欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (4): 1052-1064.doi: 10.3724/SP.J.1006.2023.24051

• 耕作栽培·生理生化 • 上一篇    下一篇

麦秸覆盖还田对大豆耕层物理性状及产量形成的影响

吴宗声1,**(), 徐彩龙1,**(), 李瑞东1, 徐一帆1,2, 孙石1, 韩天富1, 宋雯雯1,*(), 吴存祥1,*()   

  1. 1中国农业科学院作物科学研究所/国家大豆产业技术研发中心, 北京 100081
    2东北农业大学, 黑龙江哈尔滨 150006
  • 收稿日期:2022-03-08 接受日期:2022-09-05 出版日期:2023-04-12 网络出版日期:2022-09-15
  • 通讯作者: *吴存祥, E-mail: wucunxiang@caas.cn;宋雯雯, E-mail: songwenwen@caas.cn
  • 作者简介:吴宗声, E-mail: 3193617957@qq.com;
    徐彩龙, E-mail: xucailong@caas.cn
    **同等贡献
  • 基金资助:
    国家重点研发计划项目(2018YFD1000900);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-04);国家自然科学基金项目(32101845);中国农业科学院科技创新工程项目资助

Effects of wheat straw mulching on physical properties of topsoil and yield formation in soybean

WU Zong-Sheng1,**(), XU Cai-Long1,**(), LI Rui-Dong1, XU Yi-Fan1,2, SUN Shi1, HAN Tian-Fu1, SONG Wen-Wen1,*(), WU Cun-Xiang1,*()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Soybean Industrial Technology R&D Center, Beijing 100081, China
    2College of Agronomy, Northeast Agricultural University, Harbin 150006, Heilongjiang, China
  • Received:2022-03-08 Accepted:2022-09-05 Published:2023-04-12 Published online:2022-09-15
  • Contact: *E-mail: wucunxiang@caas.cn;E-mail: songwenwen@caas.cn
  • About author:**Contributed equally to this work
  • Supported by:
    National Key Research and Development Program of China(2018YFD1000900);China Agriculture Research System of MOF and MARA(CARS-04);National Natural Science Foundation of China(32101845);Agriculture Science and Technology Innovation Program in CAAS

摘要:

黄淮海是我国优质高蛋白大豆主产区, 但前茬小麦秸秆严重制约着该地区的大豆生产。本试验通过研究秸秆免耕覆盖还田下大豆耕层温度、含水量、容重、团粒结构等耕层物理性状以及大豆产量构成因素, 试图解析免耕配合秸秆覆盖还田对耕层结构及大豆产量的调控机制, 为黄淮海地区大豆高产耕作模式的选择提供理论依据。采用裂区试验设计, 主区为肥料处理, 设施肥(F: 225 kg hm-2)与不施肥(NF); 副区为秸秆处理, 设免耕秸秆不还田(SR)、免耕秸秆覆盖还田(SM)和免耕秸秆粉碎还田(SC)。结果表明: (1) 免耕配合秸秆覆盖还田对耕层的影响主要集中在0~10 cm内。(2) SM与SC较SR耕层温度分别下降0.21℃和0.17℃, 土壤含水量分别增加13.18%和9.07%; SM较SR与SC土壤容重分别下降2.61%和2.87%, 耕层固相占比分别降低2.60%和3.01%, >2 mm土壤团聚体分别增加6.84%和3.14%。(3) SM与SC较SR单株荚数分别增加22.41%和9.49%, 单株粒数分别增加18.20%和7.51%, 百粒重分别增加1.18%和2.40%, 单株产量分别增加39.16%和18.07%, 单位面积产量分别增加11.56%和5.43%; SM较SC增产效果显著, 施肥对秸秆还田的增产效果具有促进作用。综上所述, 麦茬夏大豆免耕覆秸精量播种技术在大豆耕层环境优化与促进产量形成方面具有显著优势。

关键词: 夏大豆, 耕层温度, 物理性质, 产量

Abstract:

Huang-Huai-Hai Rivers region is the main producing area of soybean with high protein content in China. However, the previous wheat straw seriously restricts the production of summer soybean in this area. The traditional farming system with high input and low output cannot meet the demand for high-quality soybean. In this experiment, the soil temperature, soil moisture content, soil apparent density, and soil aggregate structure of the topsoil, yield and yield composition of soybean under different crop system were investigated. The aim of this study is to analyze the regulation mechanism of no-tillage combined with straw mulching on surface soil structure and soybean yield, and to provide theoretical reference for the selection of the best crop system for soybean in the Huang-Huai-Hai Rivers region. A split-plot experimental design was adopted in the experiment. The main plot was fertilizer treatment [fertilization (F: 225 kg hm-2) and no fertilization (NF)]. The subplot was straw treatment [no-tillage without straw returning (SR), no-tillage with straw mulching (SM), and no-tillage with straw crushing returning (SC)]. The results showed that: (1) The effect of no-tillage combined with straw returning on the surface layer was mainly concentrated in soil depth of 0-10 cm. (2) Compared with SR, the soil temperature of SM and SC decreased by 0.21°C and 0.17°C, respectively. The soil water content increased by 13.18% and 9.07%, respectively. Compared with SR and SC, the soil apparent density of SM decreased by 2.61% and 2.87%, respectively, the solid phase proportion of the plough layer decreased by 2.60% and 3.01%, respectively, and the soil aggregate >2 mm increased by 6.84% and 3.14%, respectively. (3) Compared with SR, the number of pods per plant in SM and SC treatments increased by 22.41% and 9.49%, the 100-seed weight of soybean under SM and SC increased by 1.18% and 2.40%, while the number of grains per plant under SM and SC increased by18.20% and 7.51%, respectively. In addition, compared with SR, the yield and yield per plant were increased by 11.56% and 39.16% in SM and 5.43% and 18.07% in SC, respectively. In this study, the fertilization can promote yield increase effects on straw returning, and SM has a more significant yield increase effect than SC. In conclusion, no-tillage plus straw mulching and precise sowing cultivation technology for summer soybean after winter wheat has significant advantages in optimizing soybean root layer environment and promoting yield formation.

Key words: soybean, soil temperature, soil physical properties, yield

图1

试验期间降雨量及温度"

图2

秸秆还田对耕层温度的影响 SR: 免耕秸秆不还田; SM: 免耕秸秆覆盖还田; SC: 免耕秸秆粉碎还田。"

图3

秸秆还田与肥料施用对土壤含水量的影响 S: 秸秆; F: 施肥; NF: 不施肥; SR: 免耕秸秆不还田; SM: 免耕秸秆覆盖还田; SC: 免耕秸秆粉碎还田。**表示在0.01概率水平差异显著; Ns: 差异不显著。VE: 出苗期; V3: 三叶期; R1: 始花期; R3: 始荚期; R5: 鼓粒期; R7: 初熟期; R8: 完熟期。"

图4

秸秆还田对土壤容重的影响 SR: 免耕秸秆不还田; SM: 免耕秸秆覆盖还田; SC: 免耕秸秆粉碎还田。不同小写字母表示处理间差异显著(P < 0.05)。"

图5

秸秆还田对耕层三相的影响 SR: 免耕秸秆不还田; SM: 免耕秸秆覆盖还田; SC: 免耕秸秆粉碎还田; BEST: 最佳三相比。"

表1

秸秆还田与肥料施用对土壤稳定性的影响"

粒级
Aggregate size
0-5 cm 5-10 cm 10-20 cm
<0.25 mm 0.25-2 mm >2 mm <0.25 mm 0.25-2 mm >2 mm <0.25 mm 0.25-2 mm >2 mm
秸秆Straw (S) Ns ** ** Ns ** ** ** ** **
施肥Fertilization (F) Ns ** Ns Ns ** ** * * **
秸秆×施肥S×F * Ns * * ** ** * ** **

图6

秸秆还田与肥料施用对耕层团粒结构的影响 F: 施肥; NF: 不施肥; SR: 免耕秸秆不还田; SM: 免耕秸秆覆盖还田; SC: 免耕秸秆粉碎还田。"

表2

秸秆还田与肥料施用对大豆产量形成的影响"

年份 Year 处理
Treatment
百粒重
100-seed weight (g)
单株荚数
Pods number per plant
单株粒数
Seeds number per plant
单株产量
Yield per plant (g)
2020 NF SR 17.49±0.32 a 38.00±0.69 c 83.80±5.32 b 14.31±0.30 b
SM 17.05±0.27 a 46.93±1.60 a 101.13±2.72 a 17.34±0.65 a
SC 17.59±0.21 a 41.90±0.52 b 84.50±3.18 b 16.05±0.83 ab
F SR 18.20±0.09 a 44.80±0.92 b 99.20±4.85 b 16.02±0.53 b
SM 17.68±0.30 a 58.53±1.00 a 131.33±1.21 a 20.11±1.12 a
SC 18.30±0.53 a 49.07±1.92 b 117.40±3.23 a 18.61±0.31 a
2021 NF SR 21.79±0.07 b 37.40±1.50 b 83.10±0.94 b 16.59±0.33 c
SM 22.64±0.19 a 46.36±1.51 a 91.00±1.14 a 28.93±0.54 a
SC 22.26±0.01 a 42.64±1.31 a 85.73±2.99 ab 22.61±0.65 b
年份 Year 处理
Treatment
百粒重
100-seed weight (g)
单株荚数
Pods number per plant
单株粒数
Seeds number per plant
单株产量
Yield per plant (g)
2021 F SR 21.31±0.04 b 57.60±0.77 b 126.10±2.25 b 23.98±0.25 b
SM 22.63±0.01 a 64.23±1.65 a 139.00±1.04 a 32.51±0.66 a
SC 22.65±0.16 a 60.00±1.49 b 135.80±0.83 a 25.82±1.05 b
施肥Fertilization (F) Ns ** ** **
秸秆还田Straw (S) ** ** ** **
F×S ** Ns Ns Ns

图7

秸秆还田与肥料施用对大豆产量的影响 S表示秸秆, F表示施肥; **表示在0.01概率水平差异显著; Ns 表示差异不显著。不同小写字母表示处理间差异显著(P < 0.05)。"

表3

秸秆还田配合肥料施用的年际间效应分析"

年份 Year NF-SR NF-SM NF-SC F-SR F-SM F-SC
荚数
Pod number
2020 38.00 a 46.93 a 41.90 a 44.80 b 58.53 a 49.07 b
2021 37.40 a 46.36 a 42.64 a 57.60 a 64.23 a 60.00 a
粒数
Seed number
2020 83.80 a 101.13 a 84.50 a 99.20 b 131.33 a 117.40 b
2021 83.10 a 91.00 a 85.73 a 126.10 a 139.00 a 135.80 a
百粒重
100-seed weight (g)
2020 17.49 b 17.05 b 17.59 b 18.20 b 17.68 b 18.30 b
2021 21.79 a 22.64 a 22.26 a 21.31 a 22.63 a 22.65 a
单株产量
Yield per plant (g)
2020 14.31 b 17.34 b 16.05 b 16.02 b 20.11 b 18.61 b
2021 16.59 a 28.93 a 22.61 a 23.98 a 32.51 a 25.82 a
>2 mm团粒
>2 mm aggregate (%)
2020 41.39 b 49.95 b 47.42 b 40.41 b 44.27 b 42.73 b
2021 55.56 a 62.02 a 59.41 a 56.98 a 55.24 a 56.43 a
单位面积产量
Yield (kg hm-2)
2020 3525.56 b 3874.74 b 3833.43 a 4544.23 b 4800.05 b 4699.55 a
2021 3909.92 a 4616.35 a 4134.33 a 4726.53 a 5323.49 a 4907.06 a
年份 Year NF-SR NF-SM NF-SC F-SR F-SM F-SC
SR SM SC
容重
Bulk density (g cm-3)
2020 1.54 a 1.47 a 1.50 a
2021 1.41 b 1.39 a 1.45 a
总孔隙度
Total porosity (%)
2020 41.46 b 44.51 a 43.50 a
2021 46.89 a 47.08 a 44.79 a

图8

主成分分析 SR: 免耕秸秆不还田; SM: 免耕秸秆覆盖还田; SC: 免耕秸秆粉碎还田。"

图9

不同处理结果综合分析 SR: 免耕秸秆不还田; SM: 免耕秸秆覆盖还田; SC: 免耕秸秆粉碎还田。"

[1] 尹阳阳, 徐彩龙, 宋雯雯, 胡水秀, 吴存祥. 密植是挖掘大豆产量潜力的重要栽培途径. 土壤与作物, 2019, 8: 361-367.
Yin Y Y, Xu C L, Song W W, Hu S X, Wu C X. Increasing planting density is an important approach to achieve the potential of soybean yield. Soils Crops, 2019, 8: 361-367. (in Chinese with English abstract)
[2] 宋雯雯, 秦培友, 杨修仕, 任贵兴, 韩天富. 中国大豆品质性状的地理分布. 大豆科技, 2013, (3): 5.
Song W W, Qin P Y, Yang X S, Ren G X, Han T F. Geographical distribution of soybean quality traits in China. Soybean Sci Technol, 2013, (3): 5. (in Chinese with English abstract)
[3] 徐彩龙, 韩天富, 吴存祥. 黄淮海麦茬大豆免耕覆秸精量播种栽培技术研究. 大豆科学, 2018, 37: 197-201.
Xu C L, Han T F, Wu C X. No-tillage plus straw mulching and precise sowing cultivation technology research for soybean after winter wheat in Huang-Huai-Hai region. Soybean Sci, 2018, 37: 197-201. (in Chinese with English abstract)
[4] 赵明, 周宝元, 马玮, 李从锋, 丁在松, 孙雪芳. 粮食作物生产系统定量调控理论与技术模式. 作物学报, 2019, 45: 485-498.
doi: 10.3724/SP.J.1006.2019.83051
Zhao M, Zhou B Y, Ma W, Li C F, Ding Z S, Sun X F. Theoretical and technical models of quantitative regulation in food crop production system. Acta Agron Sin, 2019, 45: 485-498. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.83051
[5] Wang Y, Wu P, Mei F, Ling Y, Wang T. Does continuous straw returning keep China farmland soil organic carbon continued increase? a meta-analysis. J Environ Manage, 2021, 288: 112391.
doi: 10.1016/j.jenvman.2021.112391
[6] 王秋菊, 常本超, 张劲松, 韩东来, 隋玉刚, 陈海龙, 杨兴玉, 王雪冬, 焦峰, 新家宪, 刘峰. 长期秸秆还田对白浆土物理性质及水稻产量的影响. 中国农业科学, 2017, 50: 2748-2757.
Wang Q J, Chang B C, Zhang J S, Han D L, Sui Y G, Chen H L, Yang Y X, Wang X D, Jiao F, Xin J X, Liu F. Effects of albic soil physical properties and rice yield after long-term straw incorporation. Sci Agric Sin, 2017, 50: 2748-2757. (in Chinese with English abstract)
[7] 白伟, 安景文, 张立祯, 逄焕成, 孙占祥, 牛世伟, 蔡倩. 秸秆还田配施氮肥改善土壤理化性状提高春玉米产量. 农业工程学报, 2017, 33(15): 168-176.
Bai W, An J W, Zhang L Z, Pang H C, Sun Z X, Niu S W, Cai Q. Improving of soil physical and chemical properties and increasing spring maize yield by straw turnover plus nitrogen fertilizer. Trans CSAE, 2017, 33(15): 168-176. (in Chinese with English abstract)
[8] 白伟, 孙占祥, 张立祯, 郑家明, 冯良山, 蔡倩, 向午燕, 冯晨, 张哲. 耕层构造对土壤三相比和春玉米根系形态的影响. 作物学报, 2020, 46: 759-771.
doi: 10.3724/SP.J.1006.2020.93044
Bai W, Sun Z X, Zhang L Z, Zheng J M, Feng L S, Cai Q, Xiang W Y, Feng C, Zhang Z. Effects of plough layer construction on soil three phase rate and root morphology of spring maize in northeast China. Acta Agron Sin, 2020, 46: 759-771. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.93044
[9] 朴琳, 李波, 陈喜昌, 丁在松, 张宇, 赵明, 李从锋. 优化栽培措施对春玉米密植群体冠层结构及产量形成的调控效应. 中国农业科学, 2020, 53: 3048-3058.
Piao L, Li B, Chen X C, Ding Z S, Zhang Y, Zhao M, Li C F. Regulation effects of improved cultivation measures on canopy structure and yield formation of dense spring maize population. Sci Agric Sin, 2020, 53: 3048-3058. (in Chinese with English abstract).
[10] Xu C L, Li R D, Song W W, Wu T T, Sun S, Shen W L, Hu S X, Han T F, Wu C X. Integrating straw management and seeding to improve seed yield and reduce environmental impacts in soybean production. Agronomy, 2021, 11: 1033-1033.
doi: 10.3390/agronomy11061033
[11] 王幸, 吴存祥, 齐玉军, 徐泽俊, 王宗标, 韩天富. 麦秸处理和播种方式对夏大豆农艺性状及土壤物理性状的影响. 中国农业科学, 2016, 49: 1453-1465.
Wang X, Wu C X, Qi Y J, Xu Z J, Wang Z B, Han T F. Effects of straw management and sowing methods on soybean agronomic traits and soil physical properties. Sci Agric Sin, 2016, 49: 1453-1465. (in Chinese with English abstract)
[12] 赵俊卿, 任建军, 卢为国, 陈海涛, 朱贝贝, 段国占, 韩天富, 吴存祥. 免耕覆秸精量播种对大豆生长发育和产量构成因素的影响. 大豆科学, 2012, 31: 734-738.
Zhao J Q, Ren J J, Lu W G, Chen H T, Zhu B B, Duan G Z, Han T F, Wu C X. Effects of no-tillage and straw mulching precise sowing on growth, development and yield components of post- wheat summer-sowing soybean in Huang-Huai-Hai region. Soybean Sci, 2012, 31: 734-738. (in Chinese with English abstract)
[13] Krauss M, Wiesmeier M, Don A, Cuperus F, Gattinger A, Gruber S, Haagsma W K, Peigné J, Palazzoli M C, Schulz F, van der Heijden M G A, Wittwer R A, Zikeli S, Steffens M. Reduced tillage in organic farming affects soil organic carbon stocks in temperate Europe. Soil Tillage Res, 2022, 216: 105262.
doi: 10.1016/j.still.2021.105262
[14] 张维理, Kolbe H, 张认连. 土壤有机碳作用及转化机制研究进展. 中国农业科学, 2020, 53: 317-331.
Zhang W L, Kolbe H, Zhang R L. Research progress of SOC functions and transformation mechanisms. Sci Agric Sin, 2020, 53: 317-331. (in Chinese with English abstract)
[15] 李全起, 陈雨海, 于舜章, 吴巍, 周勋波, 董庆裕, 余松烈. 灌溉与秸秆覆盖条件下冬小麦农田小气候特征. 作物学报, 2006, 32: 306-309.
Li Q Q, Chen Y H, Yu S Z, Wu W, Zhou X B, Dong Q Y, Yu S L. Micro-climate of winter wheat field under the conditions of irrigation and straw mulching. Acta Agron Sin, 2006, 32: 306-309. (in Chinese with English abstract)
[16] 邓浩亮, 张恒嘉, 肖让, 张永玲, 田建良, 李福强, 王玉才, 周宏, 李煊. 陇中半干旱区不同覆盖种植方式对土壤水热效应和玉米产量的影响. 中国农业科学, 2020, 53: 273-287.
Deng H L, Zhang H J, Xiao R, Zhang Y L, Tian J L, Li F Q, Wang Y C, Zhou H, Li X. Effects of different covering planting patterns on soil moisture, temperature characteristics and maize yield in semi-arid region of the loess plateau. Sci Agric Sin, 2020, 53: 273-287. (in Chinese with English abstract)
[17] Qin X L, Huang T T, Lu C, Dang P F, Zhang M M, Guan X K, Wen P F, Wang T C, Chen Y L, Siddique K H M. Benefits and limitations of straw mulching and incorporation on maize yield, water use efficiency, and nitrogen use efficiency. Agric Water Manag, 2021, 256: 107128.
doi: 10.1016/j.agwat.2021.107128
[18] 殷文, 柴强, 胡发龙, 樊志龙, 范虹, 于爱忠, 赵财. 干旱内陆灌区不同秸秆还田方式下春小麦田土壤水分利用特征. 中国农业科学, 2019, 52: 1247-1259.
Yin W, Chai Q, Hu F L, Fan Z L, Fan H, Yu A Z, Zhao C. Characteristics of soil water utilization in spring wheat field with different straw retention approaches in dry inland irrigation areas. Sci Agric Sin, 2019, 52: 1247-1259. (in Chinese with English abstract).
[19] 赵云, 徐彩龙, 杨旭, 李素真, 周静, 李继存, 韩天富, 吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响. 作物杂志, 2018, (4): 114-120.
Zhao Y, Xu C L, Yang X, Li S Z, Zhou J, Li J C, Han T F, Wu C X. Effects of sowing methods on seeding and production profit of summer soybean under wheat-soybean system. Crops, 2018, (4): 114-120. (in Chinese with English abstract)
[20] 普雪可, 吴春花, 勉有明, 苗芳芳, 侯贤清, 李荣. 不同覆盖方式对旱作马铃薯生长及土壤水热特征的影响. 中国农业科学, 2020, 53: 734-747.
Pu X K, Wu C H, Mian Y M, Miao F F, Hou X Q, Li R. Effects of different mulching patterns on growth of potato and characteristics of soil water and temperature in dry farmland. Sci Agric Sin, 2020, 53: 734-747. (in Chinese with English abstract)
[21] Zhao J, Lu Y, Tian H L, Jia H L, Guo M Z. Effects of straw returning and residue cleaner on the soil moisture content, soil temperature, and maize emergence rate in China’s three major maize producing areas. Sustainability, 2019, 11: 5796.
doi: 10.3390/su11205796
[22] 马永财, 滕达, 衣淑娟, 刘少东, 王汉羊. 秸秆覆盖还田及腐解率对土壤温湿度与玉米产量的影响. 农业机械学报, 2021, 52(10): 90-99.
Ma Y C, Teng D, Yi S J, Liu S D, Wang H Y. Effects of straw mulching and decomposition rate on soil temperature and humidity and maize yield. Trans CSAM, 2021, 52(10): 90-99 (in Chinese with English abstract).
[23] Yan Z J, Zhou J, Yang L, Gunina A, Yang Y D, Peixoto L, Zeng Z H, Zang H D, Kuzyakov Y. Diversified cropping systems benefit soil carbon and nitrogen stocks by increasing aggregate stability: results of three fractionation methods. Sci Total Environ, 2022, 824: 153878.
doi: 10.1016/j.scitotenv.2022.153878
[24] 郭孟洁, 李建业, 李健宇, 齐佳睿, 张兴义. 实施16年保护性耕作下黑土土壤结构功能变化特征. 农业工程学报, 2021, 37(22): 108-118.
Guo M J, Li J Y, Li J Y, Qi J R, Zhang X Y. Changes of soil structure and function after 16-year conservation tillage in back soil. Trans CSAE, 2021, 37(22): 108-118. (in Chinese with English abstract)
[25] Huang T T, Yang N, Lu C, Qin X L, Siddique K H M. Soil organic carbon, total nitrogen, available nutrients, and yield under different straw returning methods. Soil Tillage Res, 2021, 214: 105171.
doi: 10.1016/j.still.2021.105171
[26] Anning D K, Qiu H Z, Zhang C H, Ghanney P, Zhang Y J, Guo Y J. Maize straw return and nitrogen rate effects on potato performance and soil physicochemical characteristics in northwest China. Sustainability, 2021, 13: 5508.
doi: 10.3390/su13105508
[27] 郑凤君, 王雪, 李生平, 刘晓彤, 刘志平, 卢晋晶, 武雪萍, 席吉龙, 张建诚, 李永山. 免耕覆盖下土壤水分、团聚体稳定性及其有机碳分布对小麦产量的协同效应. 中国农业科学, 2021, 54: 596-607.
Zheng F J, Wang X, Li S P, Liu X T, Liu Z P, Lu J J, Wu X P, Xi J L, Zhang J C, Li Y S. Synergistic effects of soil moisture, aggregate stability and organic carbon distribution on wheat yield under no-tillage practice. Sci Agric Sin, 2021, 54: 596-607. (in Chinese with English abstract)
[28] 苗芳芳, 勉有明, 普雪可, 吴春花, 周永瑾, 侯贤清. 耕作覆盖对宁南旱区土壤团粒结构及马铃薯水分利用效率的影响. 中国农业科学, 2021, 54: 2366-2376.
Miao F F, Mian Y M, Pu X K, Wu C H, Zhou Y J, Hou X Q. Effects of tillage with mulching on soil aggregate structure and water use efficiency of potato in dry-farming area of southern Ningxia. Sci Agric Sin, 2021, 54: 2366-2376. (in Chinese with English abstract)
[29] 汤文光, 肖小平, 唐海明, 张海林, 陈阜, 陈中督, 薛建福, 杨光立. 长期不同耕作与秸秆还田对土壤养分库容及重金属Cd的影响. 应用生态学报, 2015, 26: 168-176.
Tang W G, Xiao X P, Tang H M, Zhang H L, Chen F, Chen Z D, Xue J F, Yang G L. Effects of long-term tillage and rice straw returning on soil nutrient pools and Cd concentration. Chin J Appl Ecol, 2015, 26: 168-176. (in Chinese with English abstract)
[30] Zhang L, Mao L L, Yan X Y, Liu C M, Song X L, Sun X Z. Long-term cotton stubble return and subsoiling increases cotton yield through improving root growth and properties of coastal saline soil. Ind Crops Prod, 2022, 177: 114472.
doi: 10.1016/j.indcrop.2021.114472
[31] 高中超, 宋柏权, 王翠玲, 高文超, 张丽丽, 孙磊, 郝小雨, 刘峰. 不同机械深耕的改土及促进作物生长和增产效果. 农业工程学报, 2018, 34(12): 79-86.
Gao Z C, Song B Q, Wang C L, Gao W C, Zhang L L, Sun L, Hao X Y, Liu F. Soil amelioration by deep ploughing of different machineries and its effect on promoting crop growth and yield. Trans CSAE, 2018, 34(12): 79-86. (in Chinese with English abstract).
[32] Cui H X, Luo Y L, Chen J, Jin M, Li Y, Wang Z L. Straw return strategies to improve soil properties and crop productivity in a winter wheat-summer maize cropping system. Eur J Agron, 2022, 133: 126436.
doi: 10.1016/j.eja.2021.126436
[33] 杨竣皓, 骆永丽, 陈金, 金敏, 王振林, 李勇. 秸秆还田对我国主要粮食作物产量效应的整合(Meta)分析. 中国农业科学, 2020, 53: 4415-4429.
Yang J H, Luo Y L, Chen J, Jin M, Wang Z L, Li Y. Effects of main food yield under straw return in China: a meta-analysis. Sci Agric Sin, 2020, 53: 4415-4429. (in Chinese with English abstract).
[34] Zhao J H, Liu Z X, Gao F, Wang Y, Lai H J, Pan X Y, Yang D Q, Li X D. A 2-year study on the effects of tillage and straw management on the soil quality and peanut yield in a wheat-peanut rotation system. J Soils Sediments, 2021, 21: 1698-1712.
doi: 10.1007/s11368-021-02908-z
[35] 刘艳慧, 王双磊, 李金埔, 秦都林, 张美玲, 聂军军, 毛丽丽, 宋宪亮, 孙学振. 棉花秸秆还田对土壤速效养分及微生物特性的影响. 作物学报, 2016, 42: 1037-1046.
doi: 10.3724/SP.J.1006.2016.01037
Liu Y H, Wang S L, Li J P, Qin D L, Zhang M L, Nie J J, Mao L L, Song X L, Sun X Z. Effects of cotton straw returning on soil available nutrients and microbial characteristics. Acta Agron Sin, 2016, 42: 1037-1046. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.01037
[36] Ma L J, Kong F X, Wang Z, Luo Y, Lyu X B, Zhou Z G, Meng Y L. Growth and yield of cotton as affected by different straw returning modes with an equivalent carbon input. Field Crops Res, 2019, 243: 107616.
doi: 10.1016/j.fcr.2019.107616
[37] Zhao J L, Wang X G, Zhuang J, Cong Y J, Lu Y, Guo M Z. Fine-crush straw returning enhances dry matter accumulation rate of maize seedlings in northeast China. Agronomy, 2021, 11: 1144.
doi: 10.3390/agronomy11061144
[38] 安俊朋, 李从锋, 齐华, 隋鹏祥, 张文可, 田平, 有德宝, 梅楠, 邢静. 秸秆条带还田对东北春玉米产量、土壤水氮及根系分布的影响. 作物学报, 2018, 44: 774-782.
doi: 10.3724/SP.J.1006.2018.00774
An J P, Li C F, Qi H, Sui P X, Zhang W K, Tian P, You D B, Mei N, Xing J. Effects of straw strip returning on spring maize yield, soil moisture, nitrogen contents and root distribution in northeast China. Acta Agron Sin, 2018, 44: 774-782. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00774
[39] 邹文秀, 韩晓增, 陆欣春, 陈旭, 郝翔翔, 严君. 秸秆还田后效对玉米氮肥利用率的影响. 中国农业科学, 2020, 53: 4237-4247.
Zou W X, Han X Z, Lu X C, Chen X, Hao X X, Yan J. Effect of Maize straw return aftereffect on nitrogen use efficiency of maize. Sci Agric Sin, 2020, 53: 4237-4247. (in Chinese with English abstract)
[40] Huang Y W, Tao B, Zhu X C, Yang Y J, Liang L, Wang L X, Jacinthe P A, Tian H Q, Ren W. Conservation tillage increases corn and soybean water productivity across the Ohio River Basin. Agric Water Manag, 2021, 254: 106962.
doi: 10.1016/j.agwat.2021.106962
[41] Zhang W Z, Chen X Q, Wang H Y, Wei W X, Zhou J M. Long-term straw return influenced ammonium ion retention at the soil aggregate scale in an anthrosol with rice-wheat rotations in China. J Integr Agric, 2020, 21: 521-531.
doi: 10.1016/S2095-3119(20)63592-4
[42] 姜英, 王峥宇, 廉宏利, 王美佳, 苏业涵, 田平, 隋鹏祥, 马梓淇, 王英俨, 孟广鑫, 孙悦, 李从锋, 齐华. 耕作和秸秆还田方式对东北春玉米吐丝期根系特征及产量的影响. 中国农业科学, 2020, 53: 3071-3082.
Jiang Y, Wang Z Y, Lian H L, Wang M J, Su Y H, Tian P, Sui P X, Ma Z Q, Wang Y Y, Meng G X, Sun Y, Li C F, Qi H. Effects of tillage and straw incorporation method on root trait at silking stage and grain yield of spring maize in northeast China. Sci Agric Sin, 2020, 53: 3071-3082. (in Chinese with English abstract).
[43] Wang D, Sun C X, Cui M, Shen X B, Zhang Y L, Xiao J H, Liu P Y, Zhang Y, Xie H T. An integrated analysis of transcriptome and metabolome provides insights into the responses of maize (Zea mays L.) roots to different straw and fertilizer conditions. Environ Exp Bot, 2022, 194: 104732.
doi: 10.1016/j.envexpbot.2021.104732
[44] Xu X, Pang D W, Chen J, Luo Y L, Zheng M J, Yin Y P, Li Y X, Li Y, Wang Z L. Straw return accompany with low nitrogen moderately promoted deep root. Field Crops Res, 2018, 221: 71-80.
doi: 10.1016/j.fcr.2018.02.009
[45] Gao F, Zhao B, Dong S, Liu P, Zhang J. Response of maize root growth to residue management strategies. Agron J, 2018, 110: 95-103.
doi: 10.2134/agronj2017.06.0307
[46] Fan Y, Gao J, Sun J, Liu J, Su Z, Wang Z, Yu X, Hu S. Effects of straw returning and potassium fertilizer application on root characteristics and yield of spring maize in China inner Mongolia. Agron J, 2021, 113: 4369-4385.
doi: 10.1002/agj2.20742
[47] Sui P, Tian P, Lian H, Wang Z, Ma Z, Qi H, Mei N, Sun Y, Wang Y, Su Y, Meng G, Jiang Y. Straw incorporation management affects maize grain yield through regulating nitrogen uptake, water use efficiency, and root distribution. Agronomy, 2020; 10: 324.
doi: 10.3390/agronomy10030324
[48] 陈梦云, 李晓峰, 程金秋, 任红茹, 梁健, 张洪程, 霍中洋. 秸秆全量还田与氮肥运筹对机插优质食味水稻产量及品质的影响. 作物学报, 2017, 43: 1802-1816.
doi: 10.3724/SP.J.1006.2017.01802
Chen M Y, Li X F, Cheng J Q, Ren H R, Liang J, Zhang H C, Huo Z Y. Effects of total straw returning and nitrogen application regime on grain yield and quality in mechanical transplanting japonica rice with good taste quality. Acta Agron Sin, 2017, 43: 1802-1816. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.01802
[1] 陶玥玥, 盛雪雯, 徐坚, 沈园, 王海候, 陆长婴, 沈明星. 长三角水稻-油菜周年两熟温光资源分配与利用特征[J]. 作物学报, 2023, 49(5): 1327-1338.
[2] 韦海敏, 陶伟科, 周燕, 闫飞宇, 李伟玮, 丁艳锋, 刘正辉, 李刚华. 硅素穗肥优化滨海盐碱地水稻矿质元素吸收分配提高耐盐性[J]. 作物学报, 2023, 49(5): 1339-1349.
[3] 李慧, 王旭敏, 刘苗, 刘朋召, 李巧丽, 王小利, 王瑞, 李军. 基于夏玉米产量和氮素利用的水氮减量方案优选[J]. 作物学报, 2023, 49(5): 1292-1304.
[4] 张俊杰, 陈金平, 汤钰镂, 张锐, 曹红章, 王丽娟, 马梦金, 王浩, 王泳超, 郭家萌, KRISHNA SV Jagadish, 杨青华, 邵瑞鑫. 花期前后干旱胁迫对复水后夏玉米光合特性与产量的影响[J]. 作物学报, 2023, 49(5): 1397-1409.
[5] 岳海旺, 韩轩, 魏建伟, 郑书宏, 谢俊良, 陈淑萍, 彭海成, 卜俊周. 基于GYT双标图分析对黄淮海夏玉米区域试验品种综合评价[J]. 作物学报, 2023, 49(5): 1231-1248.
[6] 刘昕萌, 程乙, 刘玉文, 庞尚水, 叶秀芹, 卜艳霞, 张吉旺, 赵斌, 任佰朝, 任昊, 刘鹏. 黄淮海区域现代夏玉米品种产量与资源利用效率的差异分析[J]. 作物学报, 2023, 49(5): 1363-1371.
[7] 吴香奇, 刘博, 张威, 杨雪妮, 郭子艳, 刘铁宁, 张旭东, 韩清芳. 小麦豌豆间作对群体光合特性和生产力的影响[J]. 作物学报, 2023, 49(4): 1079-1089.
[8] 舒泽兵, 罗万宇, 蒲甜, 陈国鹏, 梁冰, 杨文钰, 王小春. 基于高产与高效条件下鲜食玉米鲜食大豆带状间作田间配置技术优化[J]. 作物学报, 2023, 49(4): 1140-1150.
[9] 张晨晖, 章岩, 李国辉, 杨子君, 查莹莹, 周驰燕, 许轲, 霍中洋, 戴其根, 郭保卫. 侧深施肥下水稻高产形成的根系形态及其生理变化特征[J]. 作物学报, 2023, 49(4): 1039-1051.
[10] 刘月, 明博, 李姚姚, 王克如, 侯鹏, 薛军, 李少昆, 谢瑞芝. 基于根冠协调发展的东北春玉米高产种植密度分析[J]. 作物学报, 2023, 49(3): 795-807.
[11] 郭宏, 于霁雯, 裴文锋, 关永虎, 李航, 李长喜, 刘金伟, 王伟, 王宝全, 梅拥军. 南疆陆地棉杂种F2的遗传分析及遗传主效聚类[J]. 作物学报, 2023, 49(3): 608-621.
[12] 方娅婷, 任涛, 张顺涛, 周橡棋, 赵剑, 廖世鹏, 丛日环, 鲁剑巍. 氮磷钾肥对旱地和水田油菜产量及养分利用的影响差异[J]. 作物学报, 2023, 49(3): 772-783.
[13] 殷芳冰, 李雅楠, 鲍建喜, 马雅杰, 秦文萱, 王锐璞, 龙艳, 李金萍, 董振营, 万向元. 玉米雌穗产量相关性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2023, 49(2): 377-391.
[14] 宋杰, 王少祥, 李亮, 黄金苓, 赵斌, 张吉旺, 任佰朝, 刘鹏. 施钾量对夏玉米氮、磷、钾吸收利用和籽粒产量的影响[J]. 作物学报, 2023, 49(2): 539-551.
[15] 陶士宝, 柯健, 孙杰, 尹传俊, 朱铁忠, 陈婷婷, 何海兵, 尤翠翠, 郭爽爽, 武立权. 长江中下游地区不同穗型中籼杂交稻高产群体农艺特征[J]. 作物学报, 2023, 49(2): 511-525.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .