作物学报 ›› 2022, Vol. 48 ›› Issue (11): 2797-2812.doi: 10.3724/SP.J.1006.2022.14199
马文婧1(), 刘震1, 李志涛1, 朱金勇1, 李泓阳1, 陈丽敏1, 史田斌1, 张俊莲2, 刘玉汇1,*()
MA Wen-Jing1(), LIU Zhen1, LI Zhi-Tao1, ZHU Jin-Yong1, LI Hong-Yang1, CHEN Li-Min1, SHI Tian-Bin1, ZHANG Jun-Lian2, LIU Yu-Hui1,*()
摘要:
B-box (BBX)基因家族是一类锌指蛋白转录因子, 在植物生长发育过程中起重要作用。本研究鉴定了30个马铃薯BBXs家族成员, 对其理化性质、染色体定位、基因结构、蛋白保守结构域、基因重复事件、表达模式和蛋白互作网络进行了分析。结果表明, 30个StBBX基因家族成员不均匀的分布在11条染色体上。通过对其基因结构和系统发育特征的分析, 将30个StBBXs分为5个亚类。共线性分析表明, 马铃薯StBBXs与拟南芥AtBBXs间存在15对直系同源基因。利用PGSC数据库下载的RNA-seq数据, 分析了BBX基因家族在双单倍体(DM)马铃薯不同组织部位、非生物胁迫和外源激素处理下的表达。此外, 本研究对3种不同颜色块茎的马铃薯品种的薯皮和薯肉进行了RNA-seq, 研究了StBBXs在不同颜色的薯皮和薯肉中的表达模式, 分析了它们与花色素苷合成关键基因表达之间的相关性。利用String数据库构建了在彩色块茎中差异表达的StBBXs基因的蛋白互作网络。这些结果为进一步了解StBBX基因家族以及进一步分析StBBX基因在马铃薯非生物胁迫耐受和花青素生物合成中的功能提供了理论依据。
[1] |
Saori Y, Takafumi Y, Norihito N, Hanayo N, Takeshi M. Light-responsive double B-Box containing transcription factors are conserved in physcomitrella patens. Biosci Biotechnol Biochem, 2011, 75: 2037-2041.
doi: 10.1271/bbb.110359 |
[2] |
Huang J Y, Zhao X B, Weng X Y, Wang L. The rice B-Box zinc finger gene family: genomic identification, characterization, expression profiling and diurnal analysis. PLoS One, 2012, 7: e48242.
doi: 10.1371/journal.pone.0048242 |
[3] |
Khanna R, Kronmiller B, Maszle D R, Coupland G, Wu S H. The Arabidopsis B-Box zinc finger family. Plant Cell, 2009, 21: 3416-3420.
doi: 10.1105/tpc.109.069088 |
[4] |
Sreeramaiah N G, Javier B. The BBX family of plant transcription factors. Trends Plant Sci, 2014, 19: 460-470.
doi: 10.1016/j.tplants.2014.01.010 pmid: 24582145 |
[5] |
Takeshi K, Shogo I, Norihito N, Yusuke N, Masaya M, Takafumi Y, Takeshi M. The common function of a novel subfamily of B-Box zinc finger proteins with reference to circadian-associated events in Arabidopsis thaliana. Biosci Biotechnol Biochem, 2014, 72: 1539-1549.
doi: 10.1271/bbb.80041 |
[6] |
Agnieszka K M, Czarnecka J, Banachowicz E, Pascal R, Tadeusz R. Solanum tuberosum ZPR1 encodes a light regulated nuclear DNA-binding protein adjusting the circadian expression of StBBX24 to light cycle. Plant Cell Environ, 2017, 40: 424-440.
doi: 10.1111/pce.12875 |
[7] |
Nagaoka S, Tetsuo T. Salt tolerance-related protein STO binds to a Myb transcription factor homologue and confers salt tolerance in Arabidopsis. J Exp Bot, 2003, 54: 2231-2238.
doi: 10.1093/jxb/erg241 |
[8] |
Putterill J, Pobson F, Lee K, Simion R, Couplabd G. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell, 1995, 80: 847-857.
pmid: 7697715 |
[9] |
Xu D Q, Jiang Y, Li J, Holm M, Deng X W. The B-box domain protein BBX21 promotes photomorphogenesis. Plant Physiol, 2018, 176: 2365-2375.
doi: 10.1104/pp.17.01305 |
[10] |
Sreeramaiah N G, Magnus H, Javier F B. Molecular interactions of BBX24 and BBX25 with HYH, HY5 HOMOLOG, to modulate Arabidopsis seedling development. Plant Signal Behav, 2013, 8: e25208-1.
doi: 10.4161/psb.25208 |
[11] |
Min J H, Chung J S, Lee K H, Kim C S. The CONSTANS-like 4 transcription factor, AtCOL4, positively regulates abiotic stress tolerance through an abscisic acid-dependent manner in Arabidopsis. J Integr Plant Biol, 2015, 57: 313-324.
doi: 10.1111/jipb.12246 |
[12] |
Weng X Y, Wang L, Wang J, Hu Y, Du H, Xu C G, Xing Y Z, Li X H, Xiao J H, Zhang Q F. Grain number, plant height, and heading date7 is a central regulator of growth, development, and stress response. Plant Physiol, 2014, 164: 735-747.
doi: 10.1104/pp.113.231308 |
[13] |
An J P, Wang X F, Espley R V, Kui L W, Bi S Q, You C X, Hao Y J. An apple b-box protein mdbbx37 modulates anthocyanin biosynthesis and hypocotyl elongation synergistically with MdMYBs and MdHY5. Plant Cell Physiol, 2020, 61: 130-143.
doi: 10.1093/pcp/pcz185 |
[14] |
Bai S L, Saito T, Honda C, Hatsuyama Y, Ito A, Moriguchi T. An apple B-box protein, MdCOL11, is involved in UV-B- and temperature-induced anthocyanin biosynthesis. Planta, 2014, 240: 1051-1062.
doi: 10.1007/s00425-014-2129-8 |
[15] |
Agnieszka K M, Czarnecka J, Banachowicz E, Rey P, Rorat T. Solanum tuberosum ZPR1 encodes a light-regulated nuclear DNA-binding protein adjusting the circadian expression of StBBX24 to light cycle. Plant Cell Environ, 2017, 40: 424-440.
doi: 10.1111/pce.12875 |
[16] | Altschul S F, Madden T L, Schäffer A A, Zhang J H, Lipman D J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Narnia, 1997, 25: 3389-3402. |
[17] |
Hall B G. Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol, 2013, 30: 1229-1235.
doi: 10.1093/molbev/mst012 |
[18] | Bailey T L, Mikael B, Buske F A, Martin F, Grant C E, Luca C, Ren J Y, Li W F, William S N. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res, 2009, 37: W202-W208. |
[19] | 郭安源, 朱其慧, 陈新, 罗静初. GSDS: 基因结构显示系统. 遗传, 2007, 29: 1023-1026. |
Guo A Y, Zhu Q H, Chen X, Luo J C. GSDS: a gene structure display server. Hereditas, 2007, 29: 1023-1026. (in Chinese with English abstract) | |
[20] | Wang L Q, Guo K, Li Y, Tu Y Y, Hu H Z, Wang B R, Cui X C, Peng L C. Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC Plant Biol, 2010, 10: 12637-12642. |
[21] |
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones S J, Marra M A. Circos: an information aesthetic for comparative genomics. Genome Res, 2009, 19: 1639-1645.
doi: 10.1101/gr.092759.109 pmid: 19541911 |
[22] |
Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. Tbtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: 10.1016/j.molp.2020.06.009 |
[23] | Damian S, Morris J H, Helen C, Michael K, Stefan W, Milan S, Alberto S, Nadezhda T D, Alexander R, Peer B, Lars J J, Christian V M. The STRING database in 2017: quality- controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res, 2017, 45: D362-D368. |
[24] |
Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N, Schwikowshi B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003, 13: 2498-2504.
doi: 10.1101/gr.1239303 pmid: 14597658 |
[25] |
Shuuichi N, Tetsuo T. Salt tolerance-related protein STO binds to a Myb transcription factor homologue and confers salt tolerance in Arabidopsis. J Exp Bot, 2003, 54: 2231-2237.
pmid: 12909688 |
[26] |
Ledger S, Strayer C, Ashton F, Kay S A, Putterill J. Analysis of the function of two circadian regulated CONSTANS LIKE genes. Plant J, 2001, 26: 15-22.
pmid: 11359606 |
[27] |
牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析. 作物学报, 2021, 47: 2348-2361.
doi: 10.3724/SP.J.1006.2021.04268 |
Niu N, Liu Z, Huang P X, Zhu J Y, Li Z T, Ma W J, Zhang J L, Bai J P, Liu Y H. Genome-wide identification and expression analysis of potato GAUT gene family. Acta Agron Sin, 2021, 47: 2348-2361. (in Chinese with English abstract) | |
[28] | Liu Z, Li Y M, Zhu J Y, Ma W J, Li Z T, Bi Z Z, Sun Z, Bai J P, Zhang J L, Liu Y H. Genome-wide identification and analysis of the nf-y gene family in potato (Solanum tuberosum L.). Front Genet, 2021, 12: e739989. |
[29] |
Li Y M, Wang K L, Liu Z, Allan A C, Qin S H, Zhang J L, Liu Y H. Genome-wide analysis and expression profiles of the StR2R3-MYB transcription factor superfamily in potato (Solanum tuberosum L.). Int J Biol Macromol, 2020, 148: 817-832.
doi: 10.1016/j.ijbiomac.2020.01.167 |
[30] |
Job N, Yadukrishnan P, Bursch K, Datta S, Johansson H. Two B-Box proteins regulate photomorphogenesis by oppositely modulating hy5 through their diverse c-terminal domains. Plant Physiol, 2018, 176: 2963-2976.
doi: 10.1104/pp.17.00856 |
[31] |
Xu D, Li J, Gangappa S N, Hettiar A C, Holm M. Convergence of light and ABA signaling on the ABI5 promoter. PLoS Genet, 2014, 10: e1004197.
doi: 10.1371/journal.pgen.1004197 |
[32] |
Xu D Q, Jiang Y, Li J G, Lin F, Holm M, Dang X W. BBX21, an Arabidopsis B-box protein, directly activates HY5 and is targeted by COP1 for 26S proteasome-mediated degradation. Proc Natl Acad Sci USA, 2016, 113: 7655-7660.
doi: 10.1073/pnas.1607687113 |
[33] |
Fan X Y, Sun Y, Cao D M, Bai M Y, Luo X M, Yang H J, Wei C, Zhu S W, Sun Y, Chong K, Wang Z Y. BZS1, a B-box protein, promotes photomorphogenesis downstream of both brassinosteroid and light signaling pathways. Mol Plant, 2012, 5: 591-600.
doi: 10.1093/mp/sss041 |
[34] |
Wei C Q, Chen C W, Ai L F, Zhao J, Zhang Z Z, Lie K H, Burlingame A L, Sun Y, Wang Z Y. The Arabidopsis B-box protein BZS1/BBX20 interacts with HY5 and mediates strigolactone regulation of photomorphogenesi. J Genet Genomics, 2016, 43: 555-563.
doi: 10.1016/j.jgg.2016.05.007 |
[35] |
Lin F, Jiang Y, Li J, Yan T, Fan L, Liang J, Chen Z J, Xu D, Deng X W. B-BOX DOMAIN PROTEIN28 negatively regulates photomorphogenesis by repressing the activity of transcription factor HY5 and undergoes COP1-mediated degradation. Plant Cell, 2018, 30: 2006-2019.
doi: 10.1105/tpc.18.00226 |
[36] |
Li Y, Yu Y J, Liu M M, Song Y, Li H M, Sun J Q, Wang Q, Xie Q G, Wang L, Xu X D. BBX19 fine-tunes the circadian rhythm by interacting with PSEUDO-RESPONSE REGULATOR proteins to facilitate their repressive effect on morning-phased clock genes. Plant Cell, 2021, 33: 2602-2617.
doi: 10.1093/plcell/koab133 |
[37] |
Hai L P, Jeong H L, Soo J K, Cheong G W, Inhwan H. Constitutive over-expression of AtGSK1 induces NaCl stress responses in the absence of NaCl stress and results in enhanced NaCl tolerance in Arabidopsis. Plant J, 2010, 27: 305-314.
doi: 10.1046/j.1365-313x.2001.01099.x |
[38] | Xiao J, Hu R, Gu T, Han J P, Qiu D, Su P P, Feng J L, Chang J L, Yang G X, He G Y. Genome-wide identification and expression profiling of trihelix gene family under abiotic stresses in wheat. BioMed Central, 2019, 20: 287. |
[39] | Wang H G, Zhang Z L, Li H Y, Zhao X Y, Liu X M, Ortiz M, Lin C T, Liu B. CONSTANS-LIKE 7 regulates branching and shade avoidance response in Arabidopsis. Narnia, 2013, 64: 1017-1024. |
[40] |
Wang Q M, Tu X J, Zhang J H, Chen X B, Rao L Q. Heat stress-induced BBX18 negatively regulates the thermotolerance in Arabidopsis. Mol Biol Rep, 2013, 40: 2679-2688.
doi: 10.1007/s11033-012-2354-9 |
[41] |
Xu Y J, Zhao X, Aiwaili P, Mu X Y, Zhao M, Zhao J A, Cheng L N, Ma C, Gao J P, Hong B. A zinc finger protein BBX19 interacts with ABF3 to affect drought tolerance negatively in chrysanthemum. Plant J, 2020, 103: 1783-1795.
doi: 10.1111/tpj.14863 |
[42] | 刘兰兰. 水稻OsBBX基因响应热胁迫的初步研究. 湖南农业大学硕士学位论文, 湖南长沙, 2015. |
Liu L L. Preliminary Study on OsBBX Genes under Heat Stress in Rice. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2015 (in Chinese with English abstract). | |
[43] |
Muhammad I, Yang Y J, Liu R X, Xu Y J, Muhammad A K, Wei Q, Gao J P, Hong B. Identification and functional characterization of the BBX24 promoter and gene from chrysanthemum in Arabidopsis. Plant Mol Biol, 2015, 89: 1-19.
doi: 10.1007/s11103-015-0347-5 pmid: 26253592 |
[44] | 饶力群, 刘兰兰, 汪启明, 帅进, 彭澎, 李梦云, 唐世伟. 热诱导表达的水稻OsBBX30基因克隆和表达分析. 湖南大学学报(自然科学版), 2015, 42(6): 101-106. |
Rao L Q, Liu L L, Wang Q M, Shuai J, Peng P, Li M Y, Tang S W. Cloning and expression analysis of rice OsBBX30 gene expressed by heat induction. J Hunan Agric Univ (Nat Sci Edn), 2015, 42(6): 101-106. | |
[45] |
Bai S L, Saito T, Honda C, Hatsuyama Y, Ito A, Moriguchi T. An apple B-box protein, MdCOL11, is involved in UV-B- and temperature-induced anthocyanin biosynthesis. Planta, 2014, 240: 1051-1062.
doi: 10.1007/s00425-014-2129-8 |
[46] | Fang H C, Dong Y H, Yue X X, Hu J F, Jiang S H, Xu H F, Wang Y C, Su M Y, Zhang J, Zhang Z Y, Wang N, Chen X S. The B-box zinc finger protein MdBBX20 integrates anthocyanin accumulation in response to ultraviolet radiation and low temperature. Plant Cell Environ, 2019: 2090-2104. |
[47] | Gangappa S N, Holm M, Botto J F. Molecular interactions of BBX24 and BBX25 with HYH, HY5 HOMOLOG, to modulate Arabidopsis seedling development. Plant Signal Behav, 2013, 8: 1559-2324. |
[48] | 王立光, 李静雯, 叶春雷, 陈军, 罗俊杰. 光调控因子HY5及HYH在蔗糖诱导花青素积累中作用. 甘肃农业科技, 2019, (1): 21-25. |
Wang L G, Li J W, Ye C L, Chen J, Luo J J. The role of light-regulating factors HY5 and HYH in sucrose-induced anthocyanin accumulation. Gansu Agricl Sci Technol, 2019, (1): 21-25. (in Chinese with English abstract) | |
[49] |
Liu Y H, Lin W K, Espley R V, Wang L, Yang H Y, Yu B, Dare A, Varkonyi G E, Wang J, Zhang J L, Wang D, Allan A C. Functional diversification of the potato R2R3 MYB anthocyanin activators AN1, MYBA1, and MYB113 and their interaction with basic helix-loop-helix cofactors. J Exp Bot, 2016, 67: 2159-2176.
doi: 10.1093/jxb/erw014 |
[50] |
Sainz M B, Chandler G V L. Evidence for direct activation of an anthocyanin promoter by the maize C1 protein and comparison of DNA binding by related Myb domain proteins. Plant Cell, 1997, 9: 611-625.
pmid: 9144964 |
[51] |
Gangappa S N, Crocco C D, Johansson H, Datta S, Hettiarachchi C, Holm M, Botto J F. The Arabidopsis B-BOX protein BBX25 interacts with HY5, negatively regulating BBX22 expression to suppress seedling photomorphogenesis. Plant Cell, 2013, 25: 1243-1257.
doi: 10.1105/tpc.113.109751 |
[52] |
Liu W, Tang R, Zhang Y, Liu X J, Gao Y Y, Dai Z W, Li S H, Wu B H, Wang L J. Genome-wide identification of B-box proteins and VvBBX44 involved in light-induced anthocyanin biosynthesis in grape (Vitis vinifera L.). Planta, 2021, 253: 114.
doi: 10.1007/s00425-021-03618-z |
[53] | Zhang H N, Li W C, Shi S Y, Shu B, Liu L Q, Wei Y Z, Xie J H. Transcriptome profiling of light-regulated anthocyanin biosynthesis in the pericarp of litchi. Front Plant Sci, 2016, 7: 963. |
[54] |
Maier A, Hoecker U. COP1/SPA ubiquitin ligase complexes repress anthocyanin accumulation under low light and high light conditions. Plant Signal Behav, 2015, 10: e970440.
doi: 10.4161/15592316.2014.970440 |
[55] |
Shkryl Y, Yugay Y L, Avramenko T, Grigorchuk V, Gorpenchenko T, Grischenko O, Bulgakov V. CRISPR/Cas9-mediated knockout of HOS1 reveals its role in the regulation of secondary metabolism in Arabidopsis thaliana. Plants, 2021, 10: 104.
doi: 10.3390/plants10010104 |
[56] |
Wnag J F, Li G B, Li C X, Zhang C L, Cui A, Wang X, Zheng F Y, Zhang D D, Larkin R M, Ye Z B, Zhang J H. NF-Y plays essential roles in flavonoid biosynthesis by modulating histone modifications in tomato. New Phytol, 2020, 229: 3237-3252.
doi: 10.1111/nph.17112 |
[1] | 惠志明, 徐建飞, 简银巧, 卞春松, 段绍光, 胡军, 李广存, 金黎平. 基于2b-RAD测序的四倍体马铃薯熟性相关的分子标记开发[J]. 作物学报, 2022, 48(9): 2274-2284. |
[2] | 王沙沙, 黄超, 汪庆昌, 晁岳恩, 陈锋, 孙建国, 宋晓. 小麦籽粒大小相关基因TaGS2克隆及功能分析[J]. 作物学报, 2022, 48(8): 1926-1937. |
[3] | 荐红举, 张梅花, 尚丽娜, 王季春, 胡柏耿, 吕典秋. 利用WGCNA筛选马铃薯块茎发育候选基因[J]. 作物学报, 2022, 48(7): 1658-1668. |
[4] | 李洁雅, 李红艳, 叶广继, 苏旺, 孙海宏, 王舰. 马铃薯储藏期花青素变化及合成相关基因表达分析[J]. 作物学报, 2022, 48(7): 1669-1682. |
[5] | 陈璐, 周淑倩, 李永新, 陈刚, 陆国权, 杨虎清. 甘薯解偶联蛋白基因家族鉴定与表达分析[J]. 作物学报, 2022, 48(7): 1683-1696. |
[6] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[7] | 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278. |
[8] | 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297. |
[9] | 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839. |
[10] | 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907. |
[11] | 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929. |
[12] | 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623. |
[13] | 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694. |
[14] | 林焕泰, 张天杰, 史梦婷, 郭燕芳, 高三基, 王锦达. 割手密萜烯合成酶(TPS)基因家族分析及其在生物胁迫下的表达分析[J]. 作物学报, 2022, 48(12): 3029-3044. |
[15] | 贾小霞, 齐恩芳, 马胜, 黄伟, 郑永伟, 白永杰, 文国宏. 马铃薯PYL基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2022, 48(10): 2533-2545. |
|