欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (3): 662-671.doi: 10.3724/SP.J.1006.2023.22012

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻早衰基因ESL8的遗传与定位

朱晓彤1,2(), 叶亚峰2, 郭均瑶2, 杨惠杰2, 王紫瑶1, 詹玥2, 吴跃进2, 陶亮之2, 马伯军1, 陈析丰1,*(), 刘斌美2,*()   

  1. 1浙江师范大学化学与生命科学学院, 浙江金华 321004
    2中国科学院合肥物质科学研究院, 安徽合肥 230031
  • 收稿日期:2022-03-03 接受日期:2022-07-21 出版日期:2023-03-12 网络出版日期:2022-08-19
  • 通讯作者: 陈析丰,刘斌美
  • 作者简介:E-mail: 1634453295@qq.com
  • 基金资助:
    安徽省自然科学基金项目(2108085MC99);合肥市“借转补”科技专项(J2020G45);安徽省科技重大专项(202003c08020006);浙江省自然科学基金重大项目(LD19C130001)

Heredity and fine mapping of an early-senescence leaf gene ESL8 in rice

ZHU Xiao-Tong1,2(), YE Ya-Feng2, GUO Jun-Yao2, YANG Hui-Jie2, WANG Zi-Yao1, ZHAN Yue2, WU Yue-Jin2, TAO Liang-Zhi2, MA Bo-Jun1, CHEN Xi-Feng1,*(), LIU Bin-Mei2,*()   

  1. 1College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
    2Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei 230031, Anhui, China
  • Received:2022-03-03 Accepted:2022-07-21 Published:2023-03-12 Published online:2022-08-19
  • Contact: CHEN Xi-Feng,LIU Bin-Mei
  • Supported by:
    Natural Science Foundation of Anhui Province(2108085MC99);Hefei Science and Technology Project(J2020G45);Anhui Science Technology Major Project(202003c08020006);Natural Science Foundation of Zhejiang Province(LD19C130001)

摘要:

早衰突变体是研究植物细胞凋亡分子机制的重要遗传材料。从水稻“科辐粳7号”诱变库中, 筛选到一个早衰突变体esl8 (early senescence leaf 8)。与野生型相比, 该突变体叶片在抽穗期表现出严重的早衰, 其株高、分蘖数、穂长、每穗粒数以及结实率, 在成熟期均极显著降低, 但千粒重无显著变化; 该突变体叶片的叶绿素含量显著下降, 组织化学染色进一步检测到细胞死亡、活性氧与丙二醛过量积累。遗传分析发现, 该突变体的早衰表型受单隐性核基因控制。采用图位克隆技术将esl8基因精细定位在12号染色体的FM12-14和FM12-15分子标记之间, 物理距离为359 kb。候选基因预测与PCR测序结果表明, esl8基因是OsSL/ELL1基因的一个新等位变异, 突变位点发生在该基因的保守区域。以上结果为进一步研究该基因编码蛋白的功能及其早衰分子机制提供理论依据。

关键词: 早衰, 水稻, esl8, 细胞凋亡, 定位克隆

Abstract:

Early-senescence mutants are genetic materials important for the researches on the molecular mechanism of cell apoptosis in plants. An early-senescence mutant named esl8 (early senescence leaf 8) has been screened from the mutagenesis library of rice variety Kefujing 7. Compared with the wild-type control, the leaves of the esl8 mutant displays a severe of early-senescence phenotype at heading stage in rice, and its agronomic traits, including plant height, tiller number, grain length, grains per panicle, and seed setting rate, were obviously impaired except for the 1000-grain weight. In leaves of the esl8 mutant, the chlorophyll content was abnormally decreased, and the programmed cell death accompanied by excessive accumulation of the reactive oxygen species and the malondialdehyde were detected by histochemical staining. Genetic analysis indicated that the early-senescence phenotype of the esl8 mutant was controlled by a recessive nuclear gene. Based on the strategy of map-based cloning, the esl8 gene was finely mapped into a 359-kb region flanking by two molecular markers (FM12-14 and FM12-15) on chromosome 12. The prediction and verification of candidate genes by PCR sequencing confirmed that esl8 was a new variational allele of the OsSL/ELL1 gene. The sequence of mutation esl8 occurred in the conserved region of the corresponding wild-type gene. Our results provide a theoretical basis for further study on the biofunction and molecular mechanism of the protein encoding by ESL8 in early-senescence process.

Key words: early senescence, rice, esl8, cell apoptosis, mapping and cloning

表1

水稻ESl8基因精细定位分子标记的引物序列"

分子标记
Molecular marker
正向序列
Forward sequence (5'-3')
反向序列
Reverse sequence (5'-3')
LSR6 TCTTGCCTCGCTAGGGTTAG CCCACGTTTCTCTTGTCCTC
LSR14 TCCACCACTCTGACGTCTACTAACC CTGCGGGAAGTGTAGGAGAAGC
FM12-1 CCCAGTTTTGCTTAGCCTCTT TTTTGGCATACATCGATTGG
FM12-3 GCCATTTTTAGACGTGGCAAT TTTGCCACTTTTAGTTTTATCGTTT
FM12-7 GGCTGTTGACCATGCTGTAA TGAAGTCCTAGATGCACTTTTTCA
FM12-9 ACATCAGCAGCCATGGTTTT TTTCAACGGTAAAGTCATGTGG
FM12-11 ACATTATGGTTCACGCATGG CGGGACCGTAGGTAAAAAGG
FM12-14 GCCGATGAAACTCCGATAGC TTATCGTGTGAGGGGGAAAG
FM12-15 ACATCCGCGCTTTTCTTTT TAACAAGGGGCAAAGTGGTC

表2

水稻ESL8基因PCR扩增的引物序列"

引物名称
Primer name
正向序列
Forward sequence (5'-3')
反向序列
Reverse sequence (5'-3')
ESL8-1 TCTTGCCTCGCTAGGGTTAG CCCACGTTTCTCTTGTCCTC
ESL8-2 TCCACCACTCTGACGTCTACTAACC CTGCGGGAAGTGTAGGAGAAGC
ESL8-3 CCCAGTTTTGCTTAGCCTCTT TTTTGGCATACATCGATTGG
ESL8-4 GCCATTTTTAGACGTGGCAAT TTTGCCACTTTTAGTTTTATCGTTT

图1

水稻esl8突变体的早衰表型及理化特征 A: 苗期的植株表型; B: 抽穗期的植株表型; C: 抽穗期的单个分蘖表型; D: 台盼蓝染色; E: DAB染色; F: NBT染色; G: SOD酶活检测; H: MDA含量测定; I: 叶绿素含量测定。WT: 野生型对照科辐粳7号; esl8: 早衰突变体; 标尺为10 cm; **表示突变体与野生型对照之间存在显著性差异(P < 0.01)。"

表3

水稻突变体esl8与野生型对照的农艺性状统计"

材料名称
Material name
株高
Plant height
(cm)
穂长
Panicle length (cm)
有效分蘖数
Effective
panicle number
每穗粒数
Grain number
per panicle
结实率
Seed-setting
rate (%)
千粒重
1000-grain
weight (g)
WT 101.18±2.93 14.87±0.86 9.00±1.15 206.00±18.00 81.27±2.18 26.74±0.41
esl8 89.88±1.03** 13.69±0.56** 7.00±0.58** 129.00±10.00** 58.45±2.33** 25.98±0.33

图2

水稻ESL8基因定位与测序分析 A: ESL8基因初定位的物理图谱; B: ESl8基因精细定位的遗传图谱; n为定位分析所用到F2突变单株数, 标记下的数字为该标记检测到的交换事件数; C: ESL8基因突变位点的测序结果, WT为野生型对照科辐粳7号, ESl8为早衰突变体, 红框标出了TGCCCC碱基缺失与GCG碱基插入的位置。"

图3

ESL8的蛋白序列比对与系统进化树分析 A: esl8及其野生型基因的编码蛋白序列比对; B: ESL8及其拟南芥与水稻同源蛋白的系统发育树; C: ESL8及其同源蛋白的保守序列比对。"

[1] 李可, 禹晴, 徐云姬, 杨建昌. 水稻叶片早衰突变体的农艺与生理性状研究进展. 中国水稻科学, 2020, 34: 104-114.
doi: 10.16819/j.1001-7216.2020.9078
Li K, Yu Q, Xu Y J, Yang J C. Research progress in agronomic and physiological traits of early senescence mutant in rice. Chin J Rice Sci, 2020, 34: 104-114. (in Chinese with English abstract)
[2] 刘林, 张迎信, 刘群恩, 李枝, 曹立勇. 植物类病变突变体及其信号传导途径. 核农学报, 2014, 10: 1811-1818.
Liu L, Zhang Y X, Liu Q E, Li Z, Cao L Y. Plant lesion mimic mutants and their signaling pathways. Acta Agric Nucl Sin, 2014, 10: 1811-1818. (in Chinese with English abstract)
[3] 马梓铭, 白慧娇, 金永梅, 吴涛, 朴日花, 马艳, 姜文洙, 都兴林. 水稻早衰突变体es-h的鉴定、遗传分析与基因定位. 分子植物育种, 2021, 19: 4550-4556.
Ma Z M, Bai H J, Jin Y M, Wu T, Piao R H, Ma Y, Jiang W Z, Du X L. Identification, genetic analysis and gene mapping of early senescence mutant es-h in rice. Mol Plant Breed, 2021, 19: 4550-4556. (in Chinese with English abstract)
[4] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位. 作物学报, 2022, 48: 1389-1400.
doi: 10.3724/SP.J.1006.2022.12035
Zheng C K, Zhou G H, Niu S L, He Y N, Sun W, Xie X Z. Phenotypic characterization and gene mapping of an early senescence leaf H5 (esl-H5) mutant in rice (Oryza sativa L.). Acta Agron Sin, 2022, 48: 1389-1400 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.12035
[5] 肖艳华, 陈新龙, 杜丹, 邢亚迪, 张天泉, 祝毛迪, 刘明明, 朱小燕, 桑贤春, 何光华. 水稻叶片淀粉积累及早衰突变体esl9的鉴定与基因定位. 作物学报, 2017, 43: 473-482.
doi: 0.3724/SP.J.1006.2017.00473
Xiao Y H, Chen X L, Du D, Xing Y D, Zhang T Q, Zhu M D, Liu M M, Zhu X Y, Sang X C, He G H. Identification and gene mapping of starch accumulation and early senescence leaf mutant esl9 in rice. Acta Agron Sin, 2017, 43: 473-482. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.00473
[6] 刘思辰, 曹晓宁, 王海岗, 王君杰, 陈凌, 田翔, 秦慧彬, 乔治军. 植物类病变突变体的研究进展. 山西农业科学, 2020, 48: 272-276.
Liu S C, Cao X Y, Wang H L, Wang J J, Chen L, Tian X, Qin H B, Qiao Z J. Research progress of plant lesion mimic mutants. J Shanxi Agric Sci, 2020, 48: 272-276. (in Chinese with English abstract)
[7] Ma J, Wang Y F, Ma X D, Meng L Z, Jing R N, Wang F, Wang S, Cheng Z J, Zhang X, Zhang L, Wang J L, Wang J, Zhao Z C, Guo X P, Lin Q B, Wu F Q, Zhu S S, Wu C Y, Ren Y L, Lei C L, Zhai H Q, Wan J M. Disruption of gene SPL35, encoding a novel CUE domain-containing protein, leads to cell death and enhanced disease response in rice. Plant Biotechnol J, 2019, 17: 1679-1693.
doi: 10.1111/pbi.13093
[8] Shirsekar G S, Vega-Sanchez M E, Bordeos A, Baraodan M, Swisshelm A, Fan J B, Park C H, Leung H, Wang G L. Identification and characterization of suppressor mutants of spl11-mediated cell death in rice. Mol Plant-Microbe Interact, 2014, 27: 528-536.
[9] Wu C, Bordeos A, Madamba M, Ramos M, Wang G L, Leach J E, Leung H. Rice lesion mimic mutants with enhanced resistance to diseases. Mol Genet Genom, 2008, 279: 605-619.
doi: 10.1007/s00438-008-0337-2
[10] Wang J C, Liu X, Zhang A, Ren Y L, Wu F Q, Wang G, Xu Y, Lei C L, Zhu S S, Pan T, Wang Y F, Zhang H, Wang F, Tan Y Q, Wang Y P, Jin X, Luo S, Zhou C L, Zhang X, Liu J L, Wang S, Meng L Z, Wang Y H, Chen X, Lin Q B, Zhang X, Guo X P, Cheng Z J, Wang J L, Tian Y L, Liu S J, Jiang L, Wu C Y, Wang E Y, Zhou J M, Wang Y F, Wang H Y, Wan J M. A cyclic nucleotide-gated channel mediates cytoplasmic calcium elevation and disease resistance in rice. Cell Res, 2019, 29: 1-12.
[11] Ma H G, Li J, Ma L, Wang P L, Xue Y, Yin P, Xiao J H, Wang S P. Pathogen-inducible OsMPKK10.2-OsMPK6 cascade phosphorylates the Raf-like kinase OsEDR1 and inhibits its scaffold function to promote rice disease resistance. Mol Plant, 2021, 14: 620-632.
doi: 10.1016/j.molp.2021.01.008
[12] Zhu M D, Chen X L, Zhu X Y, Xing Y D, Du D, Zhang Y Y, Liu M M, Zhang Q L, Lu X, Peng S S, He G H, Zhang T Q. Identification and gene mapping of the starch accumulation and premature leaf senescence mutant ossac4 in rice. J Integr Agric, 2020, 19: 2150-2164.
doi: 10.1016/S2095-3119(19)62814-5
[13] Sun C H, Liu L C, Tang J Y, Lin A H, Zhang F T, Fang J, Zhang G F, Chu C C. RLIN1, encoding a putative coproporphyrinogen III oxidase, is involved in lesion initiation in rice. J Genet Genomics, 2011, 38: 29-37.
doi: 10.1016/j.jcg.2010.12.001 pmid: 21338950
[14] Sakuraba Y, Rahman M L, Cho S H, Kim Y S, Koh H J, Yoo S C, Paek N C. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. Plant J, 2013, 74: 122-133.
doi: 10.1111/tpj.12110
[15] Song G H, Kwon C T, Kim S H, Shim Y J, Lim C Y, Koh H J, An G H, Kang K Y, Paek N C. The rice SPOTTED LEAF4 (SPL4) encodes a plant spastin that inhibits ROS accumulation in leaf development and functions in leaf senescence. Front Plant Sci, 2019, 9: 1925.
doi: 10.3389/fpls.2018.01925
[16] Qiao Y L, Jiang W Z, Lee J H, Park B S, Choi M S, Piao R, Woo M O, Roh J H, Han L Z, Paek N C, Seo H S, Koh H J. SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit μ1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa). New Phytol, 2010, 185: 258-274.
doi: 10.1111/j.1469-8137.2009.03047.x
[17] Cui Y J, Peng Y L, Zhang Q, Xia S S, Ruan B P, Xu Q K, Yu X Q, Zhou T T, Liu H, Zeng D L, Zhang G H, Gao Z Y, Hu J, Zhu L, Shen L, Guo L B, Qian Q, Ren D Y. Disruption of EARLY LESIONLEAF1, encoding a cytochrome P450 monooxygenase, induces ROS accumulation and cell death in rice. Plant J, 2021, 105: 942-956.
doi: 10.1111/tpj.15079
[18] Fujiwara T F, Maisonneuve S M, Isshiki M, Mizutani M, Chen L, Wang H L, Kawasaki T, Shimamoto K. Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice. J Biol Chem, 2010, 285: 11308-11313.
doi: 10.1074/jbc.M109.091371 pmid: 20150424
[19] Chen X F, Hao L, Pan J W, Zheng X X, Jiang G H, Yang J, Gu Z M, Qian Q, Zhai W X, Ma B J. SPL5, a cell death and defense-related gene, encodes a putative splicing factor 3b subunit 3 (SF3b3) in rice. Mol Breed, 2012, 30: 939-949.
doi: 10.1007/s11032-011-9677-4
[20] Wang L J, Pei Z Y, Tian Y C, He C Z. OsLSD1, a rice zinc finger protein, regulates programmed cell death and callus differentiation. Mol Plant-Microbe Interact, 2005, 18: 375-384.
doi: 10.1094/MPMI-18-0375
[21] 刘林, 张迎信, 李枝, 刘群恩, 余宁, 孙滨, 杨正福, 周全, 程式华, 曹立勇. 水稻类病变突变体g303的鉴定和基因定位. 中国水稻科学, 2014, 28: 465-472.
Liu L, Zhang Y X, Li Z, Liu Q E, Yu N, Sun B, Yang Z F, Zhou Q, Cheng S H, Cao L Y. Characterization and gene mapping of a lesion mimic mutant g303 in rice. Chin J Rice Sci, 2014, 28: 465-472. (in Chinese with English abstract)
[22] Christensen T H, Zhang Z G, Wei Y D, Collinge D B. Subcellular localization of H2O2 in plants. H2O2accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J, 1997, 11: 1187-1194.
doi: 10.1046/j.1365-313X.1997.11061187.x
[23] Kumar D, Yusuf M A, Singh P, Sardar M, Sarin N B. Histochemical detection of superoxide and H2O2 accumulation in Brassica juncea seedlings. Bio-Protocol, 2014, 4: e1108.
[24] Porra R J. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosyn Res, 2002, 73:149-156.
doi: 10.1023/A:1020470224740
[25] 谢宇, 任金波, 黄煌辉, 张翔. 基于卡方检验的计算流体动力学网络无关性分析. 科学技术与工程, 2020, 20: 123-127.
Xie Y, Ren J B, Huang H H, Zhang X. Grid independence analysis of computational fluid dynamics based on Chi-square test. Sci Tech Eng, 2020, 20: 123-127. (in Chinese with English abstract)
[26] Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 1980, 8: 4321-4326.
doi: 10.1093/nar/8.19.4321 pmid: 7433111
[27] 杨波, 夏敏, 张孝波, 王晓雯, 朱小燕, 何沛龙, 何光华, 桑贤春. 水稻早衰突变体esl6的鉴定与基因定位. 作物学报, 2016, 42: 976-983.
doi: 10.3724/SP.J.1006.2016.00976
Yang B, Xia M, Zhang X B, Wang X W, Zhu X Y, He P L, He G H, Sang X C. Identification and gene mapping of an early senescent leaf mutant esl6 in Oryza sativa L. Acta Agron Sin, 2016, 42: 976-983. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.00976
[28] 黄雅敏, 朱杉杉, 赵志超, 蒲志刚, 刘天珍, 罗胜, 张欣. 水稻早衰突变体psls1的基因定位及克隆. 作物学报, 2017, 43: 51-62.
doi: 10.3724/SP.J.1006.2017.00051
Huang Y M, Zhu S S, Zhao Z Q, Pu Z G, Liu T Z, Luo S, Zhang X. Gene mapping and cloning of a premature leaf senescence mutant psls1 in rice. Acta Agron Sin, 2017, 43: 1-62. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.00001
[29] Yang X, Gong P, Li K Y, Huang F D, Cheng F M, Pan G. A single cytosine deletion in the OsPLS1 gene encoding vacuolar-type H+-ATPase subunit A1 leads to premature leaf senescence and seed dormancy in rice. J Exp Bot, 2016, 67: 2761-2776.
doi: 10.1093/jxb/erw109 pmid: 26994476
[30] Lin F F, Letuma P L, Li Z W, Lin S, Christopher R S, Lin W X. Rhizospheric pathogen proliferation and ROS production are associated with premature senescence of the osvha-a1 rice mutant. J Exp Bot, 2021, 72: 7247-7263.
doi: 10.1093/jxb/erab338
[31] Zhang W, Peng K X, Cui F B, Wang D L, Zhao J Z, Zhang Y J, Yu N N, Wang Y Y, Zeng D L, Wang Y H, Cheng Z K, Zhang K W. Cytokinin oxidase/dehydrogenase OsCKX11 coordinates source and sink relationship in rice by simultaneous regulation of leaf senescence and grain number. Plant Biotechnol J, 2021, 19: 335-350.
doi: 10.1111/pbi.13467 pmid: 33448635
[32] Wang J, Liu X, Zhang A, Ren Y, Wu F, Wang G, Xu Y, Lei C, Zhu S, Pan T, Wang Y, Zhang H, Wang F, Tan Y, Wang Y, Jin X, Luo S, Zhou C, Zhang X, Liu J, Wang S, Meng L, Wang Y, Chen X, Lin Q, Zhang X, Guo X, Cheng Z, Wang J, Tian Y, Liu S, Jiang L, Wu C, Wang E, Zhou J, Wang Y, Wang H, Wan J. A cyclic nucleotide-gated channel mediates cytoplasmic calcium elevation and disease resistance in rice. Cell Res, 2019, 29: 820-831.
doi: 10.1038/s41422-019-0219-7 pmid: 31444468
[33] Chen D D, Qiu Z N, He L, Hou L L, Li M, Zhang G H, Wang X Q, Chen G, Hu J, Gao Z Y, Dong G J, Ren D Y, Lan S, Zhang Q, Guo L B, Qian Q, Zeng D L, Zhu L. The rice LRR-like1 protein YELLOW AND PREMATURE DWARF 1 is involved in leaf senescence induced by high light. J Exp Bot, 2021, 72: 1589-1605.
doi: 10.1093/jxb/eraa532 pmid: 33200773
[34] Lin Y H, Tan L B, Zhao L, Sun X Y, Sun C Q. RLS3, a protein with AAA+ domain localized in chloroplast, sustains leaf longevity in rice. J Integr Plant Biol, 2016, 58: 971-982.
doi: 10.1111/jipb.12487
[1] 张晨晖, 章岩, 李国辉, 杨子君, 查莹莹, 周驰燕, 许轲, 霍中洋, 戴其根, 郭保卫. 侧深施肥下水稻高产形成的根系形态及其生理变化特征[J]. 作物学报, 2023, 49(4): 1039-1051.
[2] 唐文强, 张文龙, 朱晓乔, 董必正, 李勇成, 杨楠, 张耀, 王云月, 韩光煜. 多样性混合间栽对水稻根际细菌群落结构与功能的影响[J]. 作物学报, 2023, 49(4): 1111-1121.
[3] 李秋平, 张春龙, 杨宏, 王拓, 李娟, 金寿林, 黄大军, 李丹丹, 文建成. 水稻半育突变体sfp10的生理特征分析及基因定位[J]. 作物学报, 2023, 49(3): 634-646.
[4] 刘立军, 周沈琪, 刘昆, 张伟杨, 杨建昌. 水稻大穗形成及其调控的研究进展[J]. 作物学报, 2023, 49(3): 585-596.
[5] 付景, 王亚, 杨文博, 王越涛, 李本银, 王付华, 王生轩, 白涛, 尹海庆. 干湿交替灌溉耦合施氮量对水稻籽粒灌浆生理和根系生理的影响[J]. 作物学报, 2023, 49(3): 808-820.
[6] 方娅婷, 任涛, 张顺涛, 周橡棋, 赵剑, 廖世鹏, 丛日环, 鲁剑巍. 氮磷钾肥对旱地和水田油菜产量及养分利用的影响差异[J]. 作物学报, 2023, 49(3): 772-783.
[7] 向思茜, 李儒香, 徐光益, 邓岢莉, 余金琎, 李苗苗, 杨正林, 凌英华, 桑贤春, 何光华, 赵芳明. 基于水稻长大粒染色体片段代换系Z66的粒型QTL的鉴定及其聚合分析[J]. 作物学报, 2023, 49(3): 731-743.
[8] 才晓溪, 胡冰霜, 沈阳, 王研, 陈悦, 孙明哲, 贾博为, 孙晓丽. GsERF6基因过表达对水稻耐盐碱性的影响[J]. 作物学报, 2023, 49(2): 561-569.
[9] 陈赛华, 彭盛, 尤仪雯, 张路遥, 王凯, 薛明, 杨远柱, 万建民. 水稻不育系湘陵628S不同组合感光性差异的遗传解析[J]. 作物学报, 2023, 49(2): 332-342.
[10] 杨晓祎, 王慧慧, 张艳雯, 侯典云, 张红晓, 康国章, 胥华伟. 利用CRISPR/Cas9探究水稻OsPIN5c基因功能[J]. 作物学报, 2023, 49(2): 354-364.
[11] 李兆伟, 莫祖意, 孙聪颖, 师宇, 尚平, 林伟伟, 范凯, 林文雄. OsNAC2d基因编辑水稻突变体的创建及其对干旱胁迫的响应[J]. 作物学报, 2023, 49(2): 365-376.
[12] 赵凌, 梁文化, 赵春芳, 魏晓东, 周丽慧, 姚姝, 王才林, 张亚东. 利用高密度Bin遗传图谱定位水稻抽穗期QTL[J]. 作物学报, 2023, 49(1): 119-128.
[13] 徐凯, 郑兴飞, 张红燕, 胡中立, 宁子岚, 李兰芝. 基于NCII遗传交配设计的籼稻抽穗期全基因组关联分析[J]. 作物学报, 2023, 49(1): 86-96.
[14] 薛皦, 卢东柏, 刘维, 陆展华, 王石光, 王晓飞, 方志强, 何秀英. 优质稻“粤农丝苗”白叶枯病抗性遗传分析及主效QTL qBB-11-1的精细定位[J]. 作物学报, 2022, 48(9): 2210-2220.
[15] 黄祎雯, 孙滨, 程灿, 牛付安, 周继华, 张安鹏, 涂荣剑, 李瑶, 姚瑶, 代雨婷, 谢开珍, 陈小荣, 曹黎明, 储黄伟. 对水稻种子耐储性QTL的研究[J]. 作物学报, 2022, 48(9): 2255-2264.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .