-93.65 bin1444-bin1445
93.5 18.70 0.93 23.88 2020E
93.5 12.35 0.86 17.12 2020L
qTGW8-1 8 40.3 3.99 -0.37 4.24 2019L 39.35-41.55 bin1524-bin1525
qTGW8-2 8 65.4 5.34 -0.46 5.75 2020E 65.35-66.15 bin1576-bin1577
千粒重
TGW
qTGW8-3 8 75.2 4.74 -0.51 5.96 2020L 74.65-75.65 bin1589-bin1590
qTGW9-1 9 9.9 3.26 0.42 4.02 2020L 9.35-10.65 bin1651-bin1652
qTGW9-2 9 89.9 8.71 -0.64 11.14 2020E 86.85-94.4 bin1744-bin1745
91.4 11.59 -0.70 14.64 2019L
93.2 6.08 -0.61 8.45 2020L
谷粒截面积
GAS
qGAS2-1 2 31.5 4.02 -0.25 5.90 2020E 30.85-33.25 bin524-bin525
31.5 5.32 -0.29 6.38 2020L
qGAS2-2 2 74.8 6.96 -0.43 10.61 2019L 74.45-75.15 bin588-bin589
qGAS4-1 4 63.1 3.30 -0.27 5.74 2020E 62.65-63.55 bin1013-bin1033
qGAS4-2 4 65.3 4.58 -0.28 5.32 2020L 65.15-65.55 bin1011-bin1010
qGAS5 5 95.7 5.54 -0.29 7.98 2020E 95.15-96.45 bin1183-bin1184
95.7 7.95 -0.35 9.59 2020L
95.9 9.97 -0.51 15.78 2019L
qGAS7 7 16.3 4.69 -0.26 5.44 2020L 15.65-16.35 bin1344-bin1345
qGAS8-1 8 43.7 4.88 -0.27 5.71 2020L 42.65-43.95 bin1530-bin1531
qGAS8-2 8 53.8 3.62 -0.30 5.30 2019L 53.35-54.15 bin1551-bin1552
53.8 8.70 -0.38 13.07 2020E
qGAS9-1 9 6.7 3.95 0.24 5.61 2020E 6.05-7.25 bin1644-bin1645
qGAS9-2 9 23.2 3.85 0.24 4.53 2020L 21.35-23.65 bin1666-bin1667
qGAS9-3 9 92.1 3.53 -0.25 5.81 2020E 86.85-94.4 bin1744-bin1745
92.1 10.78 -0.45 15.43 2020L
谷粒周长
GPL
qGPL2-1 2 30.9 4.09 -0.22 2.89 2020E 30.15-31.75 bin524-bin525
qGPL2-2 2 70.9 8.18 -0.31 4.36 2020L 70.65-71.25 bin579-bin580
qGPL2-3 2 74.8 7.54 -0.34 5.50 2019L 74.45-75.15 bin588-bin589
qGPL2-4 2 95.2 3.99 -0.22 2.85 2020E 94.75-96.95 bin623-bin624
qGPL3 3 9.4 3.44 0.22 2.38 2019L 7.75-9.45 bin700-bin701
qGPL5-1 5 94.1 10.64 -0.41 8.04 2019L 93.85-94.35 bin1179-bin1180
94.1 3.95 -0.21 2.76 2020E
qGPL5-2 5 95.6 8.07 -0.30 4.29 2020L 95.15-95.95 bin1182-bin1183
qGPL7-1 7 93.2 41.92 -1.00 47.97 2019L 92.75-93.75 bin1443-bin1445
93.5 57.95 -1.14 60.17 2020L
qGPL7-2 7 94.1 44.88 -0.95 54.04 2020E 93.95-94.75 bin1447-bin1448
qGPL8 8 39.9 5.90 -0.30 4.18 2019L 39.85-41.85 bin1524-bin1526
41.2 7.14 -0.29 5.28 2020E
41.8 4.5 -0.22 2.29 2020L
qGPL9-1 9 81.9 5.84 -0.26 4.19 2020E 80.85-86.85 bin1743-bin1744
85.1 3.55 -0.23 2.57 2019L
qGPL9-2 9 91.1 9.64 -0.36 5.98 2020L 87.95-93.95 bin1744-bin1745
qGPL12 12 34.4 4.20 -0.21 2.13 2020L 33.55-35.75 bin420-bin421

表4

稳定表达的粒形QTL位点信息"

QTL簇
QTL cluster
染色体
Chr.
表型贡献率
PVE (%)
标记区间
Marker range
遗传区间
Genetic interval
相关性状
Related traits
已报道基因
Reported genes
Loci2 2 2.09-6.76 bin523-bin526 29.45-33.25 GW, TGW, GAS, GPL
Loci3 3 2.38-3.06 Bin700-bin701 8.90-9.40 GL, GPL
Loci5 5 2.49-15.78 bin1179-bin1186 93.85-98.65 GL, GPL, GW, TGW, GAS OsPUP7[13]
Loci7 7 17.12-84.89 bin1443-bin1448 92.75-94.75 GL, GW, LWR, TGW, GPL GL7/GW7[11-12]
Loci8 8 2.29-5.62 bin1524-bin1525 39.05-41.85 GL, TGW, GPL
Loci9 9 2.57-15.43 bin1743-bin1745 80.85-94.40 GL, TGW, GAS, GPL APX9[14]

图2

六个稳定表达的QTL簇在高密度遗传图谱上的位置"

图3

CIM法在RIL群体中定位到粒形相关基因GL7/GW7 a: 粒形QTL在12条染色体上的分布情况; b: 方框是粒形性状在7号染色体峰值的放大图像, 红点分别表示88.5、93.6、99.1 cM处QTL, 箭头所示为GL7/GW7基因的遗传位置; c: 利用GL7/GW7的功能标记对MDS、R315、NPB (日本晴, 不含GL7/GW7显性基因)和TFA (泰丰A, 含有GL7/GW7显性基因)进行基因分型; M: M5 DL2000 plus DNA marker (Mei5bio)。"

表5

3个稳定QTL簇的聚合效应分析"

株系类型
Type of lines
QTL 株系数
No. of line
粒长
GL (mm)
粒宽
GW (mm)
长宽比
LWR
谷粒截面积
GAS (mm2)
谷粒周长
GPL (mm)
千粒重
TGW (g)
Loci5 Loci7 Loci9
MDS MDS MDS MDS 1 8.62±0.04 2.24±0.02 3.86±0.03 15.26±0.30 19.89±0.10 19.19±0.63
Line.1 MDS MDS MDS 14 8.73±0.33 2.18±0.07 4.03±0.21 14.86±0.72 20.01±0.70 18.19±1.34
Line.2 MDS MDS R315 20 9.01±0.30 2.24±0.07 4.06±0.18 15.76±0.77 20.63±0.64 19.40±1.37
Line.3 MDS R315 MDS 14 9.80±0.24 1.96±0.08 5.04±0.24 15.10±0.64 22.12±0.51 16.74±1.42
Line.4 MDS R315 R315 25 10.23±0.33 1.97±0.09 5.24±0.31 15.87±0.78 23.03±0.68 18.33±1.38
Line.5 R315 MDS MDS 13 8.92±0.33 2.27±0.09 3.96±0.19 15.76±0.94 20.50±0.78 19.67±1.60
Line.6 R315 MDS R315 15 9.50±0.19 2.29±0.08 4.17±0.16 17.09±0.71 21.75±0.42 21.22±1.19
Line.7 R315 R315 MDS 17 10.17±0.28 2.00±0.05 5.12±0.14 16.04±0.75 22.93±0.62 17.57±1.37
Line.8 R315 R315 R315 22 10.42±0.43 2.01±0.08 5.23±0.17 16.47±1.16 23.46±1.00 19.17±1.30
R315 R315 R315 R315 1 10.97±0.07 2.07±0.03 5.33±0.09 17.67±0.21 24.70±0.19 20.32±1.13
增效位点来源a
Source of
favorable alleles a
R315 R315 R315 R315 R315
R315 MDS R315 R315 MDS
R315 R315 R315 R315
[1] Xing Y Z, Zhang Q F. Genetic and molecular bases of rice yield. Annu Rev Plant Biol, 2010, 61: 421-442.
doi: 10.1146/annurev-arplant-042809-112209
[2] McCouch S R, Kochert G, Yu Z H, Wang Z Y, Khush G S, Coffman W R, Tanksley S D. Molecular mapping of rice chromosomes. Theor Appl Genet, 1988, 76: 815-829.
doi: 10.1007/BF00273666 pmid: 24232389
[3] Shabir G, Aslam K, Khan A R, Shahid M, Manzoor H, Noreen S, Khan M A, Baber M, Sabar M, Shah S M, Arif M. Rice molecular markers and genetic mapping: current status and prospects. J Integr Agric, 2017, 16: 1879-1891.
doi: 10.1016/S2095-3119(16)61591-5
[4] Kaur S, Panesar P S, Bera M B, Kaur V. Simple sequence repeat markers in genetic divergence and marker-assisted selection of rice cultivars: a review. Crit Rev Food Sci, 2015, 55: 41-49.
doi: 10.1080/10408398.2011.646363
[5] Kumar V, Singh A, Mithra S V A, Krishnamurthy S L, Parida S K, Jain S, Tiwari K K, Kumar P, Rao A R, Sharma S K, Khurana J P, Singh N K, Mohapatra T. Genome-wide association mapping of salinity tolerance in rice (Oryza sativa). DNA Res, 2015, 22: 133-145.
doi: 10.1093/dnares/dsu046
[6] 孙佳丽, 彭锐, 彭既明. 水稻数量性状(QTL)定位主要作图群体及统计方法概述. 湖南农业科学, 2016, (7): 120-123.
Sun J L, Peng R, Peng J M. Over view of rice quantitative traits (QTL) mapping main construction population and statistical methods. Hunan Agric Sci, 2016, (7): 120-123. (in Chinese with English abstract)
[7] Scott M F, Ladejobi O, Amer S, Bentley A R, Biernaskie J, Boden S A, Clark M, Dell’Acqua M, Dixon L E, Filippi C V, Fradgley N, Gardner K A, Mackay I J, O’Sullivan D, Percival-Alwyn L, Roorkiwal M, Singh R K, Thudi M, Varshney R K, Venturini L, Whan A, Cockram J, Mott R. Multi-parent populations in crops: a toolbox integrating genomics and genetic mapping with breeding. Heredity, 2020, 125: 396-416.
doi: 10.1038/s41437-020-0336-6
[8] Yang M, Lu K, Zhao F, Xie W, Ramakrishna P, Wang G, Du Q, Liang L, Sun C, Zhao H, Zhang Z, Liu Z, Tian J, Huang X, Wang W, Dong H, Hu J, Ming L, Xing Y, Wang G, Xiao J, Salt D E, Lian X. Genome-wide association studies reveal the genetic basis of ionomic variation in rice. Plant Cell, 2018, 30: 2720-2740.
doi: 10.1105/tpc.18.00375
[9] Huang R, Jiang L, Zheng J, Wang T, Wang H, Huang Y, Hong Z. Genetic bases of rice grain shape: so many genes, so little known. Trends Plant Sci, 2013, 18: 218-226.
doi: 10.1016/j.tplants.2012.11.001
[10] Peng H, Wang K, Chen Z, Cao Y H, Gao Q, Li Y, Li X X, Lu H W, Du H L, Lu M, Yang X, Liang C Z. MBKbase for rice: an integrated omics knowledgebase for molecular breeding in rice. Nucleic Acids Res, 2020, 48: D1085-D1092.
[11] Wang S K, Li S, Liu Q, Wu K, Zhang J Q, Wang S S, Wang Y, Chen X B, Zhang Y, Gao C X, Wang F, Huang H X, Fu X D. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet, 2015, 47: 949-954.
doi: 10.1038/ng.3352
[12] Wang Y X, Xiong G S, Hu J, Jiang L, Yu H, Xu J, Fang Y X, Zeng L J, Xu E B, Xu J, Ye W J, Meng X B, Liu R F, Chen H Q, Jing Y H, Wang Y H, Zhu X O, Li J Y, Qian Q. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet, 2015, 47: 944-948.
doi: 10.1038/ng.3346
[13] Qi Z Y, Xiong L Z. Characterization of a Purine Permease Family Gene OsPUP7 Involved in Growth and Development Control in Rice. J Integr Plant Biol, 2013, 55: 1119-1135.
doi: 10.1111/jipb.12101
[14] Jeon Y, Lee H, Kim S, Shim K, Kang J, Kim H, Tai T H, Ahn S. Natural variation in rice ascorbate peroxidase gene APX9 is associated with a yield-enhancing QTL cluster. J Exp Bot, 2021, 72: 4254-4268.
doi: 10.1093/jxb/erab155
[15] Che R H, Tong H N, Shi B H, Liu Y Q, Fang S R, Liu D P, Xiao Y H, Hu B, Liu L C, Wang H R, Zhao M F, Chu C C. Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat Plants, 2015, 2: 15195.
doi: 10.1038/nplants.2015.195
[16] Duan P G, Ni S, Wang J M, Zhang B L, Xu R, Wang Y X, Chen H Q, Zhu X D, Li Y H. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat Plants, 2015, 2: 15203.
doi: 10.1038/nplants.2015.203
[17] Fan C H, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112: 1164-1171.
doi: 10.1007/s00122-006-0218-1
[18] Liu J F, Chen J, Zheng X M, Wu F Q, Lin Q B, Heng Y Q, Tian P, Cheng Z J, Yu X W, Zhou K N, Zhang X, Guo X P, Wang J L, Wang H Y, Wan J M. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nat Plants, 2017, 3: 17043.
doi: 10.1038/nplants.2017.43
[19] Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 2013, 45: 707-711.
doi: 10.1038/ng.2612 pmid: 23583977
[20] 王朝欢, 宋博文, 余思佳, 肖武名, 黄明. 基于全基因组测序构建水稻RIL群体遗传图谱. 华南农业大学学报, 2021, 42(2): 44-50.
Wang C H, Song B W, Yu S J, Xiao W M, Huang M. Construction of a genetic map of rice RILs based on whole genome sequencing. J South China Agric Univ, 2021, 42(2): 44-50. (in Chinese with English abstract)
[21] Huang X H, Feng Q, Qian Q, Zhao Q, Wang L, Wang A H, Guan J P, Fan D L, Weng Q J, Huang T, Dong G J, Sang T, Han B. High-throughput genotyping by whole-genome resequencing. Genome Res, 2009, 19: 1068-1076.
doi: 10.1101/gr.089516.108
[22] Li H H, Ye G Y, Wang J K. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175: 361-374.
doi: 10.1534/genetics.106.066811
[23] McCouch S R, Rice G C. Gene nomenclature system for rice. Rice, 2008, 1: 72-84.
doi: 10.1007/s12284-008-9004-9
[24] Hina A M, Cao Y C, Song S Y, Li S G, Sharmin R A, Elattar M A, Bhat J A, Zhao T J. High-resolution mapping in two RIL populations refines major “QTL hotspot” regions for seed size and shape in soybean (Glycine max L.). Int J Mol Sci, 2020, 21: 1040-1073.
doi: 10.3390/ijms21031040
[25] 李慧慧, 张鲁燕, 王建康. 数量性状基因定位研究中若干常见问题的分析与解答. 作物学报, 2010, 36: 918-931.
doi: 10.3724/SP.J.1006.2010.00918
Li H H, Zhang L Y, Wang J K. Analysis and answers to frequently asked questions in quantitative trait locus mapping. Acta Agron Sin, 2010, 36: 918-931. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.00918
[26] Zhao Q A, Huang X H, Lin Z X, Han B. SEG-Map: a novel software for genotype calling and genetic map construction from next-generation sequencing. Rice, 2010, 3: 98-102.
doi: 10.1007/s12284-010-9051-x
[27] 苏成付, 赵团结, 盖钧镒. 不同统计遗传模型QTL定位方法应用效果的模拟比较. 作物学报, 2010, 36: 1100-1107.
doi: 10.3724/SP.J.1006.2010.01100
Su C F, Zhao T J, Gai Y J. Simulation comparisons of effectiveness among QTL mapping procedures of different statistical genetic models. Acta Agron Sin, 2010, 36: 1100-1107. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.01100
[28] 李珊珊. QTL与环境互作的完备区间作图方法研究. 中国农业科学院硕士学位论文, 北京, 2015.
Li S S. Inclusive Composite Interval Mapping of Quantitative Trait Loci by Environment Interactions. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2015. (in Chinese with English abstract)
[29] Xie X B, Jin F X, Song M H, Suh J P, Hwang H G, Kim Y G, McCouch S R, Ahn S N. Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa × O. rufipogon cross. Theor Appl Genet, 2008, 116: 613-622.
doi: 10.1007/s00122-007-0695-x
[1] 薛皦, 卢东柏, 刘维, 陆展华, 王石光, 王晓飞, 方志强, 何秀英. 优质稻“粤农丝苗”白叶枯病抗性遗传分析及主效QTL qBB-11-1的精细定位[J]. 作物学报, 2022, 48(9): 2210-2220.
[2] 黄祎雯, 孙滨, 程灿, 牛付安, 周继华, 张安鹏, 涂荣剑, 李瑶, 姚瑶, 代雨婷, 谢开珍, 陈小荣, 曹黎明, 储黄伟. 对水稻种子耐储性QTL的研究[J]. 作物学报, 2022, 48(9): 2255-2264.
[3] 邬腊梅, 杨浩娜, 王立峰, 李祖任, 邓希乐, 柏连阳. 除草型麻地膜在水稻秧田的应用及对水稻的影响[J]. 作物学报, 2022, 48(9): 2315-2324.
[4] 陈志青, 冯源, 王锐, 崔培媛, 卢豪, 魏海燕, 张海鹏, 张洪程. 外源钼对水稻产量形成及氮素利用的影响[J]. 作物学报, 2022, 48(9): 2325-2338.
[5] 王权, 王乐乐, 朱铁忠, 任浩杰, 王辉, 陈婷婷, 金萍, 武立权, 杨茹, 尤翠翠, 柯健, 何海兵. 离体饲养下HgCl2影响水稻叶片光合特性及其生理机制研究[J]. 作物学报, 2022, 48(9): 2377-2389.
[6] 桑国庆, 唐志光, 毛克彪, 邓刚, 王靖文, 李佳. 基于GEE云平台与Sentinel数据的高分辨率水稻种植范围提取——以湖南省为例[J]. 作物学报, 2022, 48(9): 2409-2420.
[7] 夏秀忠, 张宗琼, 杨行海, 荘洁, 曾宇, 邓国富, 宋国显, 黄欲晓, 农保选, 李丹婷. 广西水稻地方品种核心种质芽期耐盐性全基因组关联分析[J]. 作物学报, 2022, 48(8): 2007-2015.
[8] 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J]. 作物学报, 2022, 48(8): 2016-2027.
[9] 刘昆, 黄健, 周沈琪, 张伟杨, 张耗, 顾骏飞, 刘立军, 杨建昌. 穗肥施氮量对不同穗型超级稻品种产量的影响及其机制[J]. 作物学报, 2022, 48(8): 2028-2040.
[10] 委刚, 陈单阳, 任德勇, 杨宏霞, 伍靖雯, 冯萍, 王楠. 水稻细长秆突变体sr10的鉴定与基因定位[J]. 作物学报, 2022, 48(8): 2125-2133.
[11] 周驰燕, 李国辉, 许轲, 张晨晖, 杨子君, 张芬芳, 霍中洋, 戴其根, 张洪程. 不同类型水稻品种茎叶维管束与同化物运转特征[J]. 作物学报, 2022, 48(8): 2053-2065.
[12] 陈驰, 陈代波, 孙志豪, 彭泽群, 贺登美, 张迎信, 程海涛, 于萍, 马兆慧, 宋建, 曹立勇, 程式华, 孙廉平, 占小登, 吕文彦. 水稻典败型隐性核雄性不育突变体ap90的鉴定与基因定位[J]. 作物学报, 2022, 48(7): 1569-1582.
[13] 黄福灯, 黄妍, 金泽艳, 贺焕焕, 李春寿, 程方民, 潘刚. 水稻叶片早衰突变体ospls7的生理特性及其基因定位[J]. 作物学报, 2022, 48(7): 1832-1842.
[14] 杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选[J]. 作物学报, 2022, 48(7): 1813-1821.
[15] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[2] 王春梅;冯祎高;庄丽芳;曹亚萍;亓增军;别同德;曹爱忠;陈佩度. 普通小麦近缘物种黑麦1R、簇毛麦1V及鹅观草1Rk#1染色体特异分子标记的筛选[J]. 作物学报, 2007, 33(11): 1741 -1747 .
[3] 周录英;李向东;王丽丽;汤笑;林英杰. 钙肥不同用量对花生生理特性及产量和品质的影响[J]. 作物学报, 2008, 34(05): 879 -885 .
[4] 郑天清;徐建龙;傅彬英;高用明;Satish VERUKA;Renee LAFITTE;翟虎渠;万建民;朱苓华;黎志康. 回交高代选择导入系的纹枯病抗性与抗旱性的遗传重叠研究[J]. 作物学报, 2007, 33(08): 1380 -1384 .
[5] 夏仲炎. 粳稻叶型的遗传与选择的研究[J]. 作物学报, 1983, 9(04): 275 -282 .
[6] 赵辉;荆奇;戴廷波;姜东;曹卫星. 花后高温和水分逆境对小麦籽粒蛋白质形成及其关键酶活性的影响[J]. 作物学报, 2007, 33(12): 2021 -2027 .
[7] 赵翔;汪延良;王亚静;王西丽;张骁. 盐胁迫条件下外源Ca2+对蚕豆气孔运动及质膜K+通道的调控[J]. 作物学报, 2008, 34(11): 1970 -1976 .
[8] 吴征彬;陈鹏;杨业华;徐裕森;谢红彬. 不同类型抗虫陆地棉对红铃虫的抗性研究[J]. 作物学报, 2005, 31(01): 53 -57 .
[9] 王旭;曾昭海;朱波;胡跃高. 箭筈豌豆与燕麦不同间作混播模式对产量和品质的影响[J]. 作物学报, 2007, 33(11): 1892 -1895 .
[10] 冯佰利;张宾;高小丽;高金峰;王长发;张嵩午. 抗旱小麦的冷温特征及其生理特性分析[J]. 作物学报, 2004, 30(12): 1215 -1219 .