欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (3): 795-807.doi: 10.3724/SP.J.1006.2023.23026

• 耕作栽培·生理生化 • 上一篇    下一篇

基于根冠协调发展的东北春玉米高产种植密度分析

刘月(), 明博, 李姚姚, 王克如, 侯鹏, 薛军, 李少昆(), 谢瑞芝()   

  1. 中国农业科学院作物科学研究所 / 农业农村部作物生理生态重点实验室, 北京 100081
  • 收稿日期:2022-03-11 接受日期:2022-07-21 出版日期:2023-03-12 网络出版日期:2022-08-18
  • 通讯作者: 李少昆,谢瑞芝
  • 作者简介:E-mail: liuyue65147@163.com
  • 基金资助:
    国家重点研发计划项目(2017YFD0300302);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-02-25);中国农业科学院科技创新工程项目(CAAS-ZDRW202004)

Analysis on high yield planting density of spring maize in Northeast China from root and shoot coordinated development

LIU Yue(), MING Bo, LI Yao-Yao, WANG Ke-Ru, HOU Peng, XUE Jun, LI Shao-Kun(), XIE Rui-Zhi()   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, the Ministry of Agriculture and Rural Affairs, Beijing 100081, China
  • Received:2022-03-11 Accepted:2022-07-21 Published:2023-03-12 Published online:2022-08-18
  • Contact: LI Shao-Kun,XIE Rui-Zhi
  • Supported by:
    National Key Research and Development Program of China(2017YFD0300302);China Agriculture Research System of MOF and MARA(CARS-02-25);Agricultural Science and Technology Innovation Program(CAAS-ZDRW202004)

摘要:

植株地上部与地下部的协调是生长发育的内在需求, 分析种植密度对冠根协调的影响能够为玉米增密高产理论和技术提供新的视角。本研究于2020—2021年在吉林省中国农业科学院作物科学研究所公主岭试验站进行, 以郑单958和先玉335两个耐密品种为试验材料, 调查了玉米关键生育时期内根系和冠层的相关指标在产量稳定区间的2个种植密度(D1: 6.75万株 hm-2; D2: 9.75万株 hm-2)下的差异。试验条件下, 种植密度从D1增加到D2, 玉米的单株干物质积累量、根干重等均出现显著降低, 群体指标表现不同。其中, 2个品种的群体籽粒产量未出现显著提升, 在根系各指标达到最大值的吐丝后15 d (R2期), 群体根干重、根长密度等也未出现显著提升。随着生育进程推进, 玉米的冠根比呈指数函数增长(y=aebx), 增加种植密度显著提高了玉米冠根比, 粒根比、叶根比也增加, 根系压力增大。研究结果表明, 玉米根系对种植密度的响应程度与地上部存在差异, 在产量水平基本相当的前提下, 根系压力较小的种植密度更有利于冠根协调和合理群体的构建。

关键词: 玉米, 合理密植, 产量, 根干重, 冠根协调

Abstract:

The coordination of shoot and root is essential for the growth and development in maize. Analyzing the effect of the planting density on the shoot and root coordinated development can provide a new perspective for the theory and technology of increasing planting density and yield improvement. The experiments were conducted in 2020 and 2021 at the experimental station of Institute of Crop Sciences, the Chinese Academy of Agricultural Sciences, Gongzhuling, Jilin province. Two densification resistant varieties (Zhengdan 958 and Xianyu 335) and two planting densities (D1: 67,500 plants hm-2; D2: 97,500 plants hm-2) which were in the production stability interval were set up in this study, and the difference of some indexes of root and shoot was analyzed at different growth stages. The results showed that, compared with D2, the dry matter and root dry weight per plant of maize decreased significantly, while some population indexes were different. Among them, the yield of two varieties were not significantly increased. When the root indexes reached the maximum value on the 15th day after silking (R2 stage), the root dry weight per area, root length density did not increase significantly. The dynamic of shoot root ratio (S/R) during growth period could be expressed by exponential equation (y=aebx), and the increasing planting density significantly increased the S/R, grain root ratio, and leaf area root ratio. The increase of the three ratio at high density provided a signal of intensified root survival pressure. The results showed that the response of maize root to planting density was different from that of shoot. Under the premise of the same yield level, choosing the planting density with less root pressure may be more conducive to the construction of shoot and root coordination and constructing reasonable maize population.

Key words: maize, reasonable dense planting, yield, root dry weight, shoot root coordination

图1

2020-2021年玉米生长季月度积温和降水变化"

表1

不同处理间的玉米单株及群体产量"

年份
Year
品种
Variety
种植密度
Planting density (plants hm-2)
单株籽粒产量
Grain yield per plant (g plant-1)
群体产量
Grain yield per area (t hm-2)
2020 郑单958 67,500 185.42±0.79 aB 12.52±0.05 aB
Zhengdan 958 97,500 128.84±5.39 bA 12.56±0.53 aA
先玉335 67,500 201.26±2.11 aA 13.59±0.14 aA
Xianyu 335 97,500 135.96±3.22 bA 13.26±0.31 aA
2021 郑单958 67,500 198.90±4.95 aB 13.43±0.33 aB
Zhengdan 958 97,500 143.67±3.69 bB 14.01±0.40 aB
先玉335 67,500 217.36±3.76 aA 14.67±0.25 aA
Xianyu 335 97,500 152.86±0.77 bA 14.90±0.08 aA

图2

不同生育时期玉米单株和群体干物质积累量变化动态 不同小写字母表示同一品种不同密度在0.05水平差异显著。D1: 6.75 万株 hm-2; D2: 9.75 万株 hm-2; ZD: 郑单958; XY: 先玉335; V6: 拔节期; V12: 大喇叭口期; R1: 吐丝期; R2: 吐丝后15 d; R3: 吐丝后30 d; R4: 吐丝后45 d; R5: 吐丝后60 d; R6: 收获期。"

图3

不同生育时期玉米叶面积和叶面积指数变化动态 不同小写字母表示同一品种不同密度在0.05水平差异显著。处理及时期同图2。"

图4

不同生育时期玉米单株和群体根干重变化动态 不同小写字母表示同一品种不同密度在0.05水平差异显著。处理及时期同图2。"

图5

不同生育时期玉米单株根长及根长密度变化动态 不同小写字母表示同一品种不同密度在0.05水平差异显著。处理及时期同图2。"

图6

不同生育时期玉米单株根表面积及根表面积密度变化动态 不同小写字母表示同一品种不同密度在0.05水平差异显著。处理及时期同图2。"

图7

不同生育时期玉米单株根体积及根体积密度变化动态 不同小写字母表示同一品种不同密度在0.05水平差异显著。处理及时期同图2。"

表2

玉米单株根系指标之间的相关性分析"

指标
Index
根长
Root length
根表面积
Root surface area
根体积
Root volume
根干重
Root dry weight
根长Root length 1 0.975** 0.933** 0.927**
根表面积Root surface area 1 0.956** 0.925**
根体积Root volume 1 0.948**
根干重Root dry weight 1

图8

不同生育时期玉米冠根比变化动态 不同小写字母表示同一品种不同密度下在0.05水平差异显著。处理同图2。"

表3

根系干重最大时期(R2期)玉米的粒根比与叶根比"

年份
Year
品种
Variety
种植密度
Planting density (plants hm-2)
粒/根
Grain/root (g g-1)
叶/根
Leaf area/root (m2 g-1)
2020 郑单958 67,500 12.18±2.01 bA 0.06±0.01 aA
Zhengdan 958 97,500 15.56±2.51 aA 0.08±0.01 bA
先玉335 67,500 12.26±1.40 bA 0.05±0.01 aA
Xianyu 335 97,500 14.28±1.05 aA 0.08±0.01 bA
2021 郑单958 67,500 18.81±1.38 bA 0.09±0.01 aA
Zhengdan 958 97,500 22.75±4.88 aA 0.11±0.02 bA
先玉335 67,500 22.13±2.21 bA 0.09±0.01 aA
Xianyu 335 97,500 23.57±4.73 aA 0.11±0.02 bA
[1] Cardwell V B. Fifty years of Minnesota corn production sources of yield increase. Agron J, 1982, 74: 984-990.
doi: 10.2134/agronj1982.00021962007400060013x
[2] Brian D M, Rita H M. Survey of plant density tolerance in U.S. maize germplasm. Crop Sci, 2012, 54: 157-173.
doi: 10.2135/cropsci2013.04.0252
[3] 赵久然, 王荣焕. 美国玉米持续增产的因素及其对我国的启示. 玉米科学, 2009, 17(5): 156-159.
Zhao J R, Wang R H. Factors of American corn increasing continuously and its enlightenment to China. J Maize Sci, 2009, 17(5): 156-159. (in Chinese with English abstract)
[4] 明博, 谢瑞芝, 侯鹏, 李璐璐, 王克如, 李少昆. 2005-2016年中国玉米种植密度变化分析. 中国农业科学, 2017, 11: 1960-1972.
Ming B, Xie R Z, Hou P, Li L L, Wang K R, Li S K. Changes of maize planting density in China from 2005 to 2016. Sci Agric Sin, 2017, 11: 1960-1972. (in Chinese with English abstract)
[5] 徐明洁, 刘江, 董秋婷, 温日红, 张雷. 先玉335适宜栽培密度与性状指标研究. 安徽农业科学, 2009, 37: 8928-8930.
Xu M J, Liu J, Dong Q T, Wen R H, Zhang L. Preliminary study on proper cultivation density and character index of Xianyu 335. J Anhui Agric Sci, 2009, 37: 8928-8930. (in Chinese with English abstract)
[6] 李娜. 不同种植密度对玉米生长发育及产量的影响. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2018.
Li N. Effects of Planting Density on Yield and Growth of Different Maize Varieties. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2018. (in Chinese with English abstract)
[7] 孙继, 顾万荣, 魏湜, 李晶, 赵东旭, 王泳超, 原立地. 黑龙江省寒地不同种植密度下高产春玉米冠层结构及光辐射特征. 玉米科学, 2012, 20(6): 70-75.
Sun J, Gu W R, Wei S, Li J, Zhao D X, Wang Y C, Yuan L D. Canopy structure and light radiation characteristics of high-yielding spring maize under different planting densities in cold regions of Heilongjiang province. J Maize Sci, 2012, 20(6): 70-75. (in Chinese with English abstract)
[8] 赵江, 张怡明, 牛兴奎, 刘鑫, 李少昆, 张凤路. 不同密度条件玉米根系性状在不同土层中的分布研究. 华北农学报, 2011, 26(增刊1): 99-103.
Zhao J, Zhang Y M, Niu X K, Liu X, Li S K, Zhang F L. Studies on the distribution of maize root characteristics at different soil layers and densities. Acta Agric Boreali-Sin, 2011, 26(S1): 99-103. (in Chinese with English abstract)
doi: 10.7668/hbnxb.2011.S1.021
[9] Zhang P, Yan Y, Gu S C, Wang Y Y, Xu C L, Sheng D C, Li Y B, Wang P, Huang S B. Lodging resistance in maize: a function of root-shoot interactions. Eur J Agron, 2022, 132: 126393.
doi: 10.1016/j.eja.2021.126393
[10] 郭晓霞. 光辐射和密度对不同品种春玉米形态、根冠关系及产量的影响. 石河子大学硕士学位论文, 新疆石河子, 2020.
Guo X X. Effects of Solar Radiation and Density on Root Morphology, Root-Shoot Relationship and Yield of Different Spring Maize Cultivar. MS Thesis of Shihezi University, Shihezi, Xinjiang, China, 2018. (in Chinese with English abstract)
[11] 鄂玉江, 戴俊英, 顾慰连. 玉米根系的生长规律及其与产量关系: I. 玉米根系生长和吸收能力与地上部分的关系. 作物学报, 1988, 14: 149-154.
E Y J, Dai J Y, Gu W L. The growth law of maize root system and its relationship with yield: I. The relationship between growth and absorption capacity of maize root system and overground part. Acta Agron Sin, 1988, 14: 149-154. (in Chinese)
[12] 张明, 宋振伟, 陈涛, 闫孝贡, 朱平, 任军, 邓艾兴, 张卫建. 不同春玉米品种干物质生产和子粒灌浆对种植密度的响应. 玉米科学, 2015, 23(3): 57-65.
Zhang M, Song Z W, Chen T, Yan X G, Zhu P, Ren J, Deng A X, Zhang W J. Differences in responses of biomass production and grain-filling to planting density between spring maize cultivars. J Maize Sci, 2015, 23(3): 57-65. (in Chinese with English abstract)
[13] 刘伟, 张吉旺, 吕鹏, 杨今胜, 刘鹏, 董树亭, 李登海, 孙庆泉. 种植密度对高产夏玉米登海661产量及干物质积累与分配的影响. 作物学报, 2011, 37: 1301-1307.
doi: 10.3724/SP.J.1006.2011.01301
Liu W, Zhang J W, Lyu P, Yang J S, Liu P, Dong S T, Li D H, Sun Q Q. Effect of plant density on grain yield dry matter accumulation and partitioning in summer maize cultivar Denghai 661. Acta Agron Sin, 2011, 37: 1301-1307 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2011.01301
[14] Li J, Xie R Z, Wang K R, Ming B, Guo Y Q, Zhang G Q, Li S K. Variations in maize dry matter, harvest index, and grain yield with plant density. Agron J, 2015, 107: 829-834.
doi: 10.2134/agronj14.0522
[15] Li J, Wu M, Wang K R, Ming B, Chang X, Wang X B, Yang Z S, Xie R Z, Li S K. Identifying ways to narrow maize yield gaps based on planting density experiments. Agron J, 2020, 10: 281.
doi: 10.2134/agronj1918.00021962001007-80003x
[16] 严云, 廖成松, 张福锁, 李春俭. 密植条件下玉米冠根生长抑制的因果关系. 植物营养与肥料学报, 2010, 16: 257-265.
Yan Y, Liao C S, Zhang F S, Li C J. The causal relationship of the decreased shoot and root growth of maize plants under higher plant density. Plant Nutr Fert Sci, 2010, 16: 257-265. (in Chinese with English abstract)
[17] Pugnaire F I, Luque M T. Changes in plant interactions along a gradient of environmental stress. Oikos, 2001, 93: 42-49.
doi: 10.1034/j.1600-0706.2001.930104.x
[18] 李健. 西北超高产(15 t hm-2以上)春玉米群体结构特征研究. 石河子大学博士学位论文, 新疆石河子, 2015.
Li J. Study on the Canopy Structure Characteristics of Super-high-yield (More Than 15 t hm-2) Spring Maize in the Northwest of China. PhD Dissertation of Shihezi University, Shihezi, Xinjiang, China, 2015 (in Chinese with English abstract).
[19] 陈传永, 侯玉虹, 孙锐, 朱平, 董志强, 赵明. 密植对不同玉米品种产量性能的影响及其耐密性分析. 作物学报, 2010, 36: 1153-1160.
doi: 10.3724/SP.J.1006.2010.01153
Chen C Y, Hou Y H, Sun R, Zhu P, Dong Z Q, Zhao M. Effects of planting density on yield performance and density-tolerance analysis for maize hybrids. Acta Agron Sin, 2010, 36: 1153-1160. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.01153
[20] 马达灵. 产量提高过程中玉米植株形态特征与产量性状的演变规律. 石河子大学博士学位论文, 新疆石河子, 2014.
Ma D L. Evolution of Plant Morphological Characteristics and Yield Traits of Maize (Zea mays L.) during Yield per Hectare Improvement. PhD Dissertation of Shihezi University, Shihezi, Xinjiang, China, 2014. (in Chinese with English abstract)
[21] 牛兴奎. 春玉米产量提升过程中产量性能与群体结构的变化. 中国农业科学院博士学位论文, 北京, 2012.
Niu X K. Changes in Yield Capability and Population Structure of Spring Maize Resulted of Yield Improvements. PhD Dissertation of Chinese Academy of Agricultural Sciences,Beijing, China, 2012. (in Chinese with English abstract)
[22] 罗洋, 岳玉兰, 郑金玉, 郑洪兵, 李伟堂, 刘武仁. 玉米品种郑单958合理种植密度的研究. 吉林农业科学, 2008, 33(6): 11-12.
Luo Y, Yue Y L, Zheng J Y, Zheng H B, Li W T, Liu W R. Studies on proper planting density of maize variety ‘Zhengdan 958’. J Jilin Agric Sci, 2008, 33(6): 11-12 (in Chinese with English abstract).
[23] Ioannis S T, Metaxia T E T. Benefits from using maize density-independent hybrids. Maydica, 2005, 50: 9-17.
[24] 徐文娟. 不同种植密度条件下玉米生长发育对光照强度的响应. 石河子大学博士学位论文, 新疆石河子, 2017.
Xu W J. Response of Maize Growth to Light Intensities under Different Plant Densities. PhD Dissertation of Shihezi University, Shihezi, Xinjiang, China, 2017 (in Chinese with English abstract).
[25] 薛珠政, 卢和顶, 林建新, 杨人震. 种植密度对玉米单株和群体效应的影响. 玉米科学, 1999, 7(2): 52-54.
Xue Z Z, Lu H D, Lin J X, Yang R Z. Effects of planting density on individual plant and population effect of maize. J Maize Sci, 1999, 7(2): 52-54. (in Chinese)
[26] 李少昆, 涂华玉, 张旺峰, 杨刚. 玉米根系在土壤中的分布及与地上部分的关系. 新疆农业科学, 1992, (3): 99-103.
Li S K, Tu H Y, Zhang W F, Yang G. Distribution of maize root system in soil and its relationship with above-ground part. Xinjiang Agric Sci, 1992, (3): 99-103. (in Chinese)
[27] 管建慧, 郭新宇, 刘洋, 刘克礼, 王纪华, 郭小东. 不同密度处理下玉米根系干重空间分布动态的研究. 玉米科学, 2007, 15(4): 105-108.
Guan J H, Guo X Y, Liu Y, Liu K L, Wang J H, Guo X D. Study on dynamic variation of root dry weight space distribution on different densities of maize. J Maize Sci, 2007, 15(4): 105-108. (in Chinese with English abstract)
[28] 张凤路, 牛兴奎, 张怡明, 李少昆, 谢瑞芝, 刘鑫, 修文雯. 提高密度对根冠发育及其产量的影响研究. 华北农学报, 2012, 27(2): 146-151.
doi: 10.3969/j.issn.1000-7091.2012.02.028
Zhang F L, Niu X K, Zhang Y M, Li S K, Xie R Z, Liu X, Xiu W W. Studies on the effect of density on the root-shoot relationship and yield in maize. Acta Agric Boreali-Sin, 2012, 27(2): 146-151. (in Chinese with English abstract)
[29] 罗方, 杨恒山, 张玉芹, 柳宝林. 春玉米根系特征对种植密度的响应. 内蒙古民族大学学报(自然科学版), 2017, 32: 494-498.
Luo F, Yang H S, Zhang Y Q, Liu B L. Response of root system characteristics of spring maize to planting density. J Inner Mongolia Univ Nat (Nat Sci Edn), 2017, 32: 494-498. (in Chinese with English abstract)
[30] Brouwer R. Distribution of dry matter in the plant. J Netherlands Agric Sci, 1962, 10: 361-376.
[31] 李栋浩, 姜雪连, 佟玲. 种植密度对制种玉米根冠生长及耗水量的影响. 排灌机械工程学报, 2014, 32: 1091-1097.
Li D H, Jiang X L, Tong L. Effect of planting density on root- shoot growth and water utilization efficiency of seed corn. J Drain Irrig Mach Eng, 2014, 32: 1091-1097. (in Chinese with English abstract)
[32] 李宗新, 陈源泉, 王庆成, 刘开昌, 张秀清, 刘霞, 张慧, 刘书聪, 刘春晓, 高旺盛, 隋鹏. 密植条件下种植方式对夏玉米群体根冠特性及产量的影响. 生态学报, 2012, 32: 7391-7401.
Li Z X, Chen Y Q, Wang Q C, Liu K C, Zhang X Q, Liu X, Zhang H, Liu S C, Liu C X, Gao W S, Sui P. Effect of different planting methods on root-shoot characteristics and grain yield of summer maize under high densities. Acta Ecol Sin, 2012, 32: 7391-7401. (in Chinese with English abstract)
[33] 李少昆, 刘景德, 张旺峰, 魏邦军, 杨刚, 赵海. 不同密度玉米根系在大田土壤中的分布、重量的调节及与地上部分的关系. 玉米科学, 1993, 1(3): 43-49.
Li S K, Liu J D, Zhang W F, Wei B J, Yang G, Zhao H. Regulation of distribution weight of maize root in field soil with different density and its relationship with above-ground part. J Maize Sci, 1993, 1(3): 43-49. (in Chinese with English abstract)
[34] 罗瑶年, 张健华. 玉米叶片衰老田间因素的分析及其与产量的关系. 玉米科学, 1995, 3(4): 34-38.
Luo Y N, Zhang J H. Investigation on field factors of leaf senescence and their relation to yield in maize. J Maize Sci, 1995, 3(4): 34-38. (in Chinese with English abstract)
[35] 翟娟, 薛军, 张园梦, 张国强, 沈东萍, 王群, 刘朝巍, 李少昆. 水肥一体化条件下施氮量对密植春玉米茎秆抗倒伏性状的影响. 玉米科学, 2021, 29(5): 137-144.
Zhai J, Xue J, Zhang Y M, Zhang G Q, Shen D P, Wang Q, Liu C W, Li S K. Effect of nitrogen application rate on lodging resistance of spring maize stalks under integrated irrigation with water and fertilizer. J Maize Sci, 2021, 29(5): 137-144. (in Chinese with English abstract)
[36] 宋日, 刘利, 吴春胜, 马丽艳. 根系生长空间对玉米生长和养分吸收的影响. 西北农林科技大学学报(自然科学版), 2009, 37(6): 58-64.
Song R, Liu L, Wu C S, Ma L Y. Effects of root growth space on growth and N and P uptake in corn (Zea mays L.). J Northwest A&F Univ (Nat Sci Edn), 2009, 37(6): 58-64. (in Chinese with English abstract)
[1] 张金鑫, 葛均筑, 马玮, 丁在松, 王新兵, 李从锋, 周宝元, 赵明. 华北平原冬小麦-夏玉米种植体系周年水分高效利用研究进展[J]. 作物学报, 2023, 49(4): 879-892.
[2] 舒泽兵, 罗万宇, 蒲甜, 陈国鹏, 梁冰, 杨文钰, 王小春. 基于高产与高效条件下鲜食玉米鲜食大豆带状间作田间配置技术优化[J]. 作物学报, 2023, 49(4): 1140-1150.
[3] 张晨晖, 章岩, 李国辉, 杨子君, 查莹莹, 周驰燕, 许轲, 霍中洋, 戴其根, 郭保卫. 侧深施肥下水稻高产形成的根系形态及其生理变化特征[J]. 作物学报, 2023, 49(4): 1039-1051.
[4] 栾奕, 白岩, 卢实, 李磊鑫, 王德强, 高婷婷, 石洁, 杨洪明, 路明. “十三五”国家东华北春玉米区域试验品种抗病性评价[J]. 作物学报, 2023, 49(4): 1122-1131.
[5] 吴宗声, 徐彩龙, 李瑞东, 徐一帆, 孙石, 韩天富, 宋雯雯, 吴存祥. 麦秸覆盖还田对大豆耕层物理性状及产量形成的影响[J]. 作物学报, 2023, 49(4): 1052-1064.
[6] 吴希, 王家瑞, 郝淼艺, 张宏军, 张仁和. 种植密度对不同生育期玉米品种光温资源利用率和产量的影响[J]. 作物学报, 2023, 49(4): 1065-1078.
[7] 吴香奇, 刘博, 张威, 杨雪妮, 郭子艳, 刘铁宁, 张旭东, 韩清芳. 小麦豌豆间作对群体光合特性和生产力的影响[J]. 作物学报, 2023, 49(4): 1079-1089.
[8] 许加波, 吴鹏昊, 黄博文, 陈占辉, 马月虹, 任姣姣. 利用F2:3家系来源单倍体定位玉米雄穗相关性状QTL及全基因组选择[J]. 作物学报, 2023, 49(3): 622-633.
[9] 马雅杰, 鲍建喜, 高悦欣, 李雅楠, 秦文萱, 王彦博, 龙艳, 李金萍, 董振营, 万向元. 玉米株高和穗位高性状全基因组关联分析[J]. 作物学报, 2023, 49(3): 647-661.
[10] 刘姗姗, 庞婷, 袁晓婷, 罗凯, 陈平, 付智丹, 王小春, 杨峰, 雍太文, 杨文钰. 种间距对不同结瘤特性套作大豆根瘤生长及固氮潜力的影响[J]. 作物学报, 2023, 49(3): 833-844.
[11] 郭宏, 于霁雯, 裴文锋, 关永虎, 李航, 李长喜, 刘金伟, 王伟, 王宝全, 梅拥军. 南疆陆地棉杂种F2的遗传分析及遗传主效聚类[J]. 作物学报, 2023, 49(3): 608-621.
[12] 方娅婷, 任涛, 张顺涛, 周橡棋, 赵剑, 廖世鹏, 丛日环, 鲁剑巍. 氮磷钾肥对旱地和水田油菜产量及养分利用的影响差异[J]. 作物学报, 2023, 49(3): 772-783.
[13] 邓照, 蒋环琪, 程丽沙, 刘睿, 黄敏, 李曼菲, 杜何为. 利用WGCNA鉴定玉米非生物胁迫相关基因共表达网络[J]. 作物学报, 2023, 49(3): 672-686.
[14] 殷芳冰, 李雅楠, 鲍建喜, 马雅杰, 秦文萱, 王锐璞, 龙艳, 李金萍, 董振营, 万向元. 玉米雌穗产量相关性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2023, 49(2): 377-391.
[15] 宋杰, 王少祥, 李亮, 黄金苓, 赵斌, 张吉旺, 任佰朝, 刘鹏. 施钾量对夏玉米氮、磷、钾吸收利用和籽粒产量的影响[J]. 作物学报, 2023, 49(2): 539-551.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .