欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (10): 1978-1987.doi: 10.3724/SP.J.1006.2021.04226

• 耕作栽培·生理生化 • 上一篇    下一篇

大豆种植密度对玉米/大豆间作系统产量形成的竞争效应分析

任媛媛1(), 张莉2, 郁耀闯1, 张彦军1, 张岁岐3,*()   

  1. 1宝鸡文理学院地理与环境学院 / 陕西省灾害监测与机理模拟重点实验室, 陕西宝鸡 721013
    2潍坊医学院药学院, 山东潍坊 261053
    3中国科学院水利部水土保持研究所 / 黄土高原土壤侵蚀与旱地农业国家重点实验室, 陕西杨凌 712100
  • 收稿日期:2020-10-12 接受日期:2021-01-13 出版日期:2021-10-12 网络出版日期:2021-02-20
  • 通讯作者: 张岁岐
  • 作者简介:E-mail: renyuanyuan0410@163.com
  • 基金资助:
    陕西省科技厅自然科学基础研究项目(2019JQ-895);国家自然科学基金青年科学基金项目(41901025);黄土高原土壤侵蚀与旱地农业国家重点实验室开放基金(A314021402-1712);宝鸡文理学院博士科研启动费项目(ZK2017042)

Competitive effect of soybean density on yield formation in maize/soybean intercropping systems

REN Yuan-Yuan1(), ZHANG Li2, YU Yao-Chuang1, ZHANG Yan-Jun1, ZHANG Sui-Qi3,*()   

  1. 1College of Geography and Environment Engineering, Baoji University of Arts and Sciences / Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulation, Baoji 721013, Shannxi, China
    2School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, China
    3State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau / Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, Shaanxi, China
  • Received:2020-10-12 Accepted:2021-01-13 Published:2021-10-12 Published online:2021-02-20
  • Contact: ZHANG Sui-Qi
  • Supported by:
    Shaanxi National Science Foundation(2019JQ-895);Youth Foundation of National Natural Science Foundation of China(41901025);Open Foundation of State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau(A314021402-1712);PhD Research Startup Foundation of Baoji University of Arts and Sciences(ZK2017042)

摘要:

旱区作物间作系统是优化作物群体质量、提高产量的一种重要种植方式, 从产量构成因子角度探讨作物间作竞争优势机制还鲜见报道。本研究设置3个大豆密度梯度和4个种植比例(玉米与大豆以2∶0、0∶2、2∶2和2∶4间作), 分析间作系统的作物竞争指数、产量构成和最终产量的差异性变化, 探讨间作群体产量增加的作物竞争机制。结果表明, 不同大豆密度和种植比例组合下的间作系统产量提高14%~23%。玉米的实际产量损失大于0, 大豆的实际产量损失小于0。间作系统中玉米的穗重、穗长、穗粗、穗粒重、轴重和千粒重均显著高于单作; 除结荚长度和主茎节间长度外, 间作系统中大豆的单株粒重、单株荚数、单株总粒数、单株有效粒数、主茎节数和百粒重低于单作或与单作间无显著差异。间作系统中玉米的竞争比率大于1, 大豆的竞争比率小于1, 在3种大豆密度下玉米和大豆的竞争比率分别为2.08、1.84、1.68和0.49、0.56、0.63, 表明随着大豆密度的增加, 间作中玉米的竞争比率增加的同时大豆的竞争比率降低。玉米的侵占力大于0, 大豆的侵占力小于0。玉米产量与轴重、千粒重、穗重、穗粒重、穗长、行粒数呈正相关关系, 与秃尖长呈负相关关系。通径分析表明, 直接作用中, 穗粒重对玉米产量的贡献最大(2.18); 间接作用中, 轴重、千粒重通过每穗粒重对玉米产量的贡献较大(1.64和1.58)。综上所述, 大豆间作玉米有间作优势, 间作优势来源于每穗粒重。

关键词: 密度, 间作, 通径分析, 竞争比率

Abstract:

Crop intercropping system in arid areas is an important planting method for optimizing crop population quality and improving crop yield. There are few reports on the mechanism of crop intercropping competitive advantage in terms of yield components. In this study, to explore the mechanism of crop competition for increasing the yield of intercropping systems, three soybean densities and four row proportions (maize and soybean intercropping with 2:0, 0:2, 2:2, and 2:4) were used to investigate the changes of competition index, yield components, and yield of intercropping system. The results showed that the yield of intercropping system with different row proportion and soybean density was increased by 14%-23%. The actual yield loss of maize was greater than 0, the actual yield loss of soybean was less than 0. The ear weight, ear length, ear diameter, grain weight per ear, cob weight, and 1000-grain weight of maize in intercropping systems were significantly higher than those in monoculture. Except pod length and internode length of main stem, the grain weight per plant, pod number per plants, grain number per plant, effective grain number per plants, nodes on main stem, and 100-grain weight of soybean in intercropping systems were lower than that of monoculture. And there was no significant difference between intercropping and monoculture. The competition ratio of maize was greater than one, and the competition ratio of soybean was less than one. The competition ratio of maize and soybean was 2.08, 1.84, 1.68 and 0.49, 0.56, 0.63, respectively, with three soybean densities, indicating that with the increase of soybean density competition ratio of maize increased while competition ratio of soybean decreased in intercrops. The aggressivity of maize was positive value, and that of soybean was less than zero in intercropping system. Maize yield was positively correlated with cob weight, 1000-grain weight, ear weight, grain weight per ear, ear length, and row kernel number negatively correlated with barren tip length. Path analysis revealed that in the direct effect, grain weight per ear contributed the most to maize yield (2.18); in indirect effect, cob weight and 1000-grain weight contributed more to maize yield 1000-grain weight per ear (1.64 and 1.58). In conclusion, maize intercropped with soybean had intercropping advantages that derived from grain weight per ear.

Key words: density, intercropping, path analysis, competition ratio

图1

试验作物生育期内的降雨量和气温"

图2

不同间作方式对土地当量比的影响 MS1、MS2、MS3分别表示玉米与低密度(9株 m-2)、中密度(21株 m-2)、高密度(33株 m-2)的大豆间作。白色、灰色符号分别表示玉米与大豆以2:2、2:4种植比例的间作方式。"

图3

不同间作方式对实际产量损失的影响 处理同图2。白色、灰色符号分别表示玉米与大豆以2:2、2:4种植比例的间作方式。"

表1

不同间作方式对玉米产量构成的影响"

种植比例
Row
proportion
密度
Density
穗重
Ear
weight (g)
穗长
Ear
length (cm)
秃尖长
Barren tip
length (cm)
穗粗
Ear
diameter (cm)
行数
Ear row
number (No.)
行粒数
Row kernel
number (No.)
穗粒重
Grain weight
per ear (g)
轴粗
Cob
diameter (cm)
轴重
Cob
weight (g)
千粒重
Thousand-
grain weight (g)
单作
Single crop
M 215 b 15.6 c 0.40 a 4.68 b 15.3 b 36.8 c 161 c 2.82 c 149 c 306 b
MS1 252 a 16.7 ab 0.49 a 4.87 a 15.5 ab 37.4 bc 184 b 2.92 ab 183 b 328 a
2:2 MS2 252 a 16.5 b 0.41 a 4.85 a 15.6 ab 38.0 ab 186 ab 2.90 b 191 ab 329 a
MS3 256 a 16.8 ab 0.41 a 4.84 a 15.4 ab 37.7 abc 186 ab 2.94 ab 202 a 329 a
MS1 267 a 17.2 a 0.49 a 4.93 a 15.9 a 39.3 a 197 a 2.93 ab 200 a 336 a
2:4 MS2 256 a 16.9 ab 0.48 a 4.96 a 15.7 ab 37.9 abc 187 ab 2.97 a 192 ab 332 a
MS3 256 a 16.6 b 0.43 a 4.82 a 15.8 ab 37.5 bc 189 ab 2.88 bc 199 ab 333 a

表2

不同间作方式对大豆产量构成的影响"

种植比例
Row
proportion
密度
Density
单株粒重
Grain weight
per plant
(g)
单株荚数
Pods per plant
单株总粒数
Grain
number
per plant
单株有效粒数
Effective grain
number per plant
结荚长度
Length of
podding (cm)
主茎节间长度
Internode length (cm)
主茎节数
Nodes on
main stem (No.)
百粒重
Hundred grain
weight
(g)
单作
Single crop
S1 23.5 aA 53.3 aA 105 aA 101 aA 51.0 aB 58.4 bB 16.7 aA 23.7 aA
S2 15.9 bA 36.1 bA 70.0 bA 68.4 bA 54.5 aA 66.9 aA 16.7 aA 24.1 aA
S3 10.8 cA 25.3 cA 47.2 cA 46.1 cA 53.8 aA 66.8 aA 15.3 bA 24.1 aA
MS1 20.2 aA 43.0 aB 85.1 aB 82.2 aB 55.5 aA 63.9 bA 15.2 aB 23.9 aA
2:2 MS2 12.3 bC 28.1 bB 56.2 bB 54.0 bB 54.7 aA 68.9 aA 15.1 aB 24.1 aA
MS3 11.5 bA 25.0 bA 49.8 bA 47.9 bA 54.7 aA 72.1 aA 14.4 bB 24.3 aA
MS1 21.6 aA 48.4 aAB 94.2 aAB 89.4 aAB 51.9 aB 61.7 bAB 15.8 aB 24.0 aA
2:4 MS2 14.0 bB 31.0 bB 60.1 bB 58.5 bB 52.4 aA 66.4 aA 15.5 aB 24.2 aA
MS3 11.2 cA 24.9 cA 48.3 cA 46.3 cA 51.4 aA 68.4 aA 14.6 bB 24.4 aA

图4

不同间作方式对作物侵占力和竞争比率的影响 处理同图2。不同小写字母表示同一种植比例下不同密度梯度间的差异显著, 不同大写字母表示同一密度梯度下不同种植比例之间的差异显著(P < 0.05)。"

表3

玉米产量与产量构成之间的相关性"

性状
Traits
产量
Yield
穗重
Ear
weight
穗长
Ear
length
秃尖长
Barren
tip length
穗粗
Ear
diameter
行数
Ear row
number
行粒数
Row kernel
number
穗粒重
Grain weight
per ear
轴粗
Cob
diameter
轴重
Cob
weight
千粒重
1000-
grain weight
产量Yield 1.00
穗重Ear weight 0.80** 1.00
穗长Ear length 0.71** 0.89** 1.00
秃尖长Barren tip length -0.48** -0.53** -0.43** 1.00
穗粗 Ear diameter -0.01 0.29** 0.38** -0.09 1.00
行数 Ear row number 0.09 0.22** 0.06 -0.08 0.29** 1.00
行粒数 Row kernel number 0.61** 0.76** 0.79** -0.52** 0.10 -0.03 1.00
穗粒重 Grain weight per ear 0.73** 0.66** 0.58** -0.34** 0.09 0.17** 0.51** 1.00
轴粗Cob diameter 0.02 0.06 0.08 -0.06 0.07 0.02 0.09 0.05 1.00
轴重 Cob weight 0.89** 0.81** 0.74** -0.44** 0.09 0.11* 0.63** 0.75** 0.15** 1.00
千粒重 1000-grain weight 0.82** 0.74** 0.69** -0.33** 0.10 0.11 0.58** 0.72** 0.07 0.83** 1.00

表4

间作玉米产量决定因子的通径分析"

自变量
Independent
variable
直接通径系数(直接作用)
Direct path coefficient
(direct action)
间接通径系数(间接作用) Indirect path coefficient (indirect action)
穗重
Ear
weight
穗长
Ear
length
秃尖长
Barren
tip length
行粒数
Ear row
number
穗粒重
Grain weight
per ear
轴重
Cob
weight
千粒重
1000-
grain weight
穗重Ear weight -1.71 -0.11 -0.50 0.39 1.43 0.19 0.04
穗长Ear length -0.13 -1.53 -0.41 0.40 1.26 0.17 0.03
秃尖长Barren tip length 0.94 0.91 0.05 -0.26 -0.75 -0.10 -0.02
行粒数Ear row number 0.51 -1.31 -0.10 -0.48 1.11 0.15 0.03
穗粒重Grain weight per ear 2.18 -1.13 -0.07 -0.32 0.26 0.18 0.04
轴重Cob weight 0.24 -1.39 -0.09 -0.41 0.32 1.64 0.04
千粒重1000-grain weight 0.05 -1.27 -0.09 -0.31 0.29 1.58 0.20
[1] Singh P, Jadhav A, Varshney M. Light interception and light use efficiency in sorghum based intercropping system. J Agrometeorol, 2002, 4:93-96.
[2] Fustec J, Lesuffleur F, Mahieu S, Cliquet J B. Nitrogen rhizodeposition of legumes: a review. Agron Sustain Dev, 2010, 30:57-66.
doi: 10.1051/agro/2009003
[3] Zhu Y, Chen H, Fan J, Wang Y, Yan L, Chen J, Fan J X, Yang S, Hu L, Leung H. Genetic diversity and disease control in rice. Nature, 2000, 406:718-722.
doi: 10.1038/35021046
[4] Banik P, Midya A, Sarkar B K, Ghose S S. Wheat and chickpea intercropping systems in an additive series experiment: advantages and weed smothering. Eur J Agron, 2006, 24:325-332.
doi: 10.1016/j.eja.2005.10.010
[5] Li R, Zhang Z, Tang W, Huang Y, Coulter J A, Nan Z. Common vetch cultivars improve yield of oat row intercropping on the Qinghai-Tibetan plateau by optimizing photosynthetic performance. Eur J Agron, 2020, 117:1-13.
[6] Mao L, Zhang L, Li W, van der Werf W, Sun J, Spiertz H, Li L. Yield advantage and water saving in maize/pea intercrop. Field Crops Res, 2012, 138:11-20.
doi: 10.1016/j.fcr.2012.09.019
[7] Chen P, Du Q, Liu X, Li Z, Sajad H, Lu L, Song C, Wang X, Liu W, Feng Y. Effects of reduced nitrogen inputs on crop yield and nitrogen use efficiency in a long-term maize-soybean relay strip intercropping system. PLoS One, 2017, 12:1-19.
[8] Lithourgidis A S, Vlachostergios D N, Dordas C A, Damalas C A. Dry matter yield, nitrogen content, and competition in pea-cereal intercropping systems. Eur J Agron, 2011. 34:287-294.
doi: 10.1016/j.eja.2011.02.007
[9] 张向前. 不同氮水平下玉米间作大豆和花生的效应研究. 南京农业大学博士学位论文, 江苏南京, 2013.
Zhang X Q. A Study on the Effect of Maize Intercropped with Soybean and Peanut under Different Nitrogen Fertilization Levels. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2013 (in Chinese with English abstract).
[10] Zhang F, Li L. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant Soil, 2003, 248:305-312.
doi: 10.1023/A:1022352229863
[11] 赵建华, 孙建好, 陈亮之, 李伟绮. 玉米行距对大豆/玉米间作作物生长及种间竞争力的影响. 大豆科学, 2019, 38:229-235.
Zhao J H, Sun J H, Chen L Z, Li W Q. Growth and interspecific competition of crops as affected by maize row spacing in soybean/maize intercropping system. Soybean Sci, 2019, 38:229-235 (in Chinese with English abstract).
[12] 赵建华, 孙建好, 李伟绮. 覆膜对玉米‖豌豆作物生产力及种间互作的影响. 干旱地区农业研究, 2020, 38(2):164-169.
Zhao J H, Sun J H, Li W Q. Effect of film mulching on productivity and interspecific interaction in maize-pea intercropping system. Agric Res Arid Areas, 2020, 38(2):164-169 (in Chinese with English abstract).
[13] Undie U, Uwah D, Attoe E. Effect of intercropping and crop arrangement on yield and productivity of late season maize/soybean mixtures in the humid environment of South Southern Nigeria. J Agric Sci, 2012, 4:37-50.
[14] Wang R, Sun Z, Zhang L, Yang N, Feng L, Bai W, Zhang D, Wang Q, Evers J B, Liu Y. Border-row proportion determines strength of interspecific interactions and crop yields in maize/peanut strip intercropping. Field Crops Res, 2020, 253:107819.
doi: 10.1016/j.fcr.2020.107819
[15] 杜进勇, 柴强, 王一帆, 范虹, 胡发龙, 殷文, 李登业. 地上地下互作强度对小麦间作玉米光合特性的影响. 作物学报, 2019, 45:1398-1406.
Du J Y, Chai Q, Wang Y F, Fan H, Hu F L, Yin W, Li D Y. Effect of above- and below-ground interaction intensity on photosynthetic characteristics of wheat-maize intercropping. Acta Agron Sin, 2019, 45:1398-1406 (in Chinese with English abstract).
[16] 任旭灵, 滕园园, 王一帆, 殷文, 柴强. 玉米间作豌豆种间竞争互补对少耕密植的响应. 中国生态农业学报, 2019, 27:860-869.
Ren X L, Teng Y Y, Wang Y F, Yin W, Chai Q. Response of interspecific competition and complementarity of maize/pea intercropping to reduced tillage and high-density planting. Chin J Eco-Agric, 2019, 27:860-869 (in Chinese with English abstract).
[17] 于海秋, 徐克章, 陈学求, 武志海, 姜子涟, 沈秀瑛. 玉米主要抗旱性状的配合力及遗传参数分析: I.产量性状. 玉米科学, 2003, 11(1):12-18.
Yu H Q, Xu K Z, Chen X Q, Wu Z H, Jiang Z L, Shen X Y. Analysis of combining ability and hereditary parameter of major drought resistance traits in maize: I. yield traits. J Maize Sci, 2003, 11(1):12-18 (in Chinese with English abstract).
[18] 鲁珊, 肖荷霞, 毛彩云, 陆建章, 岳金生. 不同类型玉米主要农艺性状的相关和通径分析. 中国农学通报, 2019, 35(19):11-14.
Lu S, Xiao H X, Mao C Y, Lu J Z, Yue J S. Correlation and path analysis of major agronomic traits of maize types. Chin Agric Sci Bull, 2019, 35(19):11-14 (in Chinese with English abstract).
[19] Raza M A, Feng L Y, Werf W V D, Iqbal N. Optimum strip width increases dry matter, nutrient accumulation, and seed yield of intercrops under the relay intercropping system. Food Energy Secur, 2020, 1:1-14.
doi: 10.1002/fes3.1
[20] Gong X, Dang K, Lyu S, Zhao G, Tian L, Luo Y, Feng B. Interspecific root interactions and water use efficiency of intercropped proso millet and mung bean. Eur J Agron, 2020, 115:1-12.
[21] Raza M A, Khalid M H B, Zhang X, Feng L Y, Khan I, Hassan M J, Ahmed M, Ansar M, Chen Y K, Fan Y F. Effect of planting patterns on yield, nutrient accumulation and distribution in maize and soybean under relay intercropping systems. Sci Rep, 2019, 9:4947.
doi: 10.1038/s41598-019-41364-1
[22] Mead R, Willey R W. The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping. Exp Agric, 1980, 16:217-228.
doi: 10.1017/S0014479700010978
[23] Banik P, Sasmal T, Ghosal P K, Bagchi D K. Evaluation of mustard (Brassica compestris var. Toria) and legume intercropping under 1:1 and 2:1 row-replacement series systems. J Agron Crop Sci, 2000, 185:9-14.
doi: 10.1046/j.1439-037X.2000.00388.x
[24] Agegnehu G, Ghizaw A, Sinebo W. Yield performance and land­use efficiency of barley and faba bean mixed cropping in Ethiopian highlands. Eur J Agron, 2006, 25:202-207.
doi: 10.1016/j.eja.2006.05.002
[25] Dhima K V, Lithourgidis A S, Vasilakoglou I B, Dordas C A. Competition indices of common vetch and cereal intercrops in two seeding ratio. Field Crops Res, 2007, 100:249-256.
doi: 10.1016/j.fcr.2006.07.008
[26] 张建华, 马义勇, 王振南, 齐晶. 间作系统中玉米光合作用指标改善的研究. 玉米科学, 2006, 14(4):104-106.
Zhang J H, Ma Y Y, Wang Z N, Qi J. Research on the improvement of photosynthesis indices of maize in the intercropping system. J Maize Sci, 2006, 14(4):104-106 (in Chinese with English abstract).
[27] Ghosh P K. Growth, yield, competition and economics of groundnut/cereal fodder intercropping systems in the semi-arid tropics of India. Field Crops Res, 2004, 88:227-237.
doi: 10.1016/j.fcr.2004.01.015
[28] Feng L, Sun Z, Zheng M, Muchoki M, Zheng J, Yang N, Bai W, Feng C, Zhang Z, Cai Q, Zhang D. Productivity enhancement and water use efficiency of peanut­millet intercropping. Pak J Bot, 2016, 48:1459-1466.
[29] 宋振伟, 齐华, 张振平, 钱春荣, 郭金瑞, 邓艾兴, 张卫建. 春玉米中单909农艺性状和产量对密植的响应及其在东北不同区域的差异. 作物学报, 2012, 38:2267-2277.
Song Z W, Qi H, Zhang Z P, Qian C R, Guo J R, Deng A X, Zhang W J. Effects of plant density on agronomic traits and yield in spring maize Zhongdan 909 and their regional differences in Northeast China. Acta Agron Sin, 2012, 38:2267-2277 (in Chinese with English abstract).
[30] 康彩睿, 谢军红, 李玲玲, 王嘉男, 郭喜军, 彭正凯, 王进斌, Fudjoe S, 王林林. 种植密度与施氮量对陇中旱农区玉米产量及光合特性的影响. 草业学报, 2020, 29(5):141-149.
Kang C R, Xie J H, Li L L, Wang J N, Guo X J, Peng Z K, Wang J B, Fudjoe S, Wang L L. Effects of planting density and nitrogen fertilizer rate on maize yield and photosynthetic characteristics in arid areas of central Gansu, China. Acta Pratac Sin, 2020, 29(5):141-149 (in Chinese with English abstract).
[31] 任媛媛, 王志梁, 王小林, 张岁岐. 黄土塬区玉米大豆不同间作方式对产量和经济收益的影响及其机制. 生态学报, 2015, 12:4168-4177.
Ren Y Y, Wang Z L, Wang X L, Zhang S Q. The effect and mechanism of intercropping pattern on yield and economic benefit on the Loess Plateau. Acta Ecol Sin, 2015, 12:4168-4177 (in Chinese with English abstract).
[32] 朱元刚, 高凤菊, 曹鹏鹏, 王乐政. 种植密度对玉米-大豆间作群体产量和经济产值的影响. 应用生态学报, 2015, 26:1751-1758.
Zhu Y G, Gao F J, Cao P P, Wang L Z. Effect of plant density on population yield and economic output value in maize-soybean intercropping. Chin J Appl Ecol, 2015, 26:1751-1758 (in Chinese with English abstract).
[33] 吕越, 吴普特, 陈小莉, 王玉宝, 赵西宁. 地上部与地下部作用对玉米/大豆间作优势的影响. 农业机械学报, 2014, 45(1):129-136.
Lyu Y, Wu P T, Chen X L, Wang Y B, Zhao X N. Effect of above- and below-ground interaction on maize/soybean intercropping advantage. Trans CSAM, 2014, 45(1):129-136 (in Chinese with English abstract).
[34] 李智, 王宏富, 王钰云, 杨净, 鱼冰星, 黄珊珊. 谷子大豆间作对作物光合特性及产量的影响. 中国农业科技导报, 2020, 22(6):168-175.
Li Z, Wang H F, Wang Y Y, Yang J, Yu B X, Huang S S. Impact of millet and soybean intercropping on their photosynthetic characteristics and yield. J Agric Sci Technol, 2020, 22(6):168-175 (in Chinese with English abstract).
[35] Raza M A, Feng L Y, van der Werf W, Iqbal N, Khan, I., Hassan M J, Ansar M, Chen Y K, Xi Z J, Shi J Y, Ahmed M, Yang F, Yang W. Optimum leaf defoliation: a new agronomic approach for increasing nutrient uptake and land equivalent ratio of maize soybean relay intercropping system. Field Crops Res, 2019, 244:1-11.
[36] 吕越, 吴普特, 陈小莉, 王玉宝, 赵西宁. 玉米/大豆间作系统的作物资源竞争. 应用生态学报, 2014, 25:139-146.
Lyu Y, Wu P T, Chen X L, Wang Y B, Zhao X N. Resource competition in maize/soybean intercropping system. Chin J Appl Ecol, 2014, 25:139-146 (in Chinese with English abstract).
[37] 王一帆, 秦亚洲, 冯福学, 赵财, 于爱忠, 刘畅, 柴强. 根间作用与密度协同作用对小麦间作玉米产量及产量构成的影响. 作物学报, 2017, 43:754-762.
Wang Y F, Qin Y Z, Feng F X, Zhao C, Yu A Z, Liu C, Chai Q. Synergistic effect of root interaction and density on yield and yield components of wheat/maize intercropping system. Acta Agron Sin, 2017, 43:754-762 (in Chinese with English abstract).
[38] 张作为, 史海滨, 李祯, 李仙岳, 闫建文, 李介均. 不同生育时期非充分灌溉对间作作物产量构成因子及收获指数的影响. 干旱地区农业研究, 2016, 34(4):31-37.
Zhang Z W, Shi H B, Li Z, Li X Y, Yan J W, Li J J. The influence of deficit irrigation during different growth periods on the yield components and harvest index of intercropped crops. Agric Res Arid Areas, 2016, 34(4):31-37 (in Chinese with English abstract).
[39] 杨坤, 段正凤, 李福星, 陈芝能. 玉米穗部性状及产量间的通径分析. 农技服务, 2016, 33(1):69-71.
Yang K, Duan Z F, Li F X, Chen Z N. Path analysis between ear traits and yield of maize. Agric Technol Serv, 2016, 33(1):69-71 (in Chinese with English abstract).
[40] 汤华, 黄益勤, 严建兵, 刘宗华, 汤继华, 郑用琏, 李建生. 玉米优良杂交种豫玉22产量性状的遗传分析. 作物学报, 2004, 30:922-926.
Tang H, Huang Y Q, Yan J B, Liu Z H, Tang J H, Zheng Y L, Li J S. Genetic analysis of yield traits with elite maize hybrid—Yuyu 22. Acta Agron Sin, 2004, 30:922-926 (in Chinese with English abstract).
[41] 徐磊, 谭福忠, 师臣, 周长军, 郑巍, 齐国超, 陈刚, 于海峰. 黑龙江省西部干旱区玉米产量与产量构成因素的相关性分析. 黑龙江农业科学, 2020, (7):1-6.
Xu L, Tan F Z, Shi C, Zhou C J, Zheng W, Qi G C, Chen G, Yu H F. Correlation analysis of maize yield and yield components in arid area of western Heilongjiang province. Heilongjiang Agric Sci, 2020, (7):1-6 (in Chinese with English abstract).
[42] 安治良. 夏玉米杂交种农艺性状与产量的相关与通径分析. 安徽农学通报, 2018, 24(17):34-35.
An Z L. Genetic correlation and path analysis of yield and agronomic characteristics of summer maize hybrids. Anhui Agric Sci Bull, 2018, 24(17):34-35 (in Chinese with English abstract).
[43] 梁晓玲, 阿布来提, 冯国俊, 李进, 李铭东, 李维鼎, 高慧慧. 玉米杂交种的产量比较及主要农艺性状的相关和通径分析. 玉米科学, 2001, 9(1):16-20.
Liang X L, ABU L T, Feng G J, Li J, Li M D, Li W D, Gao H H. Yield performance of maize hybrids and analysis of correlation between yield and agronomic characteristics. J Maize Sci, 2001, 9(1):16-20 (in Chinese with English abstract).
[44] 谭巍巍, 石云素, 宋燕春, 杨德光, 王天宇, 黎裕, 王阳, 李永祥, 刘成, 刘志斋. 不同环境下多个玉米穗部性状的QTL分析. 中国农业科学, 2011, 44:233-244.
Tan W W, Shi Y S, Song Y Q, Yang D G, Wang T Y, Li Y, Wang Y, Li Y X, Liu C, Liu Z Z. QTL analysis of ear traits in maize across multiple environments. Sci Agric Sin, 2011, 44:233-244 (in Chinese with English abstract).
[1] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[2] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[3] 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740.
[4] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
[5] 陈云, 刘昆, 张宏路, 李思宇, 张亚军, 韦佳利, 张耗, 顾骏飞, 刘立军, 杨建昌. 机插密度和穗肥减量对优质食味水稻品种籽粒淀粉合成的影响[J]. 作物学报, 2021, 47(8): 1540-1550.
[6] 党科, 宫香伟, 吕思明, 赵冠, 田礼欣, 靳飞, 杨璞, 冯佰利, 高小丽. 糜子/绿豆间作模式下施氮量对绿豆叶片光合特性及产量的影响[J]. 作物学报, 2021, 47(6): 1175-1187.
[7] 王一帆, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 间作小麦光合性能对地上地下互作强度的响应[J]. 作物学报, 2021, 47(5): 929-941.
[8] 郑迎霞, 陈杜, 魏鹏程, 卢平, 杨锦越, 罗上轲, 叶开梅, 宋碧. 种植密度对贵州春玉米茎秆抗倒伏性能及籽粒产量的影响[J]. 作物学报, 2021, 47(4): 738-751.
[9] 董二伟, 王劲松, 武爱莲, 王媛, 王立革, 韩雄, 郭珺, 焦晓燕. 行距和密度对高粱籽粒灌浆、淀粉及氮磷钾累积特征的影响[J]. 作物学报, 2021, 47(12): 2459-2470.
[10] 张金丹, 范虹, 杜进勇, 殷文, 樊志龙, 胡发龙, 柴强. 小麦玉米同步增密有利于优化种间关系而提高间作产量[J]. 作物学报, 2021, 47(12): 2481-2489.
[11] 王飞, 郭彬彬, 孙增光, 尹飞, 刘领, 焦念元, 付国占. 增温增CO2浓度对玉米||花生体系玉米生长发育及产量的影响[J]. 作物学报, 2021, 47(11): 2220-2231.
[12] 覃潇敏, 潘浩男, 肖靖秀, 汤利, 郑毅. 低磷条件下玉米大豆间作对大豆根瘤生长、固氮功能的影响[J]. 作物学报, 2021, 47(11): 2268-2277.
[13] 赵小红,白羿雄,王凯,姚有华,姚晓华,吴昆仑. 种植密度对2个青稞品种抗倒伏及秸秆饲用特性的影响[J]. 作物学报, 2020, 46(4): 586-595.
[14] 金容,李钟,杨云,周芳,杜伦静,李小龙,孔凡磊,袁继超. 密度和株行距配置对川中丘区夏玉米群体光分布及雌雄穗分化的影响[J]. 作物学报, 2020, 46(4): 614-630.
[15] 郑飞娜,初金鹏,张秀,费立伟,代兴龙,贺明荣. 播种方式与种植密度互作对大穗型小麦品种产量和氮素利用率的调控效应[J]. 作物学报, 2020, 46(3): 423-431.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!