欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (5): 1231-1248.doi: 10.3724/SP.J.1006.2023.23035

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于GYT双标图分析对黄淮海夏玉米区域试验品种综合评价

岳海旺1(), 韩轩2, 魏建伟1, 郑书宏1, 谢俊良1, 陈淑萍1, 彭海成1, 卜俊周1,*()   

  1. 1河北省农林科学院旱作农业研究所/河北省农作物抗旱研究重点实验室, 河北衡水 053333
    2河北省农林科学院, 河北石家庄 050031
  • 收稿日期:2022-04-18 接受日期:2022-10-10 出版日期:2023-05-12 网络出版日期:2022-10-26
  • 通讯作者: *卜俊周, E-mail: bujunzhou@126.com
  • 作者简介:岳海旺, E-mail: yanjiu1982@163.com第一联系人:**同等贡献
  • 基金资助:
    河北省重点研发计划项目(20326305D);财政部和农业农村部国家现代农业产业技术体系建设专项(玉米, CARS-02);河北省科技支撑计划(16226323D-X);河北省农林科学院科技创新专项课题;河北省“三三三人才工程”人才培养项目(A202101056);河北省农业科技成果转化资金项目(21626310D)

Comprehensive evaluation of maize hybrids tested in Huang-Huai-Hai summer maize regional trial based on GYT biplot analysis

YUE Hai-Wang1(), HAN Xuan2, WEI Jian-Wei1, ZHENG Shu-Hong1, XIE Jun-Liang1, CHEN Shu-Ping1, PENG Hai-Cheng1, BU Jun-Zhou1,*()   

  1. 1Dryland Farming Institute, Hebei Academy of Agriculture and Forestry Sciences/Hebei Provincial Key Laboratory of Crops Drought Resistance Research, Hengshui 053000, Hebei, China
    2Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050031, Hebei, China
  • Received:2022-04-18 Accepted:2022-10-10 Published:2023-05-12 Published online:2022-10-26
  • Contact: *E-mail: bujunzhou@126.com
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    Key Research and Development Projects of Hebei Province(20326305D);China Agriculture Research System of MOF and MARA(Maize, CARS-02);Science and Technology Support Program of Hebei Province(16226323D-X);HAAFS Science and Technology Innovation Special Project;“Three-Three-Three Talent Project” Funded Project in Hebei Province(A202101056);Agricultural Science and Technology Achievement Transformation Project of Hebei Province(21626310D)

摘要:

旨在科学准确地对黄淮海夏播玉米区域试验参试品种进行综合评价, 为品种合理布局和区域规划提供理论和实践依据。本研究采用GYT双标图技术对2020—2021年黄淮海夏玉米区域试验22个参试品种的籽粒产量与生育期、收获时籽粒含水量、株高、穗位高、倒伏率、穗长、穗粗、秃尖, 穗粒重和百粒重等农艺性状的组合水平进行综合评价。方差分析表明, 被测农艺性状基因型和环境效应均达到了显著水平(P<0.05), 除穗粗、突尖长度和穗粒重等性状基因型与环境互作效应中无显著差异外, 其余性状基因型与环境互作效应均达到了显著水平。籽粒产量、生育期、收获时籽粒含水量、穗粗、秃尖和百粒重等性状环境效应平方和占总方差平方和最大, 倒伏率的基因型与环境互作效应平方和占总方差平方和最大。农艺性状相关性分析结果表明, 籽粒产量与百粒重、株高、穗位高、穗长、穗粗和生育期呈极显著正相关(P<0.001), 而与突尖长度呈负相关。根据参试品种的理想指数筛选出衡玉868、邯玉1806和宿单908等为产量-性状组合表现优良的品种, 同时也鉴别出陕单685、敦玉291、邯玉17-6601和邯玉573等品种综合表现较差, 对照品种郑单958表现一般。衡玉868较其他参试品种在黄淮海夏玉米区更具有广泛的适应性, 展现出绝对的区域产量优势, 具有广阔的推广前景。与GT双标图相比, GYT双标图显示出前2个主成分解释的变异比例较高、拟合度较好、分析结果可信度较高等优点。本研究运用GYT双标图技术对黄淮海夏玉米参试品种进行品种产量-性状特性分析, 为本区玉米品种综合评价提供借鉴, 也为其他作物品种多性状研究提供了参考。

关键词: GT双标图, GYT双标图, 理想指数, 夏玉米, 产量-性状组合

Abstract:

The objective of this study is to scientifically and accurately conduct a comprehensive evaluation of the tested hybrids participating in the Huang-Huai-Hai summer maize regional trials, and provide theoretical and practical basis for the rational distribution of hybrids and regional planning. GYT biplot analysis was applied to the data of 22 hybrids during 2020?2021 in the Huang-Huai-Hai summer maize regional trials to provide a comprehensive evaluation of the tested hybrids based on grain yield, growth period, grain moisture content at harvest, plant height, ear height, lodging rate, ear length, ear diameter, barren tip length, grain weight per ear, and hundred grain weight. The analysis of variance results showed that the genotype and environment main effects of the evaluated agronomic traits reached significant level at P < 0.05. Genotype and environment interaction effect of other traits had significant level, except for ear diameter, bald tip length, and grain weight per ear, which had no significant difference. The square sum of environmental effect on grain yield, growth period, grain moisture content, ear diameter, bare tip length, 100-seed weight, and the square sum of genotype and environment interaction effect on lodging rate were worth the largest in the square sum of total variance. The results of the correlation analysis showed that grain yield was significantly at P < 0.001 and positively correlated with 100-seed weight, plant height, ear height, ear length, ear diameter, and growth period, but negatively correlated with bald tip length. According to the GYT superiority index, Hengyu 868, Handyu 1806, and Sudan 908 had the best yield-trait combinations. The comprehensive performances of hybrids Shandan 686, Dunyu 291, Hanyu 17-6601, and Hanyu 573 were poor, and the performance of the control hybrid Zhengdan 958 was intermediate. Compared with other tested hybrids, Hengyu 868 had the widest adaptability in the Huang-Huai-Hai summer maize area, indicating outstanding regional yield advantages, and great potential for maize production in the region. Compared with the GT biplot, the GYT biplot showed that the first two principal components explained a higher proportion of variance, a better fit, and a higher reliability of the analysis results. Through GYT biplot analysis, maize hybrids with superior yield-trait combinations were identified, the GYT biplot analysis was a useful analytic tool for graphical evaluation based on multiple traits, and also set up a reference base for comprehensive evaluation of other crops.

Key words: genotype × trait biplot (GT biplot), genotype × yield × trait biplot (GYT biplot), superiority index (SI), summer maize hybrids, yield-trait combination

表1

参试品种信息"

品种名称
Hybrid name
品种缩写
Hybrid abbreviation
试验年份
Year
来源
Origin
敦玉286
Dunyu 286
DY286 2020 甘肃省敦煌种业集团股份有限公司
Gansu Dunhuang Seed Industry Group Co., Ltd.
敦玉291
Dunyu 291
DY291 2020 甘肃省敦煌种业集团股份有限公司
Gansu Dunhuang Seed Industry Group Co., Ltd.
邯玉1604
Hanyu 1604
HY1604 2020 邯郸市农业科学院
Handan Academy of Agricultural Sciences
邯玉573
HY 573
HY573 2021 邯郸市农业科学院
Handan Academy of Agricultural Sciences
邯玉17-6601
Hanyu 17-6601
HY17-6601 2020−2021 邯郸市农业科学院
Handan Academy of Agricultural Sciences
鲁单719 LD719 2020 山东省农业科学院玉米研究所
Ludan 719 Maize Research Institute, Shandong Academy of Agricultural Sciences
鲁单0195 LD0195 2020 山东省农业科学院玉米研究所
Ludan 0195 Maize Research Institute, Shandong Academy of Agricultural Sciences
君育136 JY136 2020 河南技丰种业集团有限公司
Junyu 136 Henan Jifeng Seed Industry Group Co., Ltd.
陕单685
Shaandan 685
SD685 2020 陕西荣华农业科技有限公司
Shaanxi Ronghua Agricultural Technology Co., Ltd.
新单96
Xindan 96
XD96 2020 新乡市农业科学院
Xinxiang Academy of Agricultural Sciences
宿单908
Sudan 908
SD908 2020−2021 宿州市农业科学院
Suzhou Academy of Agricultural Sciences
郑单6162 ZD6162 2020 河南省农业科学院粮食作物研究所
Zhengdan 6162 Institute of Cereal Crops, Henan Academy of Agricultural Sciences
郑单958 ZD958 2020−2021 河南省农业科学院粮食作物研究所
Zhengdan 958 Institute of Cereal Crops, Henan Academy of Agricultural Sciences
鲁宁818
Luning 818
LN818 2020 济宁市农业科学研究院
Jining Academy of Agricultural Sciences
漯玉19
Luoyu 19
LY19 2020 漯河市农业科学院
Luohe Academy of Agricultural Sciences
衡玉7182 HY7182 2020 河北省农林科学院旱作农业研究所
Hengyu 7182 Dryland Farming Institute, Hebei Academy of Agriculture and Forestry Sciences
衡玉9186
Hengyu 9186
HY9186 2021 河北省农林科学院旱作农业研究所
Dryland Farming Institute, Hebei Academy of Agriculture and Forestry Sciences
衡玉868
Hengyu 868
HY868 2020−2021 河北省农林科学院旱作农业研究所
Dryland Farming Institute, Hebei Academy of Agriculture and Forestry Sciences

表2

试点环境信息"

省份
Province
试点
Testing site
经度
Longitude
纬度
Latitude
海拔
Altitude (m)
年降雨量
Annual rainfall (mm)
年份
Year
安徽Anhui 阜南Funan 115°55′ 32°68′ 34 824 2020-2021
安徽Anhui 宿州Suzhou 117°11′ 33°60′ 29 865 2020-2021
安徽Anhui 濉溪Suixi 116°84′ 33°45′ 31 902 2020-2021
河北Hebei 藁城Gaocheng 114°85′ 38°02′ 59 494 2020-2021
河北Hebei 邯郸Handan 114°54′ 36°63′ 55 515 2020-2021
河北Hebei 深州Shenzhou 115°56′ 38°01′ 28 482 2020-2021
省份
Province
试点
Testing site
经度
Longitude
纬度
Latitude
海拔
Altitude (m)
年降雨量
Annual rainfall (mm)
年份
Year
河北Hebei 武强Wuqiang 115°98′ 38°06′ 18 556 2020-2021
河北Hebei 鸡泽Jize 114°75′ 37°03′ 38 490 2020-2021
河北Hebei 高阳Gaoyang 115°79′ 38°68′ 12 342 2020-2021
河北Hebei 靳庄Jinzhuang 114°66′ 38°01′ 52 485 2020-2021
河北Hebei 内丘Neiqiu 114°34′ 37°29′ 149 531 2020-2021
河北Hebei 晋州Jinzhou 115°07′ 38°02′ 43 412 2020-2021
河南Henan 鹤壁Hebi 114°28′ 35°74′ 88 727 2020
河南Henan 辉县Huixian 113°80′ 35°46′ 95 589 2020-2021
河南Henan 临颍Linying 113°93′ 33°83′ 62 716 2020-2021
河南Henan 洛阳Luoyang 112°46′ 34°61′ 140 803 2020-2021
河南Henan 孟州Mengzhou 112°79′ 34°91′ 115 557 2020-2021
河南Henan 南阳Nanyang 112°52′ 32°99′ 131 875 2020-2021
河南Henan 西华Xihua 114°53′ 33°76′ 52 624 2020-2021
河南Henan 荥阳Xingyang 113°38′ 34°79′ 144 655 2020-2021
河南Henan 原阳Yuanyang 113°97′ 35°05′ 78 529 2020-2021
河南Henan 驻马店Zhumadian 114°02′ 33°01′ 84 702 2020-2021
河南Henan 柘城Zhecheng 115°12′ 33°58′ 46 781 2020-2021
湖北Hubei 襄阳Xiangyang 112°12′ 32°01′ 70 878 2020-2021
湖北Hubei 宜城Yicheng 112°30′ 31°69′ 120 862 2020-2021
江苏Jiangsu 丰县Fengxian 116°43′ 34°70′ 42 630 2020-2021
江苏Jiangsu 睢宁Suining 117°94′ 33°91′ 23 916 2021
山东Shandong 昌邑Changyi 119°42′ 36°70′ 33 562 2020-2021
山东Shandong 茌平Chiping 116°14′ 36°34′ 31 570 2020-2021
山东Shandong 德州Dezhou 116°36′ 37°43′ 23 547 2020-2021
山东Shandong 寒亭Hanting 119°20′ 36°77′ 20 622 2020-2021
山东Shandong 济宁Jining 116°54′ 35°37′ 38 693 2020-2021
山东Shandong 莱州Laizhou 119°95′ 37°17′ 56 614 2020-2021
山东Shandong 聊城Liaocheng 115°99′ 36°46′ 37 540 2020-2021
山东Shandong 泰安Tai’an 117°09′ 36°20′ 167 763 2020-2021
山东Shandong 章丘Zhangqiu 117°52′ 36°68′ 143 633 2020-2021
山东Shandong 宁津Ningjin 116°78′ 37°72′ 23 721 2020-2021
山东Shandong 郓城Yuncheng 115°75′ 35°44′ 48 694 2020-2021
山西Shanxi 新绛Xinjiang 111°01′ 35°03′ 439 460 2020-2021
山西Shanxi 盐湖Yanhu 110°89′ 35°01′ 369 487 2020-2021
陕西Shaanxi 杨凌Yangling 108°08′ 34°27′ 465 631 2020-2021
陕西Shaanxi 渭南Weinan 109°78′ 34°95′ 405 465 2020-2021

附表1

2020年黄淮海区域试验参试品种主要性状表"

品种
Hybrid name
GY
(kg hm-2)
GP
(d)
PH
(cm)
EH
(cm)
LR
(%)
GMC
(%)
EL
(cm)
ED
(cm)
BTL
(cm)
GWE
(g)
HSW
(g)
邯玉1604 Hanyu 1604 11065.8 104.0 283 109 2.6 27.2 17.0 5.0 0.9 165.2 32.9
君育136 Junyu 136 10950.8 104.7 241 108 0.1 28.7 17.1 5.0 0.9 158.9 33.4
衡玉7182 Hengyu 7182 10842.3 104.3 245 86 0.5 28.3 16.1 5.1 1.2 161.6 34.1
鲁宁818 Luning 818 10798.2 105.0 265 110 0.7 28.6 18.1 4.9 0.9 160.3 33.1
衡玉868 Hengyu 868 10785.3 105.2 274 109 2.7 29.7 18.1 5.0 1.1 168.7 36.1
鲁单719 Ludan 719 10577.3 104.0 277 105 0.6 28.0 16.5 5.1 0.5 165.0 32.8
敦玉286 Dunyu 286 10564.5 104.8 273 109 2.7 27.0 17.2 4.6 0.7 151.9 33.0
新单96 Xindan 96 10515.9 104.4 273 108 1.1 28.7 17.6 5.1 0.6 167.2 32.4
漯玉19 Luoyu 19 10485.2 104.9 239 94 0.0 28.4 16.3 5.0 0.6 156.4 37.0
郑单6162 Zhengdan 6162 10422.2 105.3 289 116 1.9 28.0 16.7 4.9 1.3 157.6 31.6
宿单908 Sudan 908 10348.5 105.7 268 116 1.2 29.6 17.4 4.9 1.0 156.2 32.1
邯玉17-6601 Hanyu 17-6601 10296.6 104.4 295 108 0.5 27.5 18.4 4.8 1.1 155.5 34.8
敦玉291 Dunyu 291 10213.4 104.8 257 101 0.8 29.1 16.3 4.9 0.9 152.9 32.3
郑单958 Zhengdan 958 10091.1 105.3 257 115 1.1 28.7 16.5 5.0 0.5 155.5 33.6
鲁单0195 Ludan 0195 9898.4 104.3 269 104 0.9 27.9 17.4 4.9 1.6 150.2 35.7
陕单685 Shandan 685 7953.0 104.4 260 86 0.1 28.2 16.0 4.6 0.9 128.8 30.9

附表2

2021年黄淮海区域试验参试品种主要性状表"

品种
Hybrid
GY
(kg hm-2)
GP
(d)
PH
(cm)
EH
(cm)
LR
(%)
GMC
(%)
EL
(cm)
ED
(cm)
BTL
(cm)
HSW
(g)
衡玉868 Hengyu 868 9074.4 107.1 267.9 93.0 0.3 30.9 18.1 4.8 1.4 31.7
宿单908 Sudan 908 8977.5 106.3 260.2 108.2 0.6 29.2 17.0 4.8 0.9 28.8
衡玉9186 Hengyu 9186 8572.2 104.9 243.0 93.4 0.4 25.2 17.3 4.3 0.4 25.7
郑单958 Zhengdan 958 8211.8 106.2 252.8 102.7 2.0 28.8 16.0 4.8 0.6 27.4
邯玉17-6601 Hanyu 17-6601 8195.9 105.9 287.9 99.6 0.3 27.8 17.3 4.6 1.2 28.0
邯玉573 Hanyu 573 8098.8 106.1 290.1 94.9 0.1 27.5 17.7 4.5 1.2 28.7

表3

2020年参试品种不同农艺性状联合方差分析"

变异来源
Source of variations
自由度
DF
籽粒产量
Grain yield (kg hm-2)
生育期
Growth period (d)
株高
Plant height (cm)
穗长
Ear length (cm)
籽粒含水量
Grain moisture content (%)
秃尖
Bare tip length (cm)
SS PSS (%) SS PSS (%) SS PSS (%) SS PSS (%) SS PSS (%) SS PSS (%)
基因型Genotype (G) 15 1,401,266.56** 15.54 161.27** 1.30 16.23** 27.36 340.63** 21.33 324.45** 0.87 55.38** 13.31
环境Environment (E) 40 5,849,359.39** 64.85 11,559.51** 93.09 16.44** 27.71 615.92** 38.56 35,323.17** 94.47 191.95** 46.13
互作 GE 600 1,768,956.03** 19.61 697.17** 5.61 26.65** 44.92 640.65** 40.11 1743.21** 4.66 168.80ns 40.56
残差 Residuals 544 968,945.72 544.89 4.65 501.51 1136.71 136.02
总变异 Total 655 9,019,581.99 12,417.95 59.32 1597.20 37,390.82 416.12
变异来源
Source of variations
自由度
DF
倒伏率
Lodging rate (%)
百粒重
Hundred seed weight (g)
穗位高
Ear height (cm)
穗粗
Ear diameter (cm)
穗粒重
Grain weight per ear (g)
SS PSS (%) SS PSS (%) SS PSS (%) SS PSS (%) SS PSS (%)
基因型Genotype (G) 15 39.98** 5.41 1749.95** 12.10 5.52** 36.41 13.95** 22.82 53,219.64** 7.48
环境Environment (E) 40 137.37** 18.60 9288.23** 64.25 5.32** 35.11 30.07** 49.18 489,725.83** 68.84
互作 GE 600 561.13** 75.99 3418.46** 23.65 4.32** 28.48 17.12ns 28.00 168,400.87** 23.67
残差 Residuals 544 299.16 2217.74 3.13 13.51 141,400.99
总变异 Total 655 738.48 14,456.64 15.16 61.13 711,346.35

表4

2021年参试品种不同农艺性状联合方差分析"

变异来源
Source of variations
自由度
DF
籽粒产量
Grain yield (kg hm-2)
生育期
Growth period (d)
株高
Plant height (cm)
穗长
Ear length (cm)
籽粒含水量
Grain moisture content (%)
SS PSS (%) SS PSS (%) SS PSS (%) SS PSS (%) SS PSS (%)
基因型Genotype (G) 5 163,431.34** 3.76 107.79** 1.73 73,459.78** 34.58 105.95** 9.19 740.97** 13.45
环境Environment (E) 40 3,805,577.11** 87.66 5836.37** 93.89 108,081.84** 50.88 852.20** 73.95 4265.29** 77.43
互作 GE 200 372,322.27** 8.58 272.21** 4.38 30,867.77** 14.53 194.19** 16.85 502.61** 9.12
残差 Residuals 114 112,318.41 95.35 10,134.95 70.03 183.33
总变异 Total 245 4,341,330.71 6216.37 212,409.39 1152.34 5505.87
变异来源
Source of variations
自由度
DF
秃尖
Bare tip length (cm)
倒伏率
Lodging rate (%)
百粒重
Hundred seed weight (g)
穗位高
Ear height (cm)
穗粗
Ear diameter (cm)
SS PSS (%) SS PSS (%) SS PSS (%) SS PSS (%) SS PSS (%)
基因型Genotype (G) 5 32.45** 18.77 95.00** 3.68 824.08** 13.32 7508.64** 12.25 7.77** 12.19
环境Environment (E) 40 75.89** 43.90 896.29** 34.69 4287.08** 69.27 44,148.26** 72.05 50.29** 78.88
互作 GE 200 64.52ns 37.33 1592.45** 61.63 1077.74** 17.41 9621.09* 15.70 5.69ns 8.93
残差 Residuals 114 40.36 73.37 317.12 3973.98 2.51
总变异 Total 245 172.86 2583.74 6188.91 61,277.99 63.76

图1

两年农艺性状相关性热图 GY: 籽粒产量; GP: 生育期; PH: 株高; EH: 穗位高; LR: 倒伏率; GMC: 收获时籽粒含水量; EL: 穗长; ED: 穗粗; BTL: 突尖长度; GWE: 单穗粒重; HSW: 百粒重。* P < 0.05; ** P < 0.01; *** P < 0.001。"

图2

黄淮海区域试验品种GT双标图 GY: 籽粒产量; GP: 生育期; PH: 株高; EH: 穗位高; LR: 倒伏率; GMC: 收获时籽粒含水量; EL: 穗长; ED: 穗粗; BTL: 突尖长度; GWE: 单穗粒重; HSW: 百粒重; DY286: 敦玉286; DY291: 敦玉291; HY1604: 邯玉1604; HY573: 邯玉573; HY17-6601: 邯玉17-6601; LD719: 鲁单719; LD0195: 鲁单0195; JY136: 君育136; SD685: 陕单685; XD96: 新单96; SD908: 宿单908; ZD6162: 郑单6162; ZD958: 郑单958; LN818: 鲁宁818; LY19: 漯玉19; HY7182: 衡玉7182; HY9186: 衡玉9186; HY868: 衡玉868。"

图3

2020-2021年参试品种被测性状GYT双标图 DY286: 敦玉286; DY291: 敦玉291; HY1604: 邯玉1604; HY573: 邯玉573; HY17-6601: 邯玉17-6601; LD719: 鲁单719; LD0195: 鲁单0195; JY136: 君育136; SD685: 陕单685; XD96: 新单96; SD908: 宿单908; ZD6162: 郑单6162; ZD958: 郑单958; LN818: 鲁宁818; LY19: 漯玉19; HY7182: 衡玉7182; HY9186: 衡玉9186; HY868: 衡玉868。GY: 籽粒产量; GP: 生育期; PH: 株高; EH: 穗位高; LR: 倒伏率; GMC: 收获时籽粒含水量; EL: 穗长; ED: 穗粗; BTL: 突尖长度; GWE: 单穗粒重; HSW: 百粒重。"

附表3

2020年参试品种标准化后的GYT数据和理性指数"

