作物学报 ›› 2023, Vol. 49 ›› Issue (3): 662-671.doi: 10.3724/SP.J.1006.2023.22012
朱晓彤1,2(), 叶亚峰2, 郭均瑶2, 杨惠杰2, 王紫瑶1, 詹玥2, 吴跃进2, 陶亮之2, 马伯军1, 陈析丰1,*(), 刘斌美2,*()
ZHU Xiao-Tong1,2(), YE Ya-Feng2, GUO Jun-Yao2, YANG Hui-Jie2, WANG Zi-Yao1, ZHAN Yue2, WU Yue-Jin2, TAO Liang-Zhi2, MA Bo-Jun1, CHEN Xi-Feng1,*(), LIU Bin-Mei2,*()
摘要:
早衰突变体是研究植物细胞凋亡分子机制的重要遗传材料。从水稻“科辐粳7号”诱变库中, 筛选到一个早衰突变体esl8 (early senescence leaf 8)。与野生型相比, 该突变体叶片在抽穗期表现出严重的早衰, 其株高、分蘖数、穂长、每穗粒数以及结实率, 在成熟期均极显著降低, 但千粒重无显著变化; 该突变体叶片的叶绿素含量显著下降, 组织化学染色进一步检测到细胞死亡、活性氧与丙二醛过量积累。遗传分析发现, 该突变体的早衰表型受单隐性核基因控制。采用图位克隆技术将esl8基因精细定位在12号染色体的FM12-14和FM12-15分子标记之间, 物理距离为359 kb。候选基因预测与PCR测序结果表明, esl8基因是OsSL/ELL1基因的一个新等位变异, 突变位点发生在该基因的保守区域。以上结果为进一步研究该基因编码蛋白的功能及其早衰分子机制提供理论依据。
[1] |
李可, 禹晴, 徐云姬, 杨建昌. 水稻叶片早衰突变体的农艺与生理性状研究进展. 中国水稻科学, 2020, 34: 104-114.
doi: 10.16819/j.1001-7216.2020.9078 |
Li K, Yu Q, Xu Y J, Yang J C. Research progress in agronomic and physiological traits of early senescence mutant in rice. Chin J Rice Sci, 2020, 34: 104-114. (in Chinese with English abstract) | |
[2] | 刘林, 张迎信, 刘群恩, 李枝, 曹立勇. 植物类病变突变体及其信号传导途径. 核农学报, 2014, 10: 1811-1818. |
Liu L, Zhang Y X, Liu Q E, Li Z, Cao L Y. Plant lesion mimic mutants and their signaling pathways. Acta Agric Nucl Sin, 2014, 10: 1811-1818. (in Chinese with English abstract) | |
[3] | 马梓铭, 白慧娇, 金永梅, 吴涛, 朴日花, 马艳, 姜文洙, 都兴林. 水稻早衰突变体es-h的鉴定、遗传分析与基因定位. 分子植物育种, 2021, 19: 4550-4556. |
Ma Z M, Bai H J, Jin Y M, Wu T, Piao R H, Ma Y, Jiang W Z, Du X L. Identification, genetic analysis and gene mapping of early senescence mutant es-h in rice. Mol Plant Breed, 2021, 19: 4550-4556. (in Chinese with English abstract) | |
[4] |
郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位. 作物学报, 2022, 48: 1389-1400.
doi: 10.3724/SP.J.1006.2022.12035 |
Zheng C K, Zhou G H, Niu S L, He Y N, Sun W, Xie X Z. Phenotypic characterization and gene mapping of an early senescence leaf H5 (esl-H5) mutant in rice (Oryza sativa L.). Acta Agron Sin, 2022, 48: 1389-1400 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.12035 |
|
[5] |
肖艳华, 陈新龙, 杜丹, 邢亚迪, 张天泉, 祝毛迪, 刘明明, 朱小燕, 桑贤春, 何光华. 水稻叶片淀粉积累及早衰突变体esl9的鉴定与基因定位. 作物学报, 2017, 43: 473-482.
doi: 0.3724/SP.J.1006.2017.00473 |
Xiao Y H, Chen X L, Du D, Xing Y D, Zhang T Q, Zhu M D, Liu M M, Zhu X Y, Sang X C, He G H. Identification and gene mapping of starch accumulation and early senescence leaf mutant esl9 in rice. Acta Agron Sin, 2017, 43: 473-482. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.00473 |
|
[6] | 刘思辰, 曹晓宁, 王海岗, 王君杰, 陈凌, 田翔, 秦慧彬, 乔治军. 植物类病变突变体的研究进展. 山西农业科学, 2020, 48: 272-276. |
Liu S C, Cao X Y, Wang H L, Wang J J, Chen L, Tian X, Qin H B, Qiao Z J. Research progress of plant lesion mimic mutants. J Shanxi Agric Sci, 2020, 48: 272-276. (in Chinese with English abstract) | |
[7] |
Ma J, Wang Y F, Ma X D, Meng L Z, Jing R N, Wang F, Wang S, Cheng Z J, Zhang X, Zhang L, Wang J L, Wang J, Zhao Z C, Guo X P, Lin Q B, Wu F Q, Zhu S S, Wu C Y, Ren Y L, Lei C L, Zhai H Q, Wan J M. Disruption of gene SPL35, encoding a novel CUE domain-containing protein, leads to cell death and enhanced disease response in rice. Plant Biotechnol J, 2019, 17: 1679-1693.
doi: 10.1111/pbi.13093 |
[8] | Shirsekar G S, Vega-Sanchez M E, Bordeos A, Baraodan M, Swisshelm A, Fan J B, Park C H, Leung H, Wang G L. Identification and characterization of suppressor mutants of spl11-mediated cell death in rice. Mol Plant-Microbe Interact, 2014, 27: 528-536. |
[9] |
Wu C, Bordeos A, Madamba M, Ramos M, Wang G L, Leach J E, Leung H. Rice lesion mimic mutants with enhanced resistance to diseases. Mol Genet Genom, 2008, 279: 605-619.
doi: 10.1007/s00438-008-0337-2 |
[10] | Wang J C, Liu X, Zhang A, Ren Y L, Wu F Q, Wang G, Xu Y, Lei C L, Zhu S S, Pan T, Wang Y F, Zhang H, Wang F, Tan Y Q, Wang Y P, Jin X, Luo S, Zhou C L, Zhang X, Liu J L, Wang S, Meng L Z, Wang Y H, Chen X, Lin Q B, Zhang X, Guo X P, Cheng Z J, Wang J L, Tian Y L, Liu S J, Jiang L, Wu C Y, Wang E Y, Zhou J M, Wang Y F, Wang H Y, Wan J M. A cyclic nucleotide-gated channel mediates cytoplasmic calcium elevation and disease resistance in rice. Cell Res, 2019, 29: 1-12. |
[11] |
Ma H G, Li J, Ma L, Wang P L, Xue Y, Yin P, Xiao J H, Wang S P. Pathogen-inducible OsMPKK10.2-OsMPK6 cascade phosphorylates the Raf-like kinase OsEDR1 and inhibits its scaffold function to promote rice disease resistance. Mol Plant, 2021, 14: 620-632.
doi: 10.1016/j.molp.2021.01.008 |
[12] |
Zhu M D, Chen X L, Zhu X Y, Xing Y D, Du D, Zhang Y Y, Liu M M, Zhang Q L, Lu X, Peng S S, He G H, Zhang T Q. Identification and gene mapping of the starch accumulation and premature leaf senescence mutant ossac4 in rice. J Integr Agric, 2020, 19: 2150-2164.
doi: 10.1016/S2095-3119(19)62814-5 |
[13] |
Sun C H, Liu L C, Tang J Y, Lin A H, Zhang F T, Fang J, Zhang G F, Chu C C. RLIN1, encoding a putative coproporphyrinogen III oxidase, is involved in lesion initiation in rice. J Genet Genomics, 2011, 38: 29-37.
doi: 10.1016/j.jcg.2010.12.001 pmid: 21338950 |
[14] |
Sakuraba Y, Rahman M L, Cho S H, Kim Y S, Koh H J, Yoo S C, Paek N C. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. Plant J, 2013, 74: 122-133.
doi: 10.1111/tpj.12110 |
[15] |
Song G H, Kwon C T, Kim S H, Shim Y J, Lim C Y, Koh H J, An G H, Kang K Y, Paek N C. The rice SPOTTED LEAF4 (SPL4) encodes a plant spastin that inhibits ROS accumulation in leaf development and functions in leaf senescence. Front Plant Sci, 2019, 9: 1925.
doi: 10.3389/fpls.2018.01925 |
[16] |
Qiao Y L, Jiang W Z, Lee J H, Park B S, Choi M S, Piao R, Woo M O, Roh J H, Han L Z, Paek N C, Seo H S, Koh H J. SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit μ1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa). New Phytol, 2010, 185: 258-274.
doi: 10.1111/j.1469-8137.2009.03047.x |
[17] |
Cui Y J, Peng Y L, Zhang Q, Xia S S, Ruan B P, Xu Q K, Yu X Q, Zhou T T, Liu H, Zeng D L, Zhang G H, Gao Z Y, Hu J, Zhu L, Shen L, Guo L B, Qian Q, Ren D Y. Disruption of EARLY LESIONLEAF1, encoding a cytochrome P450 monooxygenase, induces ROS accumulation and cell death in rice. Plant J, 2021, 105: 942-956.
doi: 10.1111/tpj.15079 |
[18] |
Fujiwara T F, Maisonneuve S M, Isshiki M, Mizutani M, Chen L, Wang H L, Kawasaki T, Shimamoto K. Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice. J Biol Chem, 2010, 285: 11308-11313.
doi: 10.1074/jbc.M109.091371 pmid: 20150424 |
[19] |
Chen X F, Hao L, Pan J W, Zheng X X, Jiang G H, Yang J, Gu Z M, Qian Q, Zhai W X, Ma B J. SPL5, a cell death and defense-related gene, encodes a putative splicing factor 3b subunit 3 (SF3b3) in rice. Mol Breed, 2012, 30: 939-949.
doi: 10.1007/s11032-011-9677-4 |
[20] |
Wang L J, Pei Z Y, Tian Y C, He C Z. OsLSD1, a rice zinc finger protein, regulates programmed cell death and callus differentiation. Mol Plant-Microbe Interact, 2005, 18: 375-384.
doi: 10.1094/MPMI-18-0375 |
[21] | 刘林, 张迎信, 李枝, 刘群恩, 余宁, 孙滨, 杨正福, 周全, 程式华, 曹立勇. 水稻类病变突变体g303的鉴定和基因定位. 中国水稻科学, 2014, 28: 465-472. |
Liu L, Zhang Y X, Li Z, Liu Q E, Yu N, Sun B, Yang Z F, Zhou Q, Cheng S H, Cao L Y. Characterization and gene mapping of a lesion mimic mutant g303 in rice. Chin J Rice Sci, 2014, 28: 465-472. (in Chinese with English abstract) | |
[22] |
Christensen T H, Zhang Z G, Wei Y D, Collinge D B. Subcellular localization of H2O2 in plants. H2O2accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J, 1997, 11: 1187-1194.
doi: 10.1046/j.1365-313X.1997.11061187.x |
[23] | Kumar D, Yusuf M A, Singh P, Sardar M, Sarin N B. Histochemical detection of superoxide and H2O2 accumulation in Brassica juncea seedlings. Bio-Protocol, 2014, 4: e1108. |
[24] |
Porra R J. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosyn Res, 2002, 73:149-156.
doi: 10.1023/A:1020470224740 |
[25] | 谢宇, 任金波, 黄煌辉, 张翔. 基于卡方检验的计算流体动力学网络无关性分析. 科学技术与工程, 2020, 20: 123-127. |
Xie Y, Ren J B, Huang H H, Zhang X. Grid independence analysis of computational fluid dynamics based on Chi-square test. Sci Tech Eng, 2020, 20: 123-127. (in Chinese with English abstract) | |
[26] |
Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 1980, 8: 4321-4326.
doi: 10.1093/nar/8.19.4321 pmid: 7433111 |
[27] |
杨波, 夏敏, 张孝波, 王晓雯, 朱小燕, 何沛龙, 何光华, 桑贤春. 水稻早衰突变体esl6的鉴定与基因定位. 作物学报, 2016, 42: 976-983.
doi: 10.3724/SP.J.1006.2016.00976 |
Yang B, Xia M, Zhang X B, Wang X W, Zhu X Y, He P L, He G H, Sang X C. Identification and gene mapping of an early senescent leaf mutant esl6 in Oryza sativa L. Acta Agron Sin, 2016, 42: 976-983. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.00976 |
|
[28] |
黄雅敏, 朱杉杉, 赵志超, 蒲志刚, 刘天珍, 罗胜, 张欣. 水稻早衰突变体psls1的基因定位及克隆. 作物学报, 2017, 43: 51-62.
doi: 10.3724/SP.J.1006.2017.00051 |
Huang Y M, Zhu S S, Zhao Z Q, Pu Z G, Liu T Z, Luo S, Zhang X. Gene mapping and cloning of a premature leaf senescence mutant psls1 in rice. Acta Agron Sin, 2017, 43: 1-62. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.00001 |
|
[29] |
Yang X, Gong P, Li K Y, Huang F D, Cheng F M, Pan G. A single cytosine deletion in the OsPLS1 gene encoding vacuolar-type H+-ATPase subunit A1 leads to premature leaf senescence and seed dormancy in rice. J Exp Bot, 2016, 67: 2761-2776.
doi: 10.1093/jxb/erw109 pmid: 26994476 |
[30] |
Lin F F, Letuma P L, Li Z W, Lin S, Christopher R S, Lin W X. Rhizospheric pathogen proliferation and ROS production are associated with premature senescence of the osvha-a1 rice mutant. J Exp Bot, 2021, 72: 7247-7263.
doi: 10.1093/jxb/erab338 |
[31] |
Zhang W, Peng K X, Cui F B, Wang D L, Zhao J Z, Zhang Y J, Yu N N, Wang Y Y, Zeng D L, Wang Y H, Cheng Z K, Zhang K W. Cytokinin oxidase/dehydrogenase OsCKX11 coordinates source and sink relationship in rice by simultaneous regulation of leaf senescence and grain number. Plant Biotechnol J, 2021, 19: 335-350.
doi: 10.1111/pbi.13467 pmid: 33448635 |
[32] |
Wang J, Liu X, Zhang A, Ren Y, Wu F, Wang G, Xu Y, Lei C, Zhu S, Pan T, Wang Y, Zhang H, Wang F, Tan Y, Wang Y, Jin X, Luo S, Zhou C, Zhang X, Liu J, Wang S, Meng L, Wang Y, Chen X, Lin Q, Zhang X, Guo X, Cheng Z, Wang J, Tian Y, Liu S, Jiang L, Wu C, Wang E, Zhou J, Wang Y, Wang H, Wan J. A cyclic nucleotide-gated channel mediates cytoplasmic calcium elevation and disease resistance in rice. Cell Res, 2019, 29: 820-831.
doi: 10.1038/s41422-019-0219-7 pmid: 31444468 |
[33] |
Chen D D, Qiu Z N, He L, Hou L L, Li M, Zhang G H, Wang X Q, Chen G, Hu J, Gao Z Y, Dong G J, Ren D Y, Lan S, Zhang Q, Guo L B, Qian Q, Zeng D L, Zhu L. The rice LRR-like1 protein YELLOW AND PREMATURE DWARF 1 is involved in leaf senescence induced by high light. J Exp Bot, 2021, 72: 1589-1605.
doi: 10.1093/jxb/eraa532 pmid: 33200773 |
[34] |
Lin Y H, Tan L B, Zhao L, Sun X Y, Sun C Q. RLS3, a protein with AAA+ domain localized in chloroplast, sustains leaf longevity in rice. J Integr Plant Biol, 2016, 58: 971-982.
doi: 10.1111/jipb.12487 |
[1] | 张晨晖, 章岩, 李国辉, 杨子君, 查莹莹, 周驰燕, 许轲, 霍中洋, 戴其根, 郭保卫. 侧深施肥下水稻高产形成的根系形态及其生理变化特征[J]. 作物学报, 2023, 49(4): 1039-1051. |
[2] | 唐文强, 张文龙, 朱晓乔, 董必正, 李勇成, 杨楠, 张耀, 王云月, 韩光煜. 多样性混合间栽对水稻根际细菌群落结构与功能的影响[J]. 作物学报, 2023, 49(4): 1111-1121. |
[3] | 李秋平, 张春龙, 杨宏, 王拓, 李娟, 金寿林, 黄大军, 李丹丹, 文建成. 水稻半育突变体sfp10的生理特征分析及基因定位[J]. 作物学报, 2023, 49(3): 634-646. |
[4] | 刘立军, 周沈琪, 刘昆, 张伟杨, 杨建昌. 水稻大穗形成及其调控的研究进展[J]. 作物学报, 2023, 49(3): 585-596. |
[5] | 付景, 王亚, 杨文博, 王越涛, 李本银, 王付华, 王生轩, 白涛, 尹海庆. 干湿交替灌溉耦合施氮量对水稻籽粒灌浆生理和根系生理的影响[J]. 作物学报, 2023, 49(3): 808-820. |
[6] | 方娅婷, 任涛, 张顺涛, 周橡棋, 赵剑, 廖世鹏, 丛日环, 鲁剑巍. 氮磷钾肥对旱地和水田油菜产量及养分利用的影响差异[J]. 作物学报, 2023, 49(3): 772-783. |
[7] | 向思茜, 李儒香, 徐光益, 邓岢莉, 余金琎, 李苗苗, 杨正林, 凌英华, 桑贤春, 何光华, 赵芳明. 基于水稻长大粒染色体片段代换系Z66的粒型QTL的鉴定及其聚合分析[J]. 作物学报, 2023, 49(3): 731-743. |
[8] | 才晓溪, 胡冰霜, 沈阳, 王研, 陈悦, 孙明哲, 贾博为, 孙晓丽. GsERF6基因过表达对水稻耐盐碱性的影响[J]. 作物学报, 2023, 49(2): 561-569. |
[9] | 陈赛华, 彭盛, 尤仪雯, 张路遥, 王凯, 薛明, 杨远柱, 万建民. 水稻不育系湘陵628S不同组合感光性差异的遗传解析[J]. 作物学报, 2023, 49(2): 332-342. |
[10] | 杨晓祎, 王慧慧, 张艳雯, 侯典云, 张红晓, 康国章, 胥华伟. 利用CRISPR/Cas9探究水稻OsPIN5c基因功能[J]. 作物学报, 2023, 49(2): 354-364. |
[11] | 李兆伟, 莫祖意, 孙聪颖, 师宇, 尚平, 林伟伟, 范凯, 林文雄. OsNAC2d基因编辑水稻突变体的创建及其对干旱胁迫的响应[J]. 作物学报, 2023, 49(2): 365-376. |
[12] | 赵凌, 梁文化, 赵春芳, 魏晓东, 周丽慧, 姚姝, 王才林, 张亚东. 利用高密度Bin遗传图谱定位水稻抽穗期QTL[J]. 作物学报, 2023, 49(1): 119-128. |
[13] | 徐凯, 郑兴飞, 张红燕, 胡中立, 宁子岚, 李兰芝. 基于NCII遗传交配设计的籼稻抽穗期全基因组关联分析[J]. 作物学报, 2023, 49(1): 86-96. |
[14] | 薛皦, 卢东柏, 刘维, 陆展华, 王石光, 王晓飞, 方志强, 何秀英. 优质稻“粤农丝苗”白叶枯病抗性遗传分析及主效QTL qBB-11-1的精细定位[J]. 作物学报, 2022, 48(9): 2210-2220. |
[15] | 黄祎雯, 孙滨, 程灿, 牛付安, 周继华, 张安鹏, 涂荣剑, 李瑶, 姚瑶, 代雨婷, 谢开珍, 陈小荣, 曹黎明, 储黄伟. 对水稻种子耐储性QTL的研究[J]. 作物学报, 2022, 48(9): 2255-2264. |
|