欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (5): 1397-1409.doi: 10.3724/SP.J.1006.2023.23003

• 耕作栽培·生理生化 • 上一篇    下一篇

花期前后干旱胁迫对复水后夏玉米光合特性与产量的影响

张俊杰1(), 陈金平2, 汤钰镂1, 张锐3, 曹红章1, 王丽娟1, 马梦金1, 王浩1, 王泳超1, 郭家萌1, KRISHNA SV Jagadish4, 杨青华1, 邵瑞鑫1,*()   

  1. 1河南农业大学农学院/省部共建小麦玉米作物学国家重点实验室/作物生长发育调控教育部重点实验室, 中国河南郑州 450046
    2河南商丘农田生态系统国家野外科学观测研究站, 中国河南商丘 476000
    3河南省农业技术推广总站, 中国河南郑州 450046
    4德克萨斯州立大学植物与土壤科学系, 美国德克萨斯州拉巴克 79410
  • 收稿日期:2022-01-07 接受日期:2022-10-10 出版日期:2023-05-12 网络出版日期:2022-10-26
  • 通讯作者: *邵瑞鑫, E-mail: shao_rui_xin@126.com
  • 作者简介:E-mail: zjj3021435607@163.com
  • 基金资助:
    河南省高校科技创新人才支持计划(20HASTIT036);国家重点研发计划项目子课题(2021YFD1901002-8);中原英才计划——中原青年拔尖人才项目

Effects of drought stress before and after anthesis on photosynthetic characteristics and yield of summer maize after re-watering

ZHANG Jun-Jie1(), CHEN Jin-Ping2, TANG Yu-Lou1, ZHANG Rui3, CAO Hong-Zhang1, WANG Li-Juan1, MA Meng-Jin1, WANG Hao1, WANG Yong-Chao1, GUO Jia-Meng1, KRISHNA SV Jagadish4, YANG Qing-Hua1, SHAO Rui-Xin1,*()   

  1. 1Agronomy College of Henan Agricultural University/National Key Laboratory of Wheat and Maize Crop Science/Key Laboratory of Regulating and Controlling Crop Growth and Development, Ministry of Education, Zhengzhou 450046, Henan, China
    2National Field Science Observation and Research Station of Shangqiu Agricultural Ecology, Shangqiu 476000, Henan, China
    3Henan Province Agricultural Technology Extension General Station, Zhengzhou 450046, Henan, China
    4Department of Plant and Soil Science, Texas Tech University, Lubbock 79410, Texas, USA
  • Received:2022-01-07 Accepted:2022-10-10 Published:2023-05-12 Published online:2022-10-26
  • Contact: *E-mail: shao_rui_xin@126.com
  • Supported by:
    Henan University Science and Technology Innovation Talents Support Plan(20HASTIT036);Sub-project of the National Key Research and Development Program of China(2021YFD1901002-8);Central Plains Talents Program—Central Plains Youth Top Talents

摘要:

花期前后干旱是影响黄淮海地区夏玉米产量下降的重要因素之一。于2020—2021年开展池栽控制性试验, 以中科玉505为试验材料, 在开花前后28 d内设置4个水分梯度, 包括100%作物蒸散量ETC (CK)、70% ETC (干旱胁迫WD1)、40% ETC (WD2)和0 ETC (WD3), 研究花期前后干旱胁迫对夏玉米复水后的光合特性、干物质积累与分配以及产量的影响。结果表明: 干旱胁迫处理复水后夏玉米光合性能没有恢复, 表现为叶片SPAD值、净光合速率和群体叶面积指数、光合势、净同化速率低于对照, 植株干物质积累因此受阻, 导致籽粒库容能力下降。干旱胁迫处理使开花吐丝间隔期延长1~3 d, 籽粒败育率增加, 行粒数和百粒重降低, 尤其是WD3的败育率在2020—2021年分别显著增加220.71%和100.73%, WD1、WD2和WD3的产量在2020—2021年分别减产14.52%、36.69%、39.83%和19.62%、45.18%、54.42%。综上所述, 花期前后干旱胁迫在复水后, 玉米的光合性能仍受到抑制, 进而影响光合同化物的积累与分配, 最终导致库容量和产量显著下降。

关键词: 花期, 干旱, 复水, 夏玉米, 光合特性, 产量

Abstract:

Drought before and after anthesis is one of the important factors affecting the decrease of summer maize yield in Huang-Huai-Hai Rivers region. From 2020 to 2021, a pool planting control experiment was carried out. To study the effect of regulated deficit irrigation before and after anthesis on photosynthetic characteristics, dry matter accumulation and distribution, and yield of summer maize after re-watering, four water gradients were set within 28 days before and after anthesis, including 100% Eapotranspiration (ETc) (CK), 70% ETC (Water deficit, WD1), 40% ETC (WD2), and 0 ETC (WD3) using Zhongkeyu 505 as the test materials. The result showed that the photosynthetic performance of summer maize leaves did not recover after re-watering under drought stress. The SPAD value, net photosynthetic rate, population leaf area index, photosynthetic potential and net assimilation rate were lower than the control, and the dry matter accumulation of the plants was blocked, photosynthetic potential and net assimilation rate were lower than the control, and the dry matter accumulation of the plants was blocked, resulting in the decrease of grain storage capacity. Drought stress prolonged the anthesis-silking interval for 1-3 day (s), increased the seed abortion rate, and decreased the grain number per row and 100-seed weight after re-watering, especially the seed abortion rate in WD3 was significantly increased by 220.71% and 100.73% in 2020 and 2021, respectively. The yield of WD1, WD2, WD3 was decreased by 14.52%, 36.69%, 39.83% and 19.62%, 45.18%, 54.42% in 2020 and 2021, respectively. In conclusion, after re-watering under water deficit before and after anthesis, the photosynthetic performance of maize was still inhibited, which further affected the accumulation and distribution of photosynthetic assimilates, and ultimately leading to a significant decrease in storage capacity and yield.

Key words: anthesis, drought, summer maize, re-watering, photosynthetic characteristics, yield

图1

2020-2021年夏玉米生育时期温度及降水分布 A表示2020年夏玉米生育时期温度及降水分布; B表示2021年夏玉米生育时期温度及降水分布。"

图2

花期前后干旱胁迫对夏玉米开花吐丝间隔期的影响 所有数据为平均值 ± 标准差(n = 3)。图中不同小写字母表示不同处理间差异在0.05概率水平差异显著。CK: 100%作物蒸散量ETC (正常水分处理); WD1: 70% ETC (轻度干旱); WD2: 40% ETC (中度干旱); WD3: 0 ETC (重度干旱)。"

图3

花期前后干旱胁迫对复水后夏玉米叶片光合特性的影响 DAP表示授粉后天数; A、B分别表示2020年和2021年叶片SPAD、PIABS; C、D分别表示2021年授粉后20 d叶片的胞间CO2浓度(Ci)、净光合速率(Pn)。*表示该时期有处理和CK有显著差异。所有数据为平均值 ± 标准差 (n = 3)。图中不同小写字母表示同一时期不同处理间差异在0.05概率水平差异显著。处理同图2。"

图4

花期前后干旱胁迫对复水后夏玉米群体叶面积指数、光合势和净同化速率的影响 DAP表示授粉后天数; A表示2020年和2021年授粉后10 d、20 d和30 d的叶面积指数; B表示2020年和2021年的光合势; C表示2020年和2021年的净同化速率。*表示同一时期不同处理间具有显著差异水平(P < 0.05)。所有数据为平均值 ± 标准差(n = 3)。图中不同小写字母表示不同处理间在0.05概率水平差异显著。处理同图2。"

图5

花期前后干旱胁迫对复水后夏玉米籽粒库容与籽粒库容指数的影响 DAP表示授粉后天数; A表示2020年和2021年授粉后10 d、20 d的库容; B表示2020年和2021年授粉后10 d、20 d的潜在库容指数 (LSC); C表示2020年和2021年授粉后10 d、20 d的籽粒充实指数(KFI)。所有数据为平均值 ± 标准差(n = 3)。图中不同小写字母表示同一时间内不同处理间差异在0.05概率水平差异显著。处理同图2。"

图6

花期前后干旱胁迫对干物质积累及籽粒贡献率的影响 DAP表示授粉后天数; A分别表示2020年和2021年授粉后10 d (DAP10)和收获时茎、叶、鞘、雄穗+苞叶+穗轴、籽粒的积累量; B分别表示2020年和2021年物质再利用对籽粒的贡献率。*表示同一时期不同处理间差异显著(P < 0.05)。所有数据为平均值 ± 标准差(n = 3)。图中不同小写字母表示不同处理间差异在0.05概率水平差异显著。处理同图2。"

表1

花期前后干旱胁迫对夏玉米产量、水分利用效率及穗部性状的影响"

处理
Treatment
穗长
Ear length
(cm)
穗粗
Ear diameter (mm)
穗行数
Ear row
行粒数
Grain number per row
秃尖长
Bald tip length (cm)
败育率
The abortive rate (%)
穗粒数
Grain number
per ear
百粒重
Hundred seeds weight (g)
产量
Yield
(g plant-1)
收获指数Harvest index 水分利用效率 Water use efficiency
(kg hm-2 mm-1)
2020
CK 16.51±1.26 a 46.01±1.18 a 14.00±1.15 a 35.60±2.87 a 2.13±0.16 a 5.89±0.77 c 493.83±46.50 a 30.03±0.59 a 154.79±1.64 a 0.54±0.03 a 19.58±0.05 a
WD1 15.98±1.24 ab 44.79±1.38 b 14.57±1.22 a 32.47±3.38 a 2.19±0.20 a 10.73±1.05 b 478.50±45.94 a 27.33±1.59 b 132.31±2.23 b 0.46±0.03 b 16.88±0.09 b
WD2 15.31±1.25 b 43.88±1.63 bc 14.00±0.76 a 28.20±4.54 b 2.51±0.24 a 11.99±1.94 b 389.85±59.90 b 27.13±1.14 b 98.00±4.85 c 0.41±0.03 c 12.33±0.03 c
WD3 15.00±1.82 b 42.91±1.85 c 14.40±0.89 a 28.44±5.79 b 2.62±0.28 a 18.89±3.14 a 369.00±64.40 b 25.18±2.29 c 93.14±2.51 c 0.36±0.04 d 11.77±0.07 d
2021
CK 16.06±0.96 a 39.95±2.30 a 14.00±1.41 a 37.60±1.17 a 0.49±0.13 b 9.61±2.07 c 401.00±27.73 a 28.74±2.00 a 132.57±1.53 a 0.44±0.04 a 13.71±0.06 a
WD1 15.42±1.54 a 39.47±1.38 a 14.50±1.00 a 34.47±1.88 b 0.77±0.01 b 12.80±1.05 b 352.45±22.37 b 23.32±0.93 b 106.56±1.60 b 0.41±0.05 ab 11.06±0.06 b
WD2 14.50±0.93 b 36.63±1.25 b 14.40±0.89 a 28.80±2.14 c 1.44±0.02 a 13.93±3.06 b 291.31±30.72 c 22.01±1.24 b 72.67±1.17 c 0.37±0.04 ab 7.43±0.02 c
WD3 13.18±0.69 b 37.44±1.41 b 14.67±1.15 a 28.24±2.79 c 1.76±0.39 a 19.29±1.19 a 237.60±29.32 d 19.93±1.62 c 60.43±1.41 d 0.25±0.03 b 6.22±0.04 d

表2

花期前后干旱胁迫条件下2020年的产量及其穗部性状、开花吐丝间隔期、库容的相关分析"

ASI DGS LAI PP B EL ED GNR AR GNE HSW Y
开花吐丝间隔 Anthesis-silking interval (ASI) 1
DAP10库容 DAP10 grain storage (DGS) -0.87* 1
叶面积指数 Leaf area index (LAI) 0.51 0.46 1
光合势 Photosynthetic potential (PP) 0.65 0.45* 0.23 1
总生物量 Biomass (B) -0.55 0.42 0.35 0.18 1
穗长 Ear length (EL) -0.20 0.62 0.35 0.12 0.21 1
穗粗 Ear diameter (ED) -0.55 0.56 0.55* 0.43 0.10 0.52** 1
行粒数 Grain number per row (GNR) -0.76** 0.63 0.52* 0.31 0.14 0.82** 0.68** 1
败育率 Abortive rate (AR) 0.89** -0.87** 0.58* -0.44 -0.59** -0.41* -0.53** -0.44* 1
穗粒数 Grain number per ear (GNE) 0.74* 0.45* 0.39* 0.37* 0.51* 0.39** 0.37* 0.53** -0.72** 1
百粒重 Hundred seeds weight (HSW) -0.96** 0.82** 0.619** 0.64** 0.57** 0.33* 0.28 0.32* -0.77** 0.44** 1
产量 Yield (Y) -0.89** 0.83** 0.387 0.53* 0.48 0.38 0.60* 0.55* -0.79** 0.72** 0.88** 1

表3

花期前后干旱胁迫条件下2021年的产量及其穗部性状、开花吐丝间隔期、库容、光合气体交换参数的相关分析"

ASI GS NPR ICC LAI PP B EL ED GNR AR GPE HSW Y
开花吐丝间隔 Anthesis-silking interval (ASI) 1
库容 Grain storage (GS) -0.42 1
净光合速率 Net photosynthetic rate (NPR) 0.73 -0.49* 1
胞间CO2浓度 Intercellular CO2 concentration (ICC) 0.82 -0.64* -0.68* 1
叶面积指数 Leaf area index (LAI) 0.89** 0.634 0.80* -0.82 1
光合势 Photosynthetic potential (PP) 0.90** 0.84** 0.754* -0.85** 0..88** 1
总生物量 Biomass (B) -0.84 0.70 0.91** -0.87** 0.90** 0.86** 1
穗长 Ear length (EL) -0.84* 0.34 0.88** -0.57 0.80* 0.73* 0.87** 1
穗粗 Ear diameter (ED) -0.40 0.26 0.65* -0.50 0.67 0.47 0.71* 0.54* 1
行粒数 Grain number per row (GNR) -0.78** 0.66** 0.68* -0.61 0.857* 0.77* 0.77 0.66** 0.57* 1
败育率 Abortive rate (AR) 0.89** -0.63** -0.84** 0.73* -0.83* -0.83** -0.89** -0.71** -0.41 -0.64** 1
穗粒数 Grain number per ear (GPE) -0.87** 0.66** 0.82** -0.78** 0.85** 0.87** 0.86** 0.68** 0.49* 0.69** -0.87** 1
百粒重 Hundred seeds weight (HSW) -0.78* 0.68** 0.80** -0.65* 0.819** 0.86** 0.96** 0.60** 0.57* 0.77** -0.76** 0.72** 1
产量 Yield (Y) -0.90* 0.70* 0.84** -0.93** 0.939** 0.94** 0.96** 0.81** 0.66* 0.86** -0.85** 0.91** 0.92** 1
[1] Zhao T B, Dai A G. The magnitude and causes of global drought changes in the twenty-first century under a low-moderate emissions scenario. J Climate, 2015, 28: 4490-4512.
doi: 10.1175/JCLI-D-14-00363.1
[2] Brás T A, Seixas J, Carvalhais N, Jägermeyr J. Severity of drought and heatwave crop losses tripled over the last five decades in Europe. Environ Res Lett, 2021, 16: 65012-65025.
doi: 10.1088/1748-9326/abf004
[3] Sah R P, Chakraborty M, Prasad K, Pandit M, Tudu V K, Chakravarty M K, Narayan S C, Rana M, Moharana D. Impact of water deficit stress in maize: phenology and yield components. Sci Rep, 2020, 11: 2944-2958.
doi: 10.1038/s41598-021-82522-8
[4] 于振文. 作物栽培学各论北方本. 北京: 中国农业出版社, 2013. pp 69-111.
Yu Z W. Monographs on Northern Origin of Crop Cultivation. Beijing: China Agriculture Press, 2013. pp 69-111. (in Chinese)
[5] 赵成凤, 王晨光, 李红杰, 郑学慧, 杨梅, 张仁和. 干旱及复水条件下外源褪黑素对玉米叶片光合作用的影响. 生态学报, 2021, 41: 1431-1439.
Zhao C F, Wang C G, Li H J, Zheng X H, Yang M, Zhang R H. Effects of exogenous melatonin on photosynthesis of maize leaves under drought stress and re-watering. Acta Ecol Sin, 2021, 41: 1431-1439. (in Chinese with English abstract)
[6] Liu S L, Wu W B, Yang X G, Yang P, Sun J. Exploring drought dynamics and its impacts on maize yield in the Huang-Huai-Hai farming region of China. Clim Change, 2020, 163: 415-430.
doi: 10.1007/s10584-020-02880-6
[7] Hu Z H, Wu Z R, Zhang Y X, Li Q, Islam A R M T, Pan C C. Risk assessment of drought disaster in summer maize cultivated areas of the Huang-Huai-Hai plain, eastern China. Environ Monit Assess, 2021, 193: 441-455.
doi: 10.1007/s10661-021-09224-6 pmid: 34165640
[8] Fernie A R, Bachem C W B, Helariutta Y, Neuhaus H E, Prat S, Ruan Y L, Stitt M, Sweetlove L J, Tegeder M, Wahl V, Sonnewald S, Sonnewald U. Synchronization of developmental, molecular and metabolic aspects of source-sink interactions. Nat Plants, 2020, 6: 55-66.
doi: 10.1038/s41477-020-0590-x pmid: 32042154
[9] Song X Y, Zhou G S, He Q J. Critical leaf water content for maize photosynthesis under drought stress and its response to re-watering. Sustainability. 2021, 13: 7218-7232.
doi: 10.3390/su13137218
[10] Wang Y F, Guo Y Y, Zhao C F, Li H J, Zhang R H. Exogenous melatonin achieves drought tolerance by improving photosynthesis in maize seedlings leaves. Russ J Plant Physiol, 2021, 68: 718-727.
doi: 10.1134/S102144372104021X
[11] 贾双杰. 穗期干旱胁迫对玉米光合性能和雌花序发育的影响. 河南农业大学硕士学位论文, 河南郑州, 2020.
Jia S J. Effect of Drought Stress on Photosynthetic Performance and Female Inflorescence Development of Maize in Panicle Stage. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2020. (in Chinese with English abstract)
[12] 王佳旭, 王宏伟, 姜文野, 赵彬, 满艳苹, 张旷野, 刁玉霖, 朱康宁. 不同种植方式对玉米干物质积累、分配和产量的影响. 玉米科学, 2021, 29(5): 128-136.
Wang J X, Wang H W, Jiang W Y, Zhao B, Man Y P, Zhang K Y, Diao Y L, Zhu K N. Effect of different planting patterns on dry matter accumulation, distribution and yield of maize. J Maize Sci, 2021, 29(5): 128-136. (in Chinese with English abstract)
[13] Jia Y Y, Xiao W X, Ye Y S, Wang X L, Liu X L, Wang G H, Li G, Wang Y B. Response of photosynthetic performance to drought duration and re-watering in maize. Agronomy, 2020, 10: 533-549.
doi: 10.3390/agronomy10040533
[14] 董智强, 李曼华, 李楠, 薛晓萍, 陈辰, 张继波, 赵红, 侯英雨, 潘志华. 山东夏玉米土壤干旱阈值研究与影响评价. 中国农业科学, 2020, 53: 4376-4387.
doi: 10.3864/j.issn.0578-1752.2020.21.007
Dong Z Q, Li M H, Lin N, Xue X P, Chen C, Zhang J B, Zhao H, Hou Y Y, Pan Z H. The thresholds of soil drought and its impacts on summer maize in Shandong province. Sci Agric Sin, 2020, 53: 4376-4387. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2020.21.007
[15] Zhang X C, Myrold D D, Shi L L, Kuzyakov Y, Dai H C, Hoang D T T, Dippold M A, Meng X T, Song X N, Li Z Y, Zhou J, Razavi B S. Resistance of microbial community and its functional sensitivity in the rhizosphere hotspots to drought. Soil Biol Biochem, 2021, 161: 108360-108371.
doi: 10.1016/j.soilbio.2021.108360
[16] Shao R X, Jia S J, Tang Y L, Zhang J J, Li H W, L L P, Chen J H, Guo J M, Wang H, Yang Q H, Wang Y C, Liu T X, Zhao X. Soil water deficit suppresses development of maize ear by altering metabolism and photosynthesis. Environ Exp Bot, 2021, 192: 104651-104660.
doi: 10.1016/j.envexpbot.2021.104651
[17] 贾双杰, 李红伟, 江艳平, 赵国强, 王和洲, 杨慎骄, 杨青华, 郭家萌, 邵瑞鑫. 干旱胁迫对玉米叶片光合特性和穗发育特征的影响. 生态学报, 2020, 40: 854-863.
Jia S J, Li H W, Jiang Y P, Zhao G Q, Wang H Z, Yang S J, Yang Q H, Guo J M, Shao R X. Effects of drought on photosynthesis and ear development characteristics of maize. Acta Ecol Sin, 2020, 40: 854-863. (in Chinese with English abstract)
[18] Li Y B, Tao H B, Zhang B C, Huang S B, Wang P. Timing of water deficit limits maize kernel setting in association with changes in the source-flow-sink relationship. Front Plant Sci, 2018, 9: 1326-1336.
doi: 10.3389/fpls.2018.01326 pmid: 30405644
[19] Li F W, Zhang M J, Liu Y Z. Quantitative research on drought loss sensitivity of summer maize based on AquaCrop model. Nat Hazards, 2022, 112: 1065-1084.
doi: 10.1007/s11069-022-05218-w
[20] Liu X W, Yu Y H, Huang S B, Xu C C, Wang X Y, Gao J, Meng Q F, Wang P. The impact of drought and heat stress at flowering on maize kernel filling: Insights from the field and laboratory. Agric For Meteorol, 2022, 312: 108733-108744.
doi: 10.1016/j.agrformet.2021.108733
[21] Shemi R, Wang R, Gheith, El-Sayed M S, Hussain H A, Hussain A, Muhammad I, Cholidah L, Zhang K, Zhang S, Wang L C. Effects of salicylic acid, zinc and glycine betaine on morpho- physiological growth and yield of maize under drought stress. Sci Rep, 2021, 11: 3195-3207.
doi: 10.1038/s41598-021-82264-7
[22] Tigkas D, Vangelis H, Tsakiris G. Implementing crop evapotranspiration in RDI for farm-level drought evaluation and adaptation under climate change conditions. Water Resour Manag, 2020, 34: 4329-4343.
doi: 10.1007/s11269-020-02593-6
[23] 李鹏民, 高辉远, trasser R J. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用. 植物生理与分子生物学学报, 2005, 31: 559-566.
Li P M, Gao H Y, Strasser R J. Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study. J Plant Physiol Mol Biol, 2005, 31: 559-566. (in Chinese with English abstract)
[24] Xue H Y, Wang S F, Zhang X, Zhang Z Y. The rapid chlorophyll a fluorescence characteristics of different cotton genotypes reflect differences in leaf senescence. Chin J Eco-Agric, 2021, 29: 870-879.
[25] 柏延文, 杨永红, 朱亚利, 李红杰, 薛吉全, 张仁和. 种植密度对不同株型玉米冠层光能截获和产量的影响. 作物学报, 2019, 45: 1868-1879.
doi: 10.3724/SP.J.1006.2019.93011
Bai Y W, Yang Y H, Zhu Y L, Li H J, Xue J Q, Zhang R H. Effect of planting density on light interception within canopy and grain yield of different plant types of maize. Acta Agron Sin, 2019, 45: 1868-1879. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.93011
[26] 马正波, 董学瑞, 唐会会, 闫鹏, 卢霖, 王庆燕, 房孟颖, 王琦, 董志强. 四甲基戊二酸对夏玉米光合生产特征的调控效应. 作物学报, 2020, 46: 1617-1627.
doi: 10.3724/SP.J.1006.2020.03002
Ma Z B, Dong X R, Tang H H, Yan P, Lu L, Wang Q Y, Fang M Y, Wang Q, Dong Z Q. Effect of tetramethyl glutaric acid on summer maize photosynthesis characteristics. Acta Agron Sin, 2020, 46: 1617-1627. (in Chinese with English abstract)
[27] Molla S H, Nakasathien S, Ali A, Kha A, Alam R, Hossain A, Farooq M, Sabagh M F. Influence of nitrogen application on dry biomass allocation and translocation in two maize varieties under short pre-anthesis and prolonged bracketing flowering periods of drought. Arch Agron Soil Sci, 2019, 65: 928-944.
doi: 10.1080/03650340.2018.1538557
[28] 李宁, 段留生, 李建民, 翟志席, 李召虎. 播期与密度组合对不同穗型小麦品种花后旗叶光合特性、籽粒库容能力及产量的影响. 麦类作物学报, 2010, 30: 296-302.
Li N, Duan L S, Li J M, Zhai Z X, Li Z H. Effect of sowing date and planting density on flag leaf photosynthesis, storage capacity and yield in different spike type varieties. J Triticeae Crops, 2010, 30: 296-302. (in Chinese with English abstract)
[29] 蔡晓, 王东, 吴祥运, 吴雨晴, 林祥, 张俊鹏. 氮肥减施对夏玉米生长及水氮利用效率的影响. 玉米科学, 2022, 30(1): 158-165.
Cai X, Wang D, Wu X Y, Wu Y Q, Lin X, Zhang J P. Effects of nitrogen reduction on growth and water-nitrogen use efficiency of summer maize. J Maize Sci, 2022, 30(1): 158-165. (in Chinese with English abstract)
[30] 杨慧. 不同耕法和密度对春玉米产量及根系的调控研究. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2018.
Yang H. The Regulation of Yield and Roots Formations through Different Tillage Method and Density Treatments. MS Thesis of Northeastern Agricultural University, Harbin, Heilongjiang, China, 2018. (in Chinese with English abstract)
[31] Qi M, Liu X D, Li Y B, Song H, Yin Z T, Zhang F, He Q J, Xu Z Z, Zhou G S. Photosynthetic resistance and resilience under drought, flooding and re-watering in maize plants. Photosynth Res, 2021, 148: 1-15.
doi: 10.1007/s11120-021-00825-3
[32] Simkin A J, Kapoor L, Doss C G P, Hofmann T A, Lawson T, Ramamoorthy S. The role of photosynthesis related pigments in light harvesting, photoprotection and enhancement of photosynthetic yield in planta. Photosynth Res, 2022, 152: 23-42.
doi: 10.1007/s11120-021-00892-6
[33] 夏璐, 赵蕊, 王怡针, 金海燕, 吴锡冬, 葛均筑, 臧凤艳, 李子芳, 王金龙. 干旱胁迫对夏玉米光合作用和叶绿素荧光特性的影响. 华北农学报, 2019, 34(3): 102-110.
doi: 10.7668/hbnxb.201751385
Xia L, Zhao R, Wang Y Z, Jin H Y, Wu X D, Ge J Z, Zang F Y, Li Z F, Wang J L. Effect of drought stress on photosynthesis and chlorophyll fluorescence characteristics of summer maize. Acta Agric Boreali-Sin, 2019, 34(3): 102-110. (in Chinese with English abstract)
[34] 李静, 王洪章, 刘鹏, 张吉旺, 赵斌, 任佰朝. 夏玉米不同栽培模式花后叶片光合性能的差异. 作物学报, 2021, 47: 1351-1359.
doi: 10.3724/SP.J.1006.2021.03051
Li J, Wang H Z, Liu P, Zhang J W, Zhao B, Ren B C. Differences in photosynthetic performance of leaves at post-flowering stage in different cultivation modes of summer maize. Acta Agron Sin, 2021, 47: 1351-1359. (in Chinese with English abstract)
[35] 穆心愿, 夏来坤, 谷利敏, 张凤启, 张君, 丁勇, 齐建双, 唐保军, 赵发欣, 邢建伟. 花期干旱胁迫对不同夏玉米品种花后干物质积累运转及产量的影响. 南方农业学报, 2021, 52: 931-941.
Mu X Y, Xia L K, Gu L M, Zhang F Q, Zhang J, Ding Y, Qi J S, Tang B J, Zhao F X, Xing J W. Effects of drought stress during flowering on post-flowering dry matter accumulation and transfer and yield of different maize cultivars. J Southern Agric, 2021, 52: 931-941. (in Chinese with English abstract)
[36] Jahangirlou M R, Akbari G A, Alahdadi I, Soufizadeh S, Parsons D. Phenotypic traits, grain yield and yield components of maize cultivars under combinations of management practices in semi-arid conditions of Iran. Int J Plant Prod, 2021, 15: 459-471.
doi: 10.1007/s42106-021-00151-7
[37] Yu Y, Qian C R, Gu W R, Li C F. Responses of root characteristic parameters and plant dry matter accumulation, distribution and transportation to nitrogen levels for spring maize in Northeast China. Agriculture, 2021, 11: 308-331
doi: 10.3390/agriculture11040308
[38] 胡旦旦, 李荣发, 刘鹏, 董树亭, 赵斌, 张吉旺, 任佰朝. 密植条件下玉米品种混播提高籽粒灌浆性能和产量. 中国农业科学, 2021, 54: 1856-1868.
doi: 10.3864/j.issn.0578-1752.2021.09.004
Hu D D, Li R F, Liu P, Dong S T, Zhao B, Zhang J W, Ren B C. Mixed-cropping improved on grain filling characteristics and yield of maize under high planting densities. Sci Agric Sin, 2021, 54: 1856-1868. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2021.09.004
[39] Lucas B, Lucas N V M. Maize reproductive development and kernel set under limited plant growth environments. J Exp Bot, 2018, 69: 3235-3243.
doi: 10.1093/jxb/erx452 pmid: 29304259
[40] 高震, 梁效贵, 张莉, 赵雪, 杜雄, 崔彦宏, 周顺利. 不同时期灌溉对华北平原春玉米穗粒数的影响. 作物学报, 2021, 47: 1324-1331.
doi: 10.3724/SP.J.1006.2021.03045
Gao Z, Liang X G, Zhang L, Zhao X, Du X, Cui Y H, Zhou S L. Effects of irrigating at different growth stages on kernel number of spring maize in the North China Plain. Acta Agron Sin, 2021, 47: 1324-1331. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.03045
[41] 李叶蓓, 陶洪斌, 王若男, 张萍, 吴春江, 雷鸣, 张巽, 王璞. 干旱对玉米穗发育及产量的影响. 中国生态农业学报, 2015, 23: 383-391.
Li Y B, Tao H B, Wang R N, Zhang P, Wu C J, Lei M, Zhang X, Wang P. Effects of drought on ear development and yield of maize. Chin J Eco-Agric, 2015, 23: 383-391. (in Chinese with English abstract)
[1] 闫金垚, 宋毅, 陆志峰, 任涛, 鲁剑巍. 磷肥用量对油菜籽产量及品质的影响[J]. 作物学报, 2023, 49(6): 1668-1677.
[2] 徐冉, 陈松, 徐春梅, 刘元辉, 章秀福, 王丹英, 褚光. 施氮量对籼粳杂交稻甬优1540产量和氮肥利用效率的影响及其机制[J]. 作物学报, 2023, 49(6): 1630-1642.
[3] 张振博, 贾春兰, 任佰朝, 刘鹏, 赵斌, 张吉旺. 氮磷配施对夏玉米产量和叶片衰老特性的影响[J]. 作物学报, 2023, 49(6): 1616-1629.
[4] 雷新慧, 冷佳俊, 陶金才, 万晨茜, 吴怡欣, 王家乐, 王鹏科, 冯佰利, 高金锋. 叶面喷施亚硒酸钠对甜荞光合特性、产量及硒积累效应的影响[J]. 作物学报, 2023, 49(6): 1678-1689.
[5] 陶玥玥, 盛雪雯, 徐坚, 沈园, 王海候, 陆长婴, 沈明星. 长三角水稻-油菜周年两熟温光资源分配与利用特征[J]. 作物学报, 2023, 49(5): 1327-1338.
[6] 韦海敏, 陶伟科, 周燕, 闫飞宇, 李伟玮, 丁艳锋, 刘正辉, 李刚华. 硅素穗肥优化滨海盐碱地水稻矿质元素吸收分配提高耐盐性[J]. 作物学报, 2023, 49(5): 1339-1349.
[7] 李慧, 王旭敏, 刘苗, 刘朋召, 李巧丽, 王小利, 王瑞, 李军. 基于夏玉米产量和氮素利用的水氮减量方案优选[J]. 作物学报, 2023, 49(5): 1292-1304.
[8] 岳海旺, 韩轩, 魏建伟, 郑书宏, 谢俊良, 陈淑萍, 彭海成, 卜俊周. 基于GYT双标图分析对黄淮海夏玉米区域试验品种综合评价[J]. 作物学报, 2023, 49(5): 1231-1248.
[9] 刘昕萌, 程乙, 刘玉文, 庞尚水, 叶秀芹, 卜艳霞, 张吉旺, 赵斌, 任佰朝, 任昊, 刘鹏. 黄淮海区域现代夏玉米品种产量与资源利用效率的差异分析[J]. 作物学报, 2023, 49(5): 1363-1371.
[10] 吴宗声, 徐彩龙, 李瑞东, 徐一帆, 孙石, 韩天富, 宋雯雯, 吴存祥. 麦秸覆盖还田对大豆耕层物理性状及产量形成的影响[J]. 作物学报, 2023, 49(4): 1052-1064.
[11] 吴香奇, 刘博, 张威, 杨雪妮, 郭子艳, 刘铁宁, 张旭东, 韩清芳. 小麦豌豆间作对群体光合特性和生产力的影响[J]. 作物学报, 2023, 49(4): 1079-1089.
[12] 张金鑫, 葛均筑, 马玮, 丁在松, 王新兵, 李从锋, 周宝元, 赵明. 华北平原冬小麦-夏玉米种植体系周年水分高效利用研究进展[J]. 作物学报, 2023, 49(4): 879-892.
[13] 舒泽兵, 罗万宇, 蒲甜, 陈国鹏, 梁冰, 杨文钰, 王小春. 基于高产与高效条件下鲜食玉米鲜食大豆带状间作田间配置技术优化[J]. 作物学报, 2023, 49(4): 1140-1150.
[14] 张晨晖, 章岩, 李国辉, 杨子君, 查莹莹, 周驰燕, 许轲, 霍中洋, 戴其根, 郭保卫. 侧深施肥下水稻高产形成的根系形态及其生理变化特征[J]. 作物学报, 2023, 49(4): 1039-1051.
[15] 刘月, 明博, 李姚姚, 王克如, 侯鹏, 薛军, 李少昆, 谢瑞芝. 基于根冠协调发展的东北春玉米高产种植密度分析[J]. 作物学报, 2023, 49(3): 795-807.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .