欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (10): 1988-2000.doi: 10.3724/SP.J.1006.2021.04233

• 耕作栽培·生理生化 • 上一篇    下一篇

植物生长调节剂S3307对苗期淹水胁迫下大豆生理特性和显微结构的影响

王诗雅1,2(), 郑殿峰1,4,*(), 冯乃杰1,4,*(), 梁喜龙2,3, 项洪涛5, 冯胜杰1, 靳丹2, 刘美玲2, 牟保民2   

  1. 1广东海洋大学滨海农业学院, 广东湛江 524088
    2黑龙江八一农垦大学农学院, 黑龙江大庆 163319
    3黑龙江八一农垦大学植物生长调节剂工程技术研究中心, 黑龙江大庆 163319
    4广东海洋大学深圳研究院, 广东深圳 518108
    5黑龙江省农业科学院耕作栽培研究所, 黑龙江哈尔滨 150086
  • 收稿日期:2020-10-28 接受日期:2021-01-13 出版日期:2021-10-12 网络出版日期:2021-02-20
  • 通讯作者: 郑殿峰,冯乃杰
  • 作者简介:E-mail: wsy1106ok@126.com
  • 基金资助:
    国家自然科学基金项目(31871576);国家“十三五”重点研发计划项目(2019YFD1002205);黑龙江省自然科学基金重点项目(ZD2017003);黑龙江八一农垦大学研究生创新项目(YJSCX2019-Y96)

Effects of uniconazole on physiological characteristics and microstructure under waterlogging stress at seedling stage in soybean

WANG Shi-Ya1,2(), ZHENG Dian-Feng1,4,*(), FENG Nai-Jie1,4,*(), LIANG Xi-Long2,3, XIANG Hong-Tao5, FENG Sheng-Jie1, JIN Dan2, LIU Mei-Ling2, MU Bao-Min2   

  1. 1College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
    2College of Agriculture, Heilongjiang Bayi Agriculture University, Daqing 163319, Heilongjiang, China
    3Plant Growth Regulator Engineering Research Center, Heilongjiang Bayi Agriculture University, Daqing 163319, Heilongjiang, China
    4Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, Guangdong, China
    5Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, Heilongjiang, China
  • Received:2020-10-28 Accepted:2021-01-13 Published:2021-10-12 Published online:2021-02-20
  • Contact: ZHENG Dian-Feng,FENG Nai-Jie
  • Supported by:
    National Natural Science Foundation of China(31871576);National Key Research and Development Program of China(2019YFD1002205);Key Project of Natural Science Foundation of Heilongjiang(ZD2017003);Graduate Innovation Research Projects of Heilongjiang Bayi Agriculture University(YJSCX2019-Y96)

摘要:

为探究苗期(V1期)淹水胁迫对大豆生理特性和显微结构的影响及烯效唑(S3307)的缓解效应, 以‘垦丰14’为材料, 于V1期进行叶面喷施S3307, 并于喷药后5 d进行淹水处理, 对淹水胁迫下大豆叶片和根系生理特性、下胚轴显微结构及S3307的调控效应进行了测定和分析。结果表明, 淹水胁迫会增加大豆下胚轴通气组织数量, 随淹水胁迫时间延长, 通气组织面积逐渐增大; S3307能提高大豆对淹水逆境的适应性, 增加通气组织数量和通气组织的面积, 以应对淹水胁迫对植株造成的缺氧胁迫。与对照(CK)相比, 淹水胁迫会增加叶片和根系中活性氧(ROS)和丙二醛(MDA)含量, 并随胁迫时间延长而逐渐升高。在淹水胁迫前期会诱导酶促抗氧化防御系统活性的增强, 引起渗透调节物质含量的增加, 随胁迫时间延长, 抗氧化酶活性和渗透调节物质含量均呈下降趋势。S3307可促进叶片和根系中抗氧化酶活性的提高, 抑制ROS和MDA含量的过量积累, 并始终维持较高的渗透调节物质含量, 减缓淹水胁迫造成的损伤。

关键词: 淹水胁迫, 大豆, 烯效唑, 生理特性, 显微结构

Abstract:

To explore the effects of waterlogging stress on the physiological characteristics and microstructure of soybean and the mitigation effect of S3307, the physiological characteristics of soybean leaves and roots, the microstructure of hypocotyls and the regulation effect of S3307 were investigated using Kenfeng 14 as the experimental material with S3307 sprayed on the leaves of soybean at V1 stage and five days after waterlogging stress in a pot experiment. The results showed that waterlogging stress increased the number of ventilated tissues in soybean hypocotyl, and the area of ventilated tissues increased gradually with the prolongation of waterlogging stress. S3307 could improve soybean adaptability to waterlogging adversity, increase the number of ventilated tissue and cope with the hypoxia stress by waterlogging stress on plants. Compared with CK, waterlogging stress increased the accumulation of ROS and membrane lipid peroxidation in leaves and roots, and gradually increased with the prolongation of stress time. Meanwhile, the activity of enzymatic antioxidant defense system was enhanced at early stage under waterlogging stress, resulting in an increase in the content of osmotic regulatory substances, which decreased with the prolongation of stress time. S3307 can promote the activity of antioxidant enzyme in leaves and roots, inhibit the excessive accumulation of ROS and MDA content, maintain a high content of osmotic regulation substances, and alleviate the damage caused by waterlogging stress. In summary, there were differences in response to different organs under waterlogging stress. S3307 can alleviate the damage to soybean plants caused by waterlogging stress to a certain extent.

Key words: waterlogging stress, soybean, uniconazole (S3307), physiological characteristics, microstructure

表1

试验设计方案"

处理编号
Treatment code
药剂处理
Pharmaceutical treatment
水分处理
Water treatment
CK 清水喷施 Spray water 适宜土壤水分 Suitable soil moisture
W 清水喷施 Spray water 淹水胁迫 Waterlogging stress
S S3307喷施 Spray S3307 淹水胁迫 Waterlogging stress

表2

S3307对V1期淹水胁迫下大豆地上部形态指标的影响"

指标
Trait
处理
Treatment
淹水天数 Waterlogging days
0 d 1 d 3 d 5 d 7 d
株高
Plant height (cm)
CK 16.32±0.502 a 16.81±0.336 a 20.09±0.360 a 21.31±0.523 a 21.82±0.666 a
W 15.96±0.471 a 16.81±0.756 a 16.91±0.724 b 17.13±0.535 b 17.25±0.544 b
S 12.87±0.694 b 13.22±0.305 b 13.53±0.510 c 13.80±0.317 c 14.05±0.464 c
茎粗
Stem diameter (mm)
CK 2.82±0.078 b 2.86±0.067 b 2.86±0.015 b 2.87±0.031 c 2.94±0.050 b
W 2.84±0.075 b 2.90±0.036 b 2.98±0.042 a 3.02±0.020 b 3.08±0.015 a
S 2.98±0.030 a 3.00±0.038 a 3.04±0.040 a 3.09±0.015 a 3.11±0.025 a
叶面积
Leaf areas (mm2)
CK 3598.50±239.881 a 3689.56±199.213 a 3576.06±208.030 a 3837.35±67.895 a 3956.45±55.776 a
W 3289.21±143.851 ab 3384.60±141.800 ab 3542.72±81.976 a 3505.03±45.032 b 3519.19±33.713 b
S 3129.26±173.781 b 3239.22±108.931 b 3188.17±68.382 b 3232.09±111.343 c 3326.58±87.010 c

图1

S3307对V1期淹水胁迫下大豆下胚轴通气组织数量和面积的影响 处理同表1。"

图2

S3307对V1期淹水胁迫下大豆下胚轴显微结构的影响 1和2为淹水处理0 d的W处理; 3和4为淹水胁迫处理0 d的S处理; 5和6为淹水胁迫处理1 d的W处理; 7和8为淹水胁迫处理1 d的S处理; 9、10和11为淹水胁迫处理3 d的W处理; 12、13和14为淹水胁迫处理3 d的S处理; 15、16和17为淹水胁迫处理5 d的W处理; 18、19和20为淹水胁迫处理5 d的S处理; 21、22和23为淹水胁迫处理7 d的W处理; 24、25和26为淹水胁迫处理7 d的S处理。处理同表1。"

图3

S3307对V1期淹水胁迫下大豆叶片和根系MDA含量的影响 处理同表1。不同小写字母表示同天不同处理间在0.05水平差异显著。"

图4

S3307对V1期淹水胁迫下大豆叶片和根系O2-产生速率和H2O2含量的影响 处理同表1。不同小写字母表示同天不同处理间在0.05水平差异显著。"

图5

S3307对V1期淹水胁迫下大豆叶片和根系酶促抗氧化防御系统的影响 处理同表1。不同小写字母表示同天不同处理间在0.05水平差异显著。"

图6

S3307对V1期淹水胁迫下大豆叶片和根系渗透调节物质的影响 处理同表1。不同小写字母表示同天不同处理间在0.05水平差异显著。"

[1] Kim Y, Seo C W, Khan A L, Mun B G, Shahzad R, Ko J W, Yun B W, Park S K, Lee I J. Exo-ethylene application mitigates waterlogging stress in soybean (Glycine max L.). BMC Plant Biol, 2018, 18:254.
doi: 10.1186/s12870-018-1457-4
[2] Zhou W, Chen F, Meng Y, Chandrasekaran U, Luo X, Yang W, Shu K. Plant waterlogging/flooding stress responses: From seed germination to maturation. Plant Physiol Biochem, 2020, 148:228-236.
doi: 10.1016/j.plaphy.2020.01.020
[3] 成添, 胡继超, 李映雪, 谢晓金, 李永秀. 淹涝胁迫对水稻植株叶片光合性能的影响. 气象与环境科学, 2019, 42(1):26-33.
Cheng T, Hu J C, Li Y X, Xie X J, Liu Y X. Effects of flooding stress on leave's photosynthetic capability of paddy rice. Meteorol Environ Sci, 2019, 42(1):26-33 (in Chinese with English abstract).
[4] Yin X, Komatsu S. Comprehensive analysis of response and tolerant mechanisms in early-stage soybean at initial-flooding stress. J Proteomics, 2017, 169:225-232.
doi: 10.1016/j.jprot.2017.01.014
[5] Hasanuzzaman M, Mahmud J A, Nahar K, Anee T I, Fujita M. Responses, adaptation, and ROS metabolism in plants exposed to waterlogging stress. In: Khan M I R, Khan N A, eds. Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress. Berlin, Germany: Springer, 2017. pp 257-281.
[6] Chapman J M, Muhlemann J K, Gayomba S R, Muday G K. RBOH-dependent ROS synthesis and ROS scavenging by plant specialized metabolites to modulate plant development and stress responses. Chem Res Toxicol, 2019, 32:370-396.
doi: 10.1021/acs.chemrestox.9b00028 pmid: 30781949
[7] Wang X, Komatsu S. Proteomic approaches to uncover the flooding and drought stress response mechanisms in soybean. J Proteomics, 2018, 172:201-215.
doi: S1874-3919(17)30377-9 pmid: 29133124
[8] 李秀芬, 郭昭滨, 朱海霞, 王萍, 宫丽娟, 姜丽霞, 赵慧颖. 黑龙江省大豆生长季旱涝时序特征及其对产量的影响. 应用生态学报, 2020, 31:1223-1232.
Li X F, Guo Z B, Zhu H X, Wang P, Gong L J, Jiang H X, Zhao H Y. Time-series characteristics of drought and flood in spring soybean growing season and its effect on soybean yield in Heilongjiang. Chin J Appl Ecol, 2020, 31:1223-1232 (in Chinese with English abstract).
[9] 姜丽霞, 朱海霞, 闫敏慧, 闫平, 王晾晾, 韩俊杰, 高明, 吕佳佳, 纪仰慧, 王萍. 黑龙江省主汛期异常降水变化及其与洪涝的关系研究. 灾害学, 2019, 34(2):1-6.
Jiang L X, Zhu H X, Yan M H, Yan P, Wang L L, Han J J, Gao M, Lyu J J, Ji Y H, Wang P. Changes of abnormal rainfall and relationship between precipitation and flood during main flood seasons of Heilongjiang province. J Catastrophol, 2019, 34(2):1-6 (in Chinese with English abstract).
[10] 张洪鹏, 张盼盼, 李冰, 李东, 刘文彬, 冯乃杰, 郑殿峰. 烯效唑对淹水胁迫下大豆农艺性状及生理生化指标的影响. 中国油料作物学报, 2017, 39:655-663.
Zhang H P, Zhang P P, Li B, Li D, Liu W B, Feng N J, Zheng D F. Effects of uniconazole on alleviation of waterlogging stress in soybean. Chin J Oil Crop Sci, 2017, 39:655-663 (in Chinese with English abstract).
[11] 于奇, 冯乃杰, 王诗雅, 左官强, 郑殿峰. S3307对始花期和始粒期淹水绿豆光合作用及产量的影响. 作物学报, 2019, 45:1080-1089.
Yu Q, Feng N J, Wang S Y, Zuo G Q, Zheng D F. Effects of S3307 on the photosynthesis and yield of mung bean at R1 and R5 stages under waterlogging stress. Acta Agron Sin, 2019, 45:1080-1089 (in Chinese with English abstract).
[12] 张洪鹏, 张盼盼, 李冰, 李东, 刘文彬, 冯乃杰, 郑殿峰. 烯效唑对淹水胁迫下大豆叶片光合特性及产量的影响. 中国油料作物学报, 2016, 38:611-618.
Zhang H P, Zhang P P, Li B, Li D, Liu W B, Feng N J, Zheng D F. Effects of uniconazole on leaf photosynthetic characteristics and yield of soybean under waterlogging stress. Chin J Oil Crop Sci, 2016, 38:611-618 (in Chinese with English abstract).
[13] 王景伟, 黄玉兰, 金喜军, 张玉先. 干旱胁迫下烯效唑拌种对芸豆保护酶活性及渗透调节物质的影响. 江苏农业科学, 2017, 45(12):59-61.
Wang J W, Huang Y L, Jin X J, Zhang Y X. Effects of uniconazole seed dressing on the activities of protective enzymes and osmotic adjustment substances of kidney bean under drought stress. Jiangsu Agric Sci, 2017, 45(12):59-61 (in Chinese with English abstract).
[14] 杨崇庆, 曹秀霞, 张炜, 陆俊武, 钱爱萍, 剡宽将. 叶面喷施烯效唑对旱地胡麻抗倒性和产量性状的影响. 干旱地区农业研究, 2017, 35(3):49-52.
Yang C Q, Cao X X, Zhang W, Lu J W, Qian A P, Yan K J. Effect of uniconazole foliage spraying on lodging resistance and yield traits of oil-flax in arid land. Agric Res Arid Areas, 2017, 35(3):49-52 (in Chinese with English abstract).
[15] 刘春娟, 宋双伟, 冯乃杰, 郑殿峰, 宫香伟, 孙秋霞, 邢豹, 高杰, 吕金莹. 干旱胁迫及复水条件下烯效唑对大豆幼苗形态和生理特性的影响. 干旱地区农业研究, 2016, 34(6):222-227.
Liu C J, Song S W, Feng N J, Zheng D F, Gong X W, Sun Q X, Xing B, Gao J, Lyu J Y. Effects of plant growth regulator S3307 on morphological and physiological characteristics of soybean seedling under drought stress and rewater treatment. Agric Res Arid Areas, 2016, 34(6):222-227 (in Chinese with English abstract).
[16] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 167-169, 184-185.
Li H S. Principles and Techniques of Plant Physiological Biochemical Experimental. Beijing: Higher Education Press, 2000. pp 167-169, 184-185(in Chinese).
[17] 高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006. pp 221-224.
Gao J F. Experimental Instruction in Plant Physiology. Beijing: Higher Education Press, 2006. pp 221-224(in Chinese).
[18] Chakrabarty D, Datta S K J A P P, Micropropagation of gerbera: lipid peroxidation and antioxidant enzyme activities during acclimatization process. Physiol Plant, 2008, 30:325-331.
[19] 张宪政. 作物生理研究法. 北京: 中国农业出版社, 1992. pp 201-202.
Zhang X Z. Crop Physiology Research Method. Beijing: China Agriculture Press, 1992. pp 201-202(in Chinese).
[20] 左官强, 王诗雅, 王新欣, 梁喜龙, 余明龙, 吴琼, 冯乃杰, 郑殿峰. 基于Planteye F500三维定量研究淹水胁迫下烯效唑对大豆的生长调控. 中国油料作物学报, 2020, 42:271-276.
Zuo G Q, Wang S Y, Wang X X, Liang X L, Yu M L, Wu Q, Feng N J, Zheng D F. 3D quantification on regulatory effects of uniconazole on soybean growth under flooding stress based on Planteye F500. Chin J Oil Crop Sci, 2020, 42:271-276 (in Chinese with English abstract).
[21] 左官强, 王诗雅, 冯乃杰, 王新欣, 牟保民, 郑殿峰. 烯效唑对淹水胁迫下大豆光合生理及表型的影响. 生态学杂志, 2019, 38:2702-2708.
Zuo G Q, Wang S Y, Feng N J, Wang X X, Mou B M, Zheng D F. Effects of uniconazole on photosynthetic physiology and phenotype of soybean under flooding stress. Chin J Ecol, 2019, 38:2702-2708 (in Chinese with English abstract).
[22] 田一丹, 韩亮亮, 周琴, 张国正, 邢邯, 江海东. 大豆对渍水的生理响应: I. 光合特性和糖代谢. 中国油料作物学报, 2012, 34:262-267.
Tian Y D, Han L L, Zhou Q, Zhang G Z, Xing H, Jiang H D. Physiolofical response of soybean to waterlogging: I. Photosynthetic characteristics and sugar metabolism. Chin J Oil Crop Sci, 2012, 34:262-267 (in Chinese with English abstract).
[23] Takahashi H, Qi X H, Shimamura S, Yanagawa A, Hiraga S, Nakazono M. Sucrose supply from leaves is required for aerenchymatous phellem formation in hypocotyl of soybean under waterlogged conditions. Ann Bot, 2018, 121:723-732.
doi: 10.1093/aob/mcx205
[24] 王群, 赵向阳, 刘东尧, 闫振华, 李鸿萍, 董朋飞, 李潮海. 淹水弱光复合胁迫对夏玉米根形态结构、生理特性和产量的影响. 中国农业科学, 2020, 53:3479-3495.
Wang Q, Zhao X Y, Liu D R, Yan Z H, Li H P, Dong P F, Li C H. Root morphological, physiological traits and yield of maize under waterlogging and low light stress. Sci Agric Sin, 2020, 53:3479-3495 (in Chinese with English abstract)
[25] Park S U, Lee C J, Kim S E, Lim Y H, Lee H U, Nam S S, Kim H S, Kwak S S. Selection of flooding stress tolerant sweetpotato cultivars based on biochemical and phenotypic characterization. Plant Physiol Biochem, 2020, 155:243-251.
doi: 10.1016/j.plaphy.2020.07.039
[26] 高兰阳, 蔡庆生, 王庆亚, 沈益新. 一年生野生大豆根系及胚轴皮层通气组织发育观察. 西北植物学报, 2008, 28:2380-2384.
Gao L Y, Cai Q S, Wang Q Y, Shen Y X. Development of aerenchyma in root and hypocotyl of annual wild soybean (Glycine soja Sieb. et Zucc.). Acta Bot Boreali-Occident Sin, 2008, 28:2380-2384 (in Chinese with English abstract).
[27] 王寒, 高敏, 金梦灿, 郜红建. 淹水胁迫对玉米苗期根系形态与养分吸收累积的影响. 安徽农业大学学报, 2018, 45:538-544.
Wang H, Gao M, Jin M C, Gao H J. Influences of waterlogging stress on morphology and nutrient uptake of maize roots at seedling stage. J Anhui Agric Univ, 2018, 45:538-544 (in Chinese with English abstract).
[28] 宋晓慧, 张智杰, 李春光, 张代平, 韩英鹏, 李冬梅, 李文滨. 淹水时间对不同耐涝性大豆品种苗期根部形态和叶部生理指标的影响. 大豆科学, 2014, 33:70-72.
Song X H, Zhang Z J, Li C G, Zhang D P, Han Y P, Li D M, Li W B. Effect of waterlogging time on root morphology and foliar physiological indexes of soybean varieties. Soybean Sci, 2014, 33:70-72 (in Chinese with English abstract).
[29] 余燕, 张雅婷, 赵雪, 徐婷, 姜玉晴, 刘廷府, 周可金. H2O2浸种对低温胁迫下花生种子萌发的调控作用. 中国油料作物学报, 2020, 42:860-868.
Yu Y, Zhang Y T, Zhao X, Xu T, Jiang Y Q, Liu T F, Zhou K J. Effects of seed soaking with H2O2 on seed germination of peanut under low temperature conditions. Chin J Oil Crop Sci, 2020, 42:860-868 (in Chinese with English abstract).
[30] 顾诗云, 杨飞, 张毅敏, 张志伟, 谢科夫, 管祥洋. 淹水胁迫对菖蒲生理特性及其根际细菌群落特征的影响. 生态与农村环境学报, 2020, 36:488-498.
Gu S Y, Yang F, Zhang Y M, Zhang Z W, Xie K F, Guan X Y. Effects of flooding stress on physiological characteristics and rhizosphere bacterial community of Acorus calamus. J Ecol Rural Environ, 2020, 36:488-498 (in Chinese with English abstract).
[31] 潘雅楠, 沈永宝, 尹中明, 宋明, 金政. 淹水胁迫对3个基因型东方杉幼苗生理生化的影响. 安徽农业大学学报, 2020, 47:82-87.
Pan Y N, Shen Y B, Yin Z M, Song M, Jin Z. Effects of waterlogging stress on physiology and biochemistry of three genotypes of Taxodium mucronatum × Cryptomera fortunei. J Anhui Agric Univ, 2020, 47:82-87 (in Chinese with English abstract).
[32] 齐玉军, 方传文, 邢兴华, 徐泽俊, 王晓军, 孙东雷, 卞能飞, 王幸. 外源二乙基二硫代氨基甲酸钠对花期淹水大豆根系抗氧化系统的影响. 中国油料作物学报, 2019, 41:577-587.
Qi Y J, Fang C W, Xing X H, Xu Z J, Wang X J, Sun D L, Bian N F, Wang X. Effect of exogenous sodium diethyldithiocarbamate on antioxidation system in soybean root on waterlogging at flowering stage. Chin J Oil Crop Sci, 2019, 41:577-587 (in Chinese with English abstract).
[33] 李琬, 项洪涛, 何宁, 王雪扬, 王彤彤, 王曼力, 唐晓东, 李一丹. 烯效唑对苗期低温胁迫下红小豆产量及茎部抗逆生理指标的影响. 干旱地区农业研究, 2020, 38(2):199-206.
Li W, Xiang H T, He N, Wang X Y, Wang T T, Wang M L, Tang X D, Li Y D. Effects of uniconazole on yield and stem anti-stress physiology of adzuki bean under low temperature stress during seedling stage. Agric Res Arid Areas, 2020, 38(2):199-206 (in Chinese with English abstract).
[34] 项洪涛, 李琬, 何宁, 王雪扬, 郑殿峰, 王彤彤, 梁晓艳, 唐晓东, 李一丹. 苗期低温胁迫下烯效唑对红小豆根系抗寒生理及产量的影响. 草业学报, 2019, 28(7):92-102.
Xiang H T, Li W, He N, Wang X Y, Zheng D F, Wang T T, Liang X Y, Tang X D, Li Y D. Effects of S3307 on physiology of chilling resistance in root and yield of adzuki bean under low temperature stress during seeding stage. Acta Pratac Sin, 2019, 28(7):92-102 (in Chinese with English abstract).
[35] 孟娜, 魏胜华. 喷施烯效唑调控大豆根部解剖结构缓解盐逆境伤害. 生态学杂志, 2018, 37:3605-3609.
Meng N, Wei S H. Uniconazole spraying ameliorates salt injury to soybean seedlings by regulating anatomical structure in roots. Chin J Ecol, 2018, 37:3605-3609 (in Chinese with English abstract).
[36] Angelos E, Brandizzi F. NADPH oxidase activity is required for ER stress survival in plants. Plant J, 2018, 96:1106-1120.
doi: 10.1111/tpj.2018.96.issue-6
[37] Li C, Han Y, Hao J, Qin X, Liu C, Fan S. Effects of exogenous spermidine on antioxidants and glyoxalase system of lettuce seedlings under high temperature. Plant Signal Behav, 2020, 15:1824697.
doi: 10.1080/15592324.2020.1824697
[38] Ahmed S, Nawata E, Hosokawa M, Domae Y, Sakuratani T J P. Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging. Plant Sci, 2002, 163:117-123.
doi: 10.1016/S0168-9452(02)00080-8
[39] Garcia N, Dasilva C J, Cocco K L T, Pomagualli D, De Oliveira F K, Silva J V L D, De Oliveira A C B, Amarante L D J E, Botany E. Waterlogging tolerance of five soybean genotypes through different physiological and biochemical mechanisms. Environ Exp Bot, 2020, 172:103975.
doi: 10.1016/j.envexpbot.2020.103975
[40] 徐涛, 才硕, 时红, 时元智, 谢亨旺, 刘方平, 梁举. 拔节期淹水胁迫对水稻叶片酶活性及产量的影响. 中国农村水利水电, 2020, (11):89-93.
Xu T, Cai S, Shi H, Shi Z Y, Xie H W, Liu F P, Liang J. The effects of different flooding stresses on enzymatic activity of the blade and the yidld of tice at elongation stage. Chin Rural Water & Hydropower, 2020, (11):89-93 (in Chinese with English abstract).
[41] Liu Y, Zhao Z, Si J, Di C, Han J, An L. Brassinosteroids alleviate chilling-induced oxidative damage by enhancing antioxidant defense system in suspension cultured cells of Chorispora bungeana. Plant Growth Regul, 2009, 59:207-214.
doi: 10.1007/s10725-009-9405-9
[42] 白爱兴, 鲁晓燕. 钙和钙效应剂对NaCl胁迫下酸枣幼苗抗氧化系统及渗透调节物质含量的影响. 植物生理学报, 2020, 56:1910-1920.
Bai A X, Lu X Y. Effect of calcium and calcium effectors on antioxidant system and osmotic adjustment substances content of sour jujube (Ziziphus jujuba var. spinosa) seedlings under NaCl stress. Acta Phytophysiol Sin, 2020, 56:1910-1920 (in Chinese with English abstract).
[43] 张海燕, 汪宝卿, 冯向阳, 李广亮, 解备涛, 董顺旭, 段文学, 张立明. 不同时期干旱胁迫对甘薯生长和渗透调节能力的影响. 作物学报, 2020, 46:1760-1770.
Zhang H Y, Wang B Q, Feng X Y, Li G L, Xie B T, Dong S X, Duan W X, Zhang L M. Effects of drought treatments at different growth stages on growth and the activity of osmotic adjustment in sweet potato. Acta Agron Sin, 2020, 46:1760-1770 (in Chinese with English abstract).
[44] 姜颖, 左官强, 王晓楠, 张晓艳, 韩承伟, 韩喜财, 曹焜, 赵越, 孙宇峰, 冯乃杰. 烯效唑浸种对干旱胁迫下工业大麻幼苗形态、渗透调节物质及内源激素的影响. 干旱地区农业研究, 2020, 38(3):74-80.
Jiang Y, Zuo G Q, Wang X N, Zhang X Y, Han C W, Han X C, Cao K, Zhao Y, Sun Y F, Feng N J. Effects of soaking seeds with uniconazole on morphology, osmotic regulators and endogenous hormones of industrial hemp. Agric Res Arid Areas, 2020, 38(3):74-80 (in Chinese with English abstract).
[45] 项洪涛, 李琬, 郑殿峰, 王诗雅, 何宁, 王曼力, 杨纯杰. 幼苗期淹水胁迫及喷施烯效唑对小豆生理和产量的影响. 作物学报, 2021, 47:494-506.
Xiang H T, Li W, Zheng D F, Wang S Y, He N, Wang M L, Yang C J. Effects of uniconazole on the physiology and yield of adzuki bean under waterlogging stress in seedling stage. Acta Agron Sin, 2021, 47:494-506 (in Chinese with English abstract).
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528.
[14] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[15] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!