作物学报 ›› 2022, Vol. 48 ›› Issue (11): 2813-2825.doi: 10.3724/SP.J.1006.2022.12069
宋博文1(), 王朝欢1, 赵哲1, 陈淳1, 黄明1, 陈伟雄2, 梁克勤1,*(), 肖武名1,*()
SONG Bo-Wen1(), WANG Chao-Huan1, ZHAO Zhe1, CHEN Chun1, HUANG Ming1, CHEN Wei-Xiong2, LIANG Ke-Qin1,*(), XIAO Wu-Ming1,*()
摘要:
通过对水稻粒形相关性状进行QTL定位和不同位点的聚合效应分析, 为后续辅助育种、粒形相关基因的精细定位奠定基础。在3个不同的季节种植籼稻品种魔大穗与航恢315的192个重组自交系群体, 根据全基因组重测序技术构建的高密度遗传图谱, 利用完备区间作图法(inclusive composite interval mapping, ICIM)定位水稻粒形性状QTL, 并用复合区间作图法(CIM)对结果进行验证。对粒长、粒宽、长宽比、千粒重、谷粒截面积、谷粒周长进行QTL定位, ICIM法和CIM法分别检测到65个和81个QTL, 其中有40个QTL能同时被检测到, 成簇分布于2号、3号、5号、7号、8号、9号染色体上。将其归类为6个QTL簇, 其中Loci5、Loci7、Loci9能被重复定位到, 且控制至少4个性状, 表型贡献率最高分别为15.74%、54.07%、15.89%, 这些位点是后续基因功能研究的候选位点。根据bin标记分型结果将不同子代在各个QTL区间分为航恢315型和魔大穗型, 在重组自交系后代进行聚合效应分析。经处理及数据分析发现聚合增效等位基因数量越多的个体, 其在不同环境对应的表型值也越高。鉴定到携带多个增效等位基因的株系, 可作为育种实践中增效等位基因的供体亲本。
[1] |
Xing Y Z, Zhang Q F. Genetic and molecular bases of rice yield. Annu Rev Plant Biol, 2010, 61: 421-442.
doi: 10.1146/annurev-arplant-042809-112209 |
[2] |
McCouch S R, Kochert G, Yu Z H, Wang Z Y, Khush G S, Coffman W R, Tanksley S D. Molecular mapping of rice chromosomes. Theor Appl Genet, 1988, 76: 815-829.
doi: 10.1007/BF00273666 pmid: 24232389 |
[3] |
Shabir G, Aslam K, Khan A R, Shahid M, Manzoor H, Noreen S, Khan M A, Baber M, Sabar M, Shah S M, Arif M. Rice molecular markers and genetic mapping: current status and prospects. J Integr Agric, 2017, 16: 1879-1891.
doi: 10.1016/S2095-3119(16)61591-5 |
[4] |
Kaur S, Panesar P S, Bera M B, Kaur V. Simple sequence repeat markers in genetic divergence and marker-assisted selection of rice cultivars: a review. Crit Rev Food Sci, 2015, 55: 41-49.
doi: 10.1080/10408398.2011.646363 |
[5] |
Kumar V, Singh A, Mithra S V A, Krishnamurthy S L, Parida S K, Jain S, Tiwari K K, Kumar P, Rao A R, Sharma S K, Khurana J P, Singh N K, Mohapatra T. Genome-wide association mapping of salinity tolerance in rice (Oryza sativa). DNA Res, 2015, 22: 133-145.
doi: 10.1093/dnares/dsu046 |
[6] | 孙佳丽, 彭锐, 彭既明. 水稻数量性状(QTL)定位主要作图群体及统计方法概述. 湖南农业科学, 2016, (7): 120-123. |
Sun J L, Peng R, Peng J M. Over view of rice quantitative traits (QTL) mapping main construction population and statistical methods. Hunan Agric Sci, 2016, (7): 120-123. (in Chinese with English abstract) | |
[7] |
Scott M F, Ladejobi O, Amer S, Bentley A R, Biernaskie J, Boden S A, Clark M, Dell’Acqua M, Dixon L E, Filippi C V, Fradgley N, Gardner K A, Mackay I J, O’Sullivan D, Percival-Alwyn L, Roorkiwal M, Singh R K, Thudi M, Varshney R K, Venturini L, Whan A, Cockram J, Mott R. Multi-parent populations in crops: a toolbox integrating genomics and genetic mapping with breeding. Heredity, 2020, 125: 396-416.
doi: 10.1038/s41437-020-0336-6 |
[8] |
Yang M, Lu K, Zhao F, Xie W, Ramakrishna P, Wang G, Du Q, Liang L, Sun C, Zhao H, Zhang Z, Liu Z, Tian J, Huang X, Wang W, Dong H, Hu J, Ming L, Xing Y, Wang G, Xiao J, Salt D E, Lian X. Genome-wide association studies reveal the genetic basis of ionomic variation in rice. Plant Cell, 2018, 30: 2720-2740.
doi: 10.1105/tpc.18.00375 |
[9] |
Huang R, Jiang L, Zheng J, Wang T, Wang H, Huang Y, Hong Z. Genetic bases of rice grain shape: so many genes, so little known. Trends Plant Sci, 2013, 18: 218-226.
doi: 10.1016/j.tplants.2012.11.001 |
[10] | Peng H, Wang K, Chen Z, Cao Y H, Gao Q, Li Y, Li X X, Lu H W, Du H L, Lu M, Yang X, Liang C Z. MBKbase for rice: an integrated omics knowledgebase for molecular breeding in rice. Nucleic Acids Res, 2020, 48: D1085-D1092. |
[11] |
Wang S K, Li S, Liu Q, Wu K, Zhang J Q, Wang S S, Wang Y, Chen X B, Zhang Y, Gao C X, Wang F, Huang H X, Fu X D. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet, 2015, 47: 949-954.
doi: 10.1038/ng.3352 |
[12] |
Wang Y X, Xiong G S, Hu J, Jiang L, Yu H, Xu J, Fang Y X, Zeng L J, Xu E B, Xu J, Ye W J, Meng X B, Liu R F, Chen H Q, Jing Y H, Wang Y H, Zhu X O, Li J Y, Qian Q. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet, 2015, 47: 944-948.
doi: 10.1038/ng.3346 |
[13] |
Qi Z Y, Xiong L Z. Characterization of a Purine Permease Family Gene OsPUP7 Involved in Growth and Development Control in Rice. J Integr Plant Biol, 2013, 55: 1119-1135.
doi: 10.1111/jipb.12101 |
[14] |
Jeon Y, Lee H, Kim S, Shim K, Kang J, Kim H, Tai T H, Ahn S. Natural variation in rice ascorbate peroxidase gene APX9 is associated with a yield-enhancing QTL cluster. J Exp Bot, 2021, 72: 4254-4268.
doi: 10.1093/jxb/erab155 |
[15] |
Che R H, Tong H N, Shi B H, Liu Y Q, Fang S R, Liu D P, Xiao Y H, Hu B, Liu L C, Wang H R, Zhao M F, Chu C C. Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat Plants, 2015, 2: 15195.
doi: 10.1038/nplants.2015.195 |
[16] |
Duan P G, Ni S, Wang J M, Zhang B L, Xu R, Wang Y X, Chen H Q, Zhu X D, Li Y H. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat Plants, 2015, 2: 15203.
doi: 10.1038/nplants.2015.203 |
[17] |
Fan C H, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112: 1164-1171.
doi: 10.1007/s00122-006-0218-1 |
[18] |
Liu J F, Chen J, Zheng X M, Wu F Q, Lin Q B, Heng Y Q, Tian P, Cheng Z J, Yu X W, Zhou K N, Zhang X, Guo X P, Wang J L, Wang H Y, Wan J M. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nat Plants, 2017, 3: 17043.
doi: 10.1038/nplants.2017.43 |
[19] |
Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 2013, 45: 707-711.
doi: 10.1038/ng.2612 pmid: 23583977 |
[20] | 王朝欢, 宋博文, 余思佳, 肖武名, 黄明. 基于全基因组测序构建水稻RIL群体遗传图谱. 华南农业大学学报, 2021, 42(2): 44-50. |
Wang C H, Song B W, Yu S J, Xiao W M, Huang M. Construction of a genetic map of rice RILs based on whole genome sequencing. J South China Agric Univ, 2021, 42(2): 44-50. (in Chinese with English abstract) | |
[21] |
Huang X H, Feng Q, Qian Q, Zhao Q, Wang L, Wang A H, Guan J P, Fan D L, Weng Q J, Huang T, Dong G J, Sang T, Han B. High-throughput genotyping by whole-genome resequencing. Genome Res, 2009, 19: 1068-1076.
doi: 10.1101/gr.089516.108 |
[22] |
Li H H, Ye G Y, Wang J K. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175: 361-374.
doi: 10.1534/genetics.106.066811 |
[23] |
McCouch S R, Rice G C. Gene nomenclature system for rice. Rice, 2008, 1: 72-84.
doi: 10.1007/s12284-008-9004-9 |
[24] |
Hina A M, Cao Y C, Song S Y, Li S G, Sharmin R A, Elattar M A, Bhat J A, Zhao T J. High-resolution mapping in two RIL populations refines major “QTL hotspot” regions for seed size and shape in soybean (Glycine max L.). Int J Mol Sci, 2020, 21: 1040-1073.
doi: 10.3390/ijms21031040 |
[25] |
李慧慧, 张鲁燕, 王建康. 数量性状基因定位研究中若干常见问题的分析与解答. 作物学报, 2010, 36: 918-931.
doi: 10.3724/SP.J.1006.2010.00918 |
Li H H, Zhang L Y, Wang J K. Analysis and answers to frequently asked questions in quantitative trait locus mapping. Acta Agron Sin, 2010, 36: 918-931. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.00918 |
|
[26] |
Zhao Q A, Huang X H, Lin Z X, Han B. SEG-Map: a novel software for genotype calling and genetic map construction from next-generation sequencing. Rice, 2010, 3: 98-102.
doi: 10.1007/s12284-010-9051-x |
[27] |
苏成付, 赵团结, 盖钧镒. 不同统计遗传模型QTL定位方法应用效果的模拟比较. 作物学报, 2010, 36: 1100-1107.
doi: 10.3724/SP.J.1006.2010.01100 |
Su C F, Zhao T J, Gai Y J. Simulation comparisons of effectiveness among QTL mapping procedures of different statistical genetic models. Acta Agron Sin, 2010, 36: 1100-1107. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.01100 |
|
[28] | 李珊珊. QTL与环境互作的完备区间作图方法研究. 中国农业科学院硕士学位论文, 北京, 2015. |
Li S S. Inclusive Composite Interval Mapping of Quantitative Trait Loci by Environment Interactions. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2015. (in Chinese with English abstract) | |
[29] |
Xie X B, Jin F X, Song M H, Suh J P, Hwang H G, Kim Y G, McCouch S R, Ahn S N. Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa × O. rufipogon cross. Theor Appl Genet, 2008, 116: 613-622.
doi: 10.1007/s00122-007-0695-x |
[1] | 薛皦, 卢东柏, 刘维, 陆展华, 王石光, 王晓飞, 方志强, 何秀英. 优质稻“粤农丝苗”白叶枯病抗性遗传分析及主效QTL qBB-11-1的精细定位[J]. 作物学报, 2022, 48(9): 2210-2220. |
[2] | 黄祎雯, 孙滨, 程灿, 牛付安, 周继华, 张安鹏, 涂荣剑, 李瑶, 姚瑶, 代雨婷, 谢开珍, 陈小荣, 曹黎明, 储黄伟. 对水稻种子耐储性QTL的研究[J]. 作物学报, 2022, 48(9): 2255-2264. |
[3] | 邬腊梅, 杨浩娜, 王立峰, 李祖任, 邓希乐, 柏连阳. 除草型麻地膜在水稻秧田的应用及对水稻的影响[J]. 作物学报, 2022, 48(9): 2315-2324. |
[4] | 陈志青, 冯源, 王锐, 崔培媛, 卢豪, 魏海燕, 张海鹏, 张洪程. 外源钼对水稻产量形成及氮素利用的影响[J]. 作物学报, 2022, 48(9): 2325-2338. |
[5] | 王权, 王乐乐, 朱铁忠, 任浩杰, 王辉, 陈婷婷, 金萍, 武立权, 杨茹, 尤翠翠, 柯健, 何海兵. 离体饲养下HgCl2影响水稻叶片光合特性及其生理机制研究[J]. 作物学报, 2022, 48(9): 2377-2389. |
[6] | 桑国庆, 唐志光, 毛克彪, 邓刚, 王靖文, 李佳. 基于GEE云平台与Sentinel数据的高分辨率水稻种植范围提取——以湖南省为例[J]. 作物学报, 2022, 48(9): 2409-2420. |
[7] | 夏秀忠, 张宗琼, 杨行海, 荘洁, 曾宇, 邓国富, 宋国显, 黄欲晓, 农保选, 李丹婷. 广西水稻地方品种核心种质芽期耐盐性全基因组关联分析[J]. 作物学报, 2022, 48(8): 2007-2015. |
[8] | 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J]. 作物学报, 2022, 48(8): 2016-2027. |
[9] | 刘昆, 黄健, 周沈琪, 张伟杨, 张耗, 顾骏飞, 刘立军, 杨建昌. 穗肥施氮量对不同穗型超级稻品种产量的影响及其机制[J]. 作物学报, 2022, 48(8): 2028-2040. |
[10] | 委刚, 陈单阳, 任德勇, 杨宏霞, 伍靖雯, 冯萍, 王楠. 水稻细长秆突变体sr10的鉴定与基因定位[J]. 作物学报, 2022, 48(8): 2125-2133. |
[11] | 周驰燕, 李国辉, 许轲, 张晨晖, 杨子君, 张芬芳, 霍中洋, 戴其根, 张洪程. 不同类型水稻品种茎叶维管束与同化物运转特征[J]. 作物学报, 2022, 48(8): 2053-2065. |
[12] | 陈驰, 陈代波, 孙志豪, 彭泽群, 贺登美, 张迎信, 程海涛, 于萍, 马兆慧, 宋建, 曹立勇, 程式华, 孙廉平, 占小登, 吕文彦. 水稻典败型隐性核雄性不育突变体ap90的鉴定与基因定位[J]. 作物学报, 2022, 48(7): 1569-1582. |
[13] | 黄福灯, 黄妍, 金泽艳, 贺焕焕, 李春寿, 程方民, 潘刚. 水稻叶片早衰突变体ospls7的生理特性及其基因定位[J]. 作物学报, 2022, 48(7): 1832-1842. |
[14] | 杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选[J]. 作物学报, 2022, 48(7): 1813-1821. |
[15] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
|