欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (11): 2797-2812.doi: 10.3724/SP.J.1006.2022.14199

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

马铃薯BBX基因家族的全基因组鉴定及表达分析

马文婧1(), 刘震1, 李志涛1, 朱金勇1, 李泓阳1, 陈丽敏1, 史田斌1, 张俊莲2, 刘玉汇1,*()   

  1. 1甘肃农业大学农学院 / 省部共建干旱生境作物学国家重点实验室 / 甘肃省作物遗传改良与种质创新重点实验室, 甘肃兰州 730070
    2甘肃农业大学园艺学院, 甘肃兰州 730070
  • 收稿日期:2021-10-26 接受日期:2022-02-25 出版日期:2022-11-12 网络出版日期:2022-03-24
  • 通讯作者: 刘玉汇
  • 作者简介:第一作者联系方式: E-mail: 810774875@qq.com
  • 基金资助:
    本研究由甘肃省高等学校创新基金项目(2020A-056);国家自然科学基金项目(31860398);甘肃农业大学“伏羲人才”计划项目(Gaufx-02Y04);财政部和农业农村部国家现代农业产业技术体系建设专项(马铃薯);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-09-P14);甘肃农业大学公招博士科研启动基金项目(GAU-KYQD-2020-11)

Genome-wide identification and expression analysis of BBX gene family in potato (Solanum tuberosum L.)

MA Wen-Jing1(), LIU Zhen1, LI Zhi-Tao1, ZHU Jin-Yong1, LI Hong-Yang1, CHEN Li-Min1, SHI Tian-Bin1, ZHANG Jun-Lian2, LIU Yu-Hui1,*()   

  1. 1College of Agronomy, Gansu Agricultural University / State Key Laboratory of Aridland Crop Science / Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, Gansu, China
    2College of Horticulture, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2021-10-26 Accepted:2022-02-25 Published:2022-11-12 Published online:2022-03-24
  • Contact: LIU Yu-Hui
  • Supported by:
    The Program for Innovation Ability Improvement of the Higher Education Institutions of Gansu Province(2020A-056);The National Natural Science Foundation of China(31860398);The Fuxi Talent Project of Gansu Agricultural University(Gaufx-02Y04);The China Agriculture Research System of MOF and MARA(马铃薯);The China Agriculture Research System of MOF and MARA(CARS-09-P14);The Scientific Research Startup Funds for Openly-recruited Doctors Agricultural University(GAU-KYQD-2020-11)

摘要:

B-box (BBX)基因家族是一类锌指蛋白转录因子, 在植物生长发育过程中起重要作用。本研究鉴定了30个马铃薯BBXs家族成员, 对其理化性质、染色体定位、基因结构、蛋白保守结构域、基因重复事件、表达模式和蛋白互作网络进行了分析。结果表明, 30个StBBX基因家族成员不均匀的分布在11条染色体上。通过对其基因结构和系统发育特征的分析, 将30个StBBXs分为5个亚类。共线性分析表明, 马铃薯StBBXs与拟南芥AtBBXs间存在15对直系同源基因。利用PGSC数据库下载的RNA-seq数据, 分析了BBX基因家族在双单倍体(DM)马铃薯不同组织部位、非生物胁迫和外源激素处理下的表达。此外, 本研究对3种不同颜色块茎的马铃薯品种的薯皮和薯肉进行了RNA-seq, 研究了StBBXs在不同颜色的薯皮和薯肉中的表达模式, 分析了它们与花色素苷合成关键基因表达之间的相关性。利用String数据库构建了在彩色块茎中差异表达的StBBXs基因的蛋白互作网络。这些结果为进一步了解StBBX基因家族以及进一步分析StBBX基因在马铃薯非生物胁迫耐受和花青素生物合成中的功能提供了理论依据。

关键词: 马铃薯, BBX基因家族, 非生物胁迫, 花青素生物合成, 表达分析

Abstract:

The B-box (BBX) gene family is a type of zinc finger protein transcription factor that plays an important role in the growth and development of plants. In this study, 30 potato BBXs family members (StBBXs) were identified, and their physical and chemical properties, chromosomal location, gene structure, protein conserved domains, gene repetition events, expression patterns, and protein interaction network were analyzed. The results showed that 30 StBBXs were unevenly distributed on 11 chromosomes. According to their gene structures and phylogenetic characteristics, 30 StBBXs were divided into 5 subclasses. Collinearity analysis indicated that there were 15 pairs BBX genes which were orthologous to potato (Solanum tuberosum) and Arabidopsis. We analyzed the relative expression profiles of StBBX genes in different tissues of double haploid (DM) potato, as well as under abiotic stresses and hormone treatments by RNA-seq downloaded from the PGSC (Potato Genome Sequencing Consortium) database. In addition, to explore the relative expression patterns of the StBBX genes in these tissues, we performed RNA-seq on the tuber skin and flesh of three potato varieties with different colors and analyzed their correlations with the expression of key genes for anthocyanin synthesis. Furthermore, the protein interaction network of StBBXs which differentially expressed in color tuber tissues was constructed using String database. These results provide a theoretical basis for further understanding the StBBX gene family, further function of StBBX genes in abiotic stress tolerance and anthocyanin biosynthesis in potato, and StBBX genes in potato might be related to abiotic stress responses and anthocyanin biosynthesis.

Key words: potato, BBX genes family, abiotic stress, anthocyanin biosynthesis, expression analysis

图1

3个不同颜色马铃薯品种的块茎"

表1

qPCR引物序列"

基因名称
Gene name
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
StEF-1α ATTGGAAACGGATATGCTCCA TCCTTACCTGAACGCCTGTCA
PG0011378 ATCATCAGCAGCAGCAGCAAGAG TCACGGTCACAGGTAAAACAGAGC
PG0029365 CGTCGGCATGAGCGGTTTCC TCATCATCAGCAGCATCAGCATCG
PG0027475 CGGTGGAATCGGTCGTGAAGTC CGTGGTCGTGGTCATGGTTGTG
PG0027017 GCAAGGACTGTGACGAAGCAATTC GCTCAAGGCTACACGGATTCCAG
PG0026311 GACTCCGCCTCCGCCAGATC GACTCCGCTTCCGCTTCTTCTTC
PG0026181 TGGAGGAGAGTGAGAGCGTGAATG GCGGTGGAGGCGTCGTATTTG
PG0025024 GGTGCGTTCGGTGAGTTCTTCC CCTTACTCGCTTCCACGGAGATG
PG0013753 GTCATCAACTCCGCCTCCACAG CATTCGTCACGCATTCGTTCAAAG

图2

拟南芥和马铃薯BBXs基因家族进化树 红色圆表示StBBXs, 蓝色三角表示AtBBXs。"

表2

StBBX基因家族理化性质及亚细胞定位"

基因名称
Gene name
氨基酸长度 Amino acid
length
相对分子量
Molecular weight
(kD)
等电点
Point isoelectric (pI)
亚细胞定位
Subcellular localization
染色体定位 Chromosome
localization
亚组分类
Class of
subgroup
PG0003625 551 44,860.59 5.26 细胞核Nuclear Chr02 BBX IV
PG0022345 575 46,990.87 5.27 细胞核Nuclear Chr02 BBX V
PG1010056 1220 100,730.6 5.05 细胞核Nuclear Chr02 BBX I
PG0007061 899 74,980.43 5.12 细胞核Nuclear Chr07 BBX IV
PG0017411 1238 102,001 5.08 细胞核Nuclear Chr07 BBX II
PG0026169 395 32,108.31 5.34 细胞核Nuclear Chr07 BBX V
PG0026181 776 61,856.12 5.18 细胞核Nuclear Chr07 BBX V
PG0027475 1160 96,517.16 5.04 细胞核Nuclear Chr07 BBX I
PG0003109 641 52,158.76 5.22 细胞核Nuclear Chr01 BBX IV
PG0030958 761 64,412.27 5.20 细胞核Nuclear Chr01 BBX IV
PG0001263 1271 104,574.6 5.09 细胞核Nuclear Chr05 BBX II
PG0005325 1244 102,491.8 5.07 细胞核Nuclear Chr05 BBX II
PG0014566 1346 108,627.7 5.10 细胞核Nuclear Chr05 BBX III
PG0025414 1364 112,088.5 5.05 细胞核Nuclear Chr05 BBX II
PG0013178 341 27,626.76 5.50 细胞核Nuclear Chr12 BBX II
PG0013753 623 49,919.71 5.25 细胞核Nuclear Chr12 BBX V
PG0019025 902 75,119.83 5.12 细胞核Nuclear Chr12 BBX IV
PG0028818 1229 100,908.6 5.09 细胞核Nuclear Chr12 BBX II
PG0029365 1076 88,519.16 5.07 细胞核Nuclear Chr12 BBX I
PG0029426 995 83,207.43 5.13 细胞核Nuclear Chr12 BBX IV
PG0011378 1142 94,480.42 5.11 细胞核Nuclear Chr12 BBX II
PG0005633 1208 97,557.49 5.11 细胞核Nuclear Chr03 BBX III
PG0026515 782 65,781.32 5.15 细胞核Nuclear Chr06 BBX V
PG0027017 704 58,425.39 5.17 细胞核Nuclear Chr06 BBX IV
PG0026311 1046 85,660.46 5.06 细胞核Nuclear Chr08 BBX I
PG0025024 701 57,480.47 5.21 细胞核Nuclear Chr10 BBX V
PG0003711 899 75,536.97 5.15 细胞核Nuclear Chr04 BBX IV
PG0005997 1472 122,076 5.03 细胞核Nuclear Chr04 BBX V
PG0007749 1694 137,183.7 5.08 细胞核Nuclear Chr04 BBX III
PG2010056 1244 102,374.8 5.05 细胞核Nuclear Chr02 BBX I

图3

StBBX基因家族的进化关系、基因结构和保守基序分析 A: StBBXs进化树。B: StBBXs基因的外显子/内含子结构。蓝色框表示外显子, 相同长度的黑线表示内含子。上游/下游区域红色方框表示。数字0、1和2表示内含子的剪接阶段。C: StBBXs中保守基序的分布。10个不同颜色的框代表了10个不同的基序。"

图4

BBX基因家族重复事件 红色线表示StBBX基因与AtBBX基因之间具有同源性, 染色体数目显示在每个染色体的底部。"

图5

StBBXs在不同组织部位中的表达 对30个StBBXs基因表达量取以2为底的对数, 以进行标准化处理, 不同颜色的色块表示基因在不同组织中的表达水平。"

图6

StBBXs基因家族不同非生物胁迫和不同激素处理下的表达 对30个StBBXs基因表达量取以2为底的对数, 以进行标准化处理, 不同颜色的色块表示基因在非生物胁迫和激素处理下的表达水平。"

图7

StBBXs不同薯皮薯肉中的表达 对30个StBBX基因表达量取以2为底的对数, 以进行标准化处理, 不同颜色的色块表示基因在不同颜色薯皮薯肉中的表达水平。"

图8

StBBXs在彩色马铃薯不同部位花色素苷含量的相关性分析 *和**分别表示在0.05和0.01水平显著相关。"

图9

8个StBBX基因在白色和彩色薯皮和薯肉里的定量表达分析 对8个StBBXs基因在白色和彩色薯皮和薯肉的定量表达分析。XDS、LTS和HMS分别代表“新大坪”、“红美”和 “黑美人”的薯皮。XDF、LTF和HMF分别代表“新大坪”、“红美”和“黑美人”的薯肉。"

图10

StBBX蛋白互作网络分析 红色圆圈表示StBBXs候选基因, 黄色圆圈表示与花色素苷合成相关的基因。蓝色线条表示综合得分≥400, 紫色线条表示综合得分≥700, 红色线条表示综合得分≥900。"

[1] Saori Y, Takafumi Y, Norihito N, Hanayo N, Takeshi M. Light-responsive double B-Box containing transcription factors are conserved in physcomitrella patens. Biosci Biotechnol Biochem, 2011, 75: 2037-2041.
doi: 10.1271/bbb.110359
[2] Huang J Y, Zhao X B, Weng X Y, Wang L. The rice B-Box zinc finger gene family: genomic identification, characterization, expression profiling and diurnal analysis. PLoS One, 2012, 7: e48242.
doi: 10.1371/journal.pone.0048242
[3] Khanna R, Kronmiller B, Maszle D R, Coupland G, Wu S H. The Arabidopsis B-Box zinc finger family. Plant Cell, 2009, 21: 3416-3420.
doi: 10.1105/tpc.109.069088
[4] Sreeramaiah N G, Javier B. The BBX family of plant transcription factors. Trends Plant Sci, 2014, 19: 460-470.
doi: 10.1016/j.tplants.2014.01.010 pmid: 24582145
[5] Takeshi K, Shogo I, Norihito N, Yusuke N, Masaya M, Takafumi Y, Takeshi M. The common function of a novel subfamily of B-Box zinc finger proteins with reference to circadian-associated events in Arabidopsis thaliana. Biosci Biotechnol Biochem, 2014, 72: 1539-1549.
doi: 10.1271/bbb.80041
[6] Agnieszka K M, Czarnecka J, Banachowicz E, Pascal R, Tadeusz R. Solanum tuberosum ZPR1 encodes a light regulated nuclear DNA-binding protein adjusting the circadian expression of StBBX24 to light cycle. Plant Cell Environ, 2017, 40: 424-440.
doi: 10.1111/pce.12875
[7] Nagaoka S, Tetsuo T. Salt tolerance-related protein STO binds to a Myb transcription factor homologue and confers salt tolerance in Arabidopsis. J Exp Bot, 2003, 54: 2231-2238.
doi: 10.1093/jxb/erg241
[8] Putterill J, Pobson F, Lee K, Simion R, Couplabd G. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell, 1995, 80: 847-857.
pmid: 7697715
[9] Xu D Q, Jiang Y, Li J, Holm M, Deng X W. The B-box domain protein BBX21 promotes photomorphogenesis. Plant Physiol, 2018, 176: 2365-2375.
doi: 10.1104/pp.17.01305
[10] Sreeramaiah N G, Magnus H, Javier F B. Molecular interactions of BBX24 and BBX25 with HYH, HY5 HOMOLOG, to modulate Arabidopsis seedling development. Plant Signal Behav, 2013, 8: e25208-1.
doi: 10.4161/psb.25208
[11] Min J H, Chung J S, Lee K H, Kim C S. The CONSTANS-like 4 transcription factor, AtCOL4, positively regulates abiotic stress tolerance through an abscisic acid-dependent manner in Arabidopsis. J Integr Plant Biol, 2015, 57: 313-324.
doi: 10.1111/jipb.12246
[12] Weng X Y, Wang L, Wang J, Hu Y, Du H, Xu C G, Xing Y Z, Li X H, Xiao J H, Zhang Q F. Grain number, plant height, and heading date7 is a central regulator of growth, development, and stress response. Plant Physiol, 2014, 164: 735-747.
doi: 10.1104/pp.113.231308
[13] An J P, Wang X F, Espley R V, Kui L W, Bi S Q, You C X, Hao Y J. An apple b-box protein mdbbx37 modulates anthocyanin biosynthesis and hypocotyl elongation synergistically with MdMYBs and MdHY5. Plant Cell Physiol, 2020, 61: 130-143.
doi: 10.1093/pcp/pcz185
[14] Bai S L, Saito T, Honda C, Hatsuyama Y, Ito A, Moriguchi T. An apple B-box protein, MdCOL11, is involved in UV-B- and temperature-induced anthocyanin biosynthesis. Planta, 2014, 240: 1051-1062.
doi: 10.1007/s00425-014-2129-8
[15] Agnieszka K M, Czarnecka J, Banachowicz E, Rey P, Rorat T. Solanum tuberosum ZPR1 encodes a light-regulated nuclear DNA-binding protein adjusting the circadian expression of StBBX24 to light cycle. Plant Cell Environ, 2017, 40: 424-440.
doi: 10.1111/pce.12875
[16] Altschul S F, Madden T L, Schäffer A A, Zhang J H, Lipman D J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Narnia, 1997, 25: 3389-3402.
[17] Hall B G. Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol, 2013, 30: 1229-1235.
doi: 10.1093/molbev/mst012
[18] Bailey T L, Mikael B, Buske F A, Martin F, Grant C E, Luca C, Ren J Y, Li W F, William S N. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res, 2009, 37: W202-W208.
[19] 郭安源, 朱其慧, 陈新, 罗静初. GSDS: 基因结构显示系统. 遗传, 2007, 29: 1023-1026.
Guo A Y, Zhu Q H, Chen X, Luo J C. GSDS: a gene structure display server. Hereditas, 2007, 29: 1023-1026. (in Chinese with English abstract)
[20] Wang L Q, Guo K, Li Y, Tu Y Y, Hu H Z, Wang B R, Cui X C, Peng L C. Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC Plant Biol, 2010, 10: 12637-12642.
[21] Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones S J, Marra M A. Circos: an information aesthetic for comparative genomics. Genome Res, 2009, 19: 1639-1645.
doi: 10.1101/gr.092759.109 pmid: 19541911
[22] Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. Tbtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: 10.1016/j.molp.2020.06.009
[23] Damian S, Morris J H, Helen C, Michael K, Stefan W, Milan S, Alberto S, Nadezhda T D, Alexander R, Peer B, Lars J J, Christian V M. The STRING database in 2017: quality- controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res, 2017, 45: D362-D368.
[24] Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N, Schwikowshi B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003, 13: 2498-2504.
doi: 10.1101/gr.1239303 pmid: 14597658
[25] Shuuichi N, Tetsuo T. Salt tolerance-related protein STO binds to a Myb transcription factor homologue and confers salt tolerance in Arabidopsis. J Exp Bot, 2003, 54: 2231-2237.
pmid: 12909688
[26] Ledger S, Strayer C, Ashton F, Kay S A, Putterill J. Analysis of the function of two circadian regulated CONSTANS LIKE genes. Plant J, 2001, 26: 15-22.
pmid: 11359606
[27] 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析. 作物学报, 2021, 47: 2348-2361.
doi: 10.3724/SP.J.1006.2021.04268
Niu N, Liu Z, Huang P X, Zhu J Y, Li Z T, Ma W J, Zhang J L, Bai J P, Liu Y H. Genome-wide identification and expression analysis of potato GAUT gene family. Acta Agron Sin, 2021, 47: 2348-2361. (in Chinese with English abstract)
[28] Liu Z, Li Y M, Zhu J Y, Ma W J, Li Z T, Bi Z Z, Sun Z, Bai J P, Zhang J L, Liu Y H. Genome-wide identification and analysis of the nf-y gene family in potato (Solanum tuberosum L.). Front Genet, 2021, 12: e739989.
[29] Li Y M, Wang K L, Liu Z, Allan A C, Qin S H, Zhang J L, Liu Y H. Genome-wide analysis and expression profiles of the StR2R3-MYB transcription factor superfamily in potato (Solanum tuberosum L.). Int J Biol Macromol, 2020, 148: 817-832.
doi: 10.1016/j.ijbiomac.2020.01.167
[30] Job N, Yadukrishnan P, Bursch K, Datta S, Johansson H. Two B-Box proteins regulate photomorphogenesis by oppositely modulating hy5 through their diverse c-terminal domains. Plant Physiol, 2018, 176: 2963-2976.
doi: 10.1104/pp.17.00856
[31] Xu D, Li J, Gangappa S N, Hettiar A C, Holm M. Convergence of light and ABA signaling on the ABI5 promoter. PLoS Genet, 2014, 10: e1004197.
doi: 10.1371/journal.pgen.1004197
[32] Xu D Q, Jiang Y, Li J G, Lin F, Holm M, Dang X W. BBX21, an Arabidopsis B-box protein, directly activates HY5 and is targeted by COP1 for 26S proteasome-mediated degradation. Proc Natl Acad Sci USA, 2016, 113: 7655-7660.
doi: 10.1073/pnas.1607687113
[33] Fan X Y, Sun Y, Cao D M, Bai M Y, Luo X M, Yang H J, Wei C, Zhu S W, Sun Y, Chong K, Wang Z Y. BZS1, a B-box protein, promotes photomorphogenesis downstream of both brassinosteroid and light signaling pathways. Mol Plant, 2012, 5: 591-600.
doi: 10.1093/mp/sss041
[34] Wei C Q, Chen C W, Ai L F, Zhao J, Zhang Z Z, Lie K H, Burlingame A L, Sun Y, Wang Z Y. The Arabidopsis B-box protein BZS1/BBX20 interacts with HY5 and mediates strigolactone regulation of photomorphogenesi. J Genet Genomics, 2016, 43: 555-563.
doi: 10.1016/j.jgg.2016.05.007
[35] Lin F, Jiang Y, Li J, Yan T, Fan L, Liang J, Chen Z J, Xu D, Deng X W. B-BOX DOMAIN PROTEIN28 negatively regulates photomorphogenesis by repressing the activity of transcription factor HY5 and undergoes COP1-mediated degradation. Plant Cell, 2018, 30: 2006-2019.
doi: 10.1105/tpc.18.00226
[36] Li Y, Yu Y J, Liu M M, Song Y, Li H M, Sun J Q, Wang Q, Xie Q G, Wang L, Xu X D. BBX19 fine-tunes the circadian rhythm by interacting with PSEUDO-RESPONSE REGULATOR proteins to facilitate their repressive effect on morning-phased clock genes. Plant Cell, 2021, 33: 2602-2617.
doi: 10.1093/plcell/koab133
[37] Hai L P, Jeong H L, Soo J K, Cheong G W, Inhwan H. Constitutive over-expression of AtGSK1 induces NaCl stress responses in the absence of NaCl stress and results in enhanced NaCl tolerance in Arabidopsis. Plant J, 2010, 27: 305-314.
doi: 10.1046/j.1365-313x.2001.01099.x
[38] Xiao J, Hu R, Gu T, Han J P, Qiu D, Su P P, Feng J L, Chang J L, Yang G X, He G Y. Genome-wide identification and expression profiling of trihelix gene family under abiotic stresses in wheat. BioMed Central, 2019, 20: 287.
[39] Wang H G, Zhang Z L, Li H Y, Zhao X Y, Liu X M, Ortiz M, Lin C T, Liu B. CONSTANS-LIKE 7 regulates branching and shade avoidance response in Arabidopsis. Narnia, 2013, 64: 1017-1024.
[40] Wang Q M, Tu X J, Zhang J H, Chen X B, Rao L Q. Heat stress-induced BBX18 negatively regulates the thermotolerance in Arabidopsis. Mol Biol Rep, 2013, 40: 2679-2688.
doi: 10.1007/s11033-012-2354-9
[41] Xu Y J, Zhao X, Aiwaili P, Mu X Y, Zhao M, Zhao J A, Cheng L N, Ma C, Gao J P, Hong B. A zinc finger protein BBX19 interacts with ABF3 to affect drought tolerance negatively in chrysanthemum. Plant J, 2020, 103: 1783-1795.
doi: 10.1111/tpj.14863
[42] 刘兰兰. 水稻OsBBX基因响应热胁迫的初步研究. 湖南农业大学硕士学位论文, 湖南长沙, 2015.
Liu L L. Preliminary Study on OsBBX Genes under Heat Stress in Rice. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2015 (in Chinese with English abstract).
[43] Muhammad I, Yang Y J, Liu R X, Xu Y J, Muhammad A K, Wei Q, Gao J P, Hong B. Identification and functional characterization of the BBX24 promoter and gene from chrysanthemum in Arabidopsis. Plant Mol Biol, 2015, 89: 1-19.
doi: 10.1007/s11103-015-0347-5 pmid: 26253592
[44] 饶力群, 刘兰兰, 汪启明, 帅进, 彭澎, 李梦云, 唐世伟. 热诱导表达的水稻OsBBX30基因克隆和表达分析. 湖南大学学报(自然科学版), 2015, 42(6): 101-106.
Rao L Q, Liu L L, Wang Q M, Shuai J, Peng P, Li M Y, Tang S W. Cloning and expression analysis of rice OsBBX30 gene expressed by heat induction. J Hunan Agric Univ (Nat Sci Edn), 2015, 42(6): 101-106.
[45] Bai S L, Saito T, Honda C, Hatsuyama Y, Ito A, Moriguchi T. An apple B-box protein, MdCOL11, is involved in UV-B- and temperature-induced anthocyanin biosynthesis. Planta, 2014, 240: 1051-1062.
doi: 10.1007/s00425-014-2129-8
[46] Fang H C, Dong Y H, Yue X X, Hu J F, Jiang S H, Xu H F, Wang Y C, Su M Y, Zhang J, Zhang Z Y, Wang N, Chen X S. The B-box zinc finger protein MdBBX20 integrates anthocyanin accumulation in response to ultraviolet radiation and low temperature. Plant Cell Environ, 2019: 2090-2104.
[47] Gangappa S N, Holm M, Botto J F. Molecular interactions of BBX24 and BBX25 with HYH, HY5 HOMOLOG, to modulate Arabidopsis seedling development. Plant Signal Behav, 2013, 8: 1559-2324.
[48] 王立光, 李静雯, 叶春雷, 陈军, 罗俊杰. 光调控因子HY5及HYH在蔗糖诱导花青素积累中作用. 甘肃农业科技, 2019, (1): 21-25.
Wang L G, Li J W, Ye C L, Chen J, Luo J J. The role of light-regulating factors HY5 and HYH in sucrose-induced anthocyanin accumulation. Gansu Agricl Sci Technol, 2019, (1): 21-25. (in Chinese with English abstract)
[49] Liu Y H, Lin W K, Espley R V, Wang L, Yang H Y, Yu B, Dare A, Varkonyi G E, Wang J, Zhang J L, Wang D, Allan A C. Functional diversification of the potato R2R3 MYB anthocyanin activators AN1, MYBA1, and MYB113 and their interaction with basic helix-loop-helix cofactors. J Exp Bot, 2016, 67: 2159-2176.
doi: 10.1093/jxb/erw014
[50] Sainz M B, Chandler G V L. Evidence for direct activation of an anthocyanin promoter by the maize C1 protein and comparison of DNA binding by related Myb domain proteins. Plant Cell, 1997, 9: 611-625.
pmid: 9144964
[51] Gangappa S N, Crocco C D, Johansson H, Datta S, Hettiarachchi C, Holm M, Botto J F. The Arabidopsis B-BOX protein BBX25 interacts with HY5, negatively regulating BBX22 expression to suppress seedling photomorphogenesis. Plant Cell, 2013, 25: 1243-1257.
doi: 10.1105/tpc.113.109751
[52] Liu W, Tang R, Zhang Y, Liu X J, Gao Y Y, Dai Z W, Li S H, Wu B H, Wang L J. Genome-wide identification of B-box proteins and VvBBX44 involved in light-induced anthocyanin biosynthesis in grape (Vitis vinifera L.). Planta, 2021, 253: 114.
doi: 10.1007/s00425-021-03618-z
[53] Zhang H N, Li W C, Shi S Y, Shu B, Liu L Q, Wei Y Z, Xie J H. Transcriptome profiling of light-regulated anthocyanin biosynthesis in the pericarp of litchi. Front Plant Sci, 2016, 7: 963.
[54] Maier A, Hoecker U. COP1/SPA ubiquitin ligase complexes repress anthocyanin accumulation under low light and high light conditions. Plant Signal Behav, 2015, 10: e970440.
doi: 10.4161/15592316.2014.970440
[55] Shkryl Y, Yugay Y L, Avramenko T, Grigorchuk V, Gorpenchenko T, Grischenko O, Bulgakov V. CRISPR/Cas9-mediated knockout of HOS1 reveals its role in the regulation of secondary metabolism in Arabidopsis thaliana. Plants, 2021, 10: 104.
doi: 10.3390/plants10010104
[56] Wnag J F, Li G B, Li C X, Zhang C L, Cui A, Wang X, Zheng F Y, Zhang D D, Larkin R M, Ye Z B, Zhang J H. NF-Y plays essential roles in flavonoid biosynthesis by modulating histone modifications in tomato. New Phytol, 2020, 229: 3237-3252.
doi: 10.1111/nph.17112
[1] 惠志明, 徐建飞, 简银巧, 卞春松, 段绍光, 胡军, 李广存, 金黎平. 基于2b-RAD测序的四倍体马铃薯熟性相关的分子标记开发[J]. 作物学报, 2022, 48(9): 2274-2284.
[2] 王沙沙, 黄超, 汪庆昌, 晁岳恩, 陈锋, 孙建国, 宋晓. 小麦籽粒大小相关基因TaGS2克隆及功能分析[J]. 作物学报, 2022, 48(8): 1926-1937.
[3] 荐红举, 张梅花, 尚丽娜, 王季春, 胡柏耿, 吕典秋. 利用WGCNA筛选马铃薯块茎发育候选基因[J]. 作物学报, 2022, 48(7): 1658-1668.
[4] 李洁雅, 李红艳, 叶广继, 苏旺, 孙海宏, 王舰. 马铃薯储藏期花青素变化及合成相关基因表达分析[J]. 作物学报, 2022, 48(7): 1669-1682.
[5] 陈璐, 周淑倩, 李永新, 陈刚, 陆国权, 杨虎清. 甘薯解偶联蛋白基因家族鉴定与表达分析[J]. 作物学报, 2022, 48(7): 1683-1696.
[6] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[7] 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278.
[8] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[9] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[10] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[11] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[12] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[13] 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694.
[14] 林焕泰, 张天杰, 史梦婷, 郭燕芳, 高三基, 王锦达. 割手密萜烯合成酶(TPS)基因家族分析及其在生物胁迫下的表达分析[J]. 作物学报, 2022, 48(12): 3029-3044.
[15] 贾小霞, 齐恩芳, 马胜, 黄伟, 郑永伟, 白永杰, 文国宏. 马铃薯PYL基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2022, 48(10): 2533-2545.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[4] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[5] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[6] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[7] 秦恩华;杨兰芳. 烤烟苗期含硒量和根际硒形态的研究[J]. 作物学报, 2008, 34(03): 506 -512 .
[8] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[9] 张书标;杨仁崔. e-杂交稻若干生物学特性研究[J]. 作物学报, 2003, 29(06): 919 -924 .
[10] 邵瑞鑫;上官周平. 外源一氧化氮供体SNP对受旱小麦光合色素含量和PS II光能利用能力的影响[J]. 作物学报, 2008, 34(05): 818 -822 .