品种名称
Genotype name
产量×生育期
Y×GP
产量×株高
Y×PH
产量×穗位高
Y×EH
产量×倒伏率
Y×LR
产量×含水量
Y× GMC
产量×穗长
Y×EL
产量×穗粗
Y×ED
产量×秃尖长度
Y× BTL
产量×穗粒重
Y× GWE
产量×百粒重
Y×HSW
理想指数
Superiority index
敦玉286 Dunyu 286 0 0.45 0.39 1.37 −0.34 0.35 −0.56 −0.60 −0.16 −0.09 0.00
敦玉291 Dunyu 291 −0.20 −0.53 −0.47 −0.32 0.20 −0.59 −0.22 0.06 −0.39 −0.45 −0.29
邯玉1604 Hanyu 1604 0.86 1.41 0.84 1.95 0.33 0.69 0.97 −0.05 1.03 0.76 0.88
邯玉17-6601 Hanyu 17-6601 −0.13 1.05 0.23 −0.59 −0.43 0.78 −0.38 0.63 −0.12 0.01 0.11
衡玉7182 Hengyu 7182 0.60 −0.43 −1.18 −0.63 0.57 −0.17 0.96 1.02 0.60 1.04 0.24
衡玉868 Hengyu 868 0.66 0.73 0.56 1.86 1.13 1.15 0.66 0.66 1.00 0.69 0.91
君育136 Junyu 136 0.81 −0.45 0.61 −1.10 0.94 0.62 0.89 0.30 0.55 1.02 0.42
鲁单0195 Ludan 0195 −0.69 −0.39 −0.46 −0.27 −0.77 −0.29 −0.66 2.03 −0.80 −0.40 −0.27
鲁单719 Ludan 719 0.19 0.73 0.10 −0.51 0.12 −0.17 0.56 −1.38 0.62 −0.04 0.02
鲁宁818 Luning 818 0.65 0.40 0.71 −0.42 0.67 1.18 0.39 0.05 0.57 0.36 0.46
鲁宁19 Luning 19 0.19 −0.97 −0.75 −1.15 0.18 −0.36 0.30 −1.05 0.04 1.33 −0.22
陕单685 Shandan 685 −3.40 −2.69 −2.98 −1.10 −3.25 −3.06 −3.19 −0.77 −3.17 −3.02 −2.66
宿单908 Sudan 908 0.11 0.02 0.77 0.13 0.51 0.16 −0.12 0.20 −0.14 −0.40 0.12
新单96 Xindan 96 0.17 0.39 0.26 −0.04 0.37 0.50 0.47 −1.13 0.70 −0.12 0.16
郑单6162 Zhengdan 6162 0.17 0.94 0.85 0.84 −0.03 −0.14 −0.03 1.37 0.03 −0.52 0.35
郑单958 Zhengdan 958 −0.30 −0.66 0.50 −0.04 −0.21 −0.66 −0.05 −1.33 −0.38 −0.17 −0.33
平均 Mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
标准差Standard Deviation 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

附表4

2021年参试品种标准化后的GYT数据和理性指数"

品种名称
Genotype name
产量×生育期
Y×GP
产量×株高
Y×PH
产量×穗位高
Y×EH
产量×倒伏率
Y×LR
产量×含水量
Y×GMC
产量×穗长
Y×EL
产量×穗粗
Y×ED
产量×秃尖
Y× BTL
产量×百粒重
Y× HSW
理想指数
Superiority index
邯玉17-6601 Hanyu 17-6601 −0.78 0.63 −0.32 −0.48 −0.55 −0.39 −0.54 0.41 −0.57 −0.29
邯玉573 Hanyu 573 −0.91 0.51 −1.05 −0.79 −0.70 −0.27 −0.99 0.45 −0.30 −0.45
衡玉868 Hanyu 868 1.42 1.00 0.03 −0.40 1.56 1.54 1.33 1.38 1.75 1.07
衡玉9186 Hengyu 9186 −0.11 −1.25 −0.58 −0.31 −1.01 0.12 −0.85 −1.31 −0.84 −0.68
宿单908 Sudan 908 1.04 0.39 1.86 0.00 0.85 0.47 1.11 0.06 0.62 0.71
郑单958 Zhengdan 958 −0.67 −1.28 0.05 1.97 −0.16 −1.47 −0.07 −0.99 −0.66 −0.36
平均Mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
标准差Standard Deviation 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91

表5

2020年产量与性状组合皮尔逊相关性分析"

组合Combination Y×GP Y×PH Y×EH Y×LR Y×GMC Y×EL Y×ED Y×BTL Y×GWE Y×HSW
产量×生育期Y×GP 1
产量×株高Y×PH 0.749** 1
产量×穗位高Y×EH 0.797** 0.823** 1
产量×倒伏率Y×LR 0.377ns 0.634** 0.532* 1
产量×籽粒含水量Y×GMC 0.952** 0.626** 0.748** 0.289ns 1
产量×穗长Y×EL 0.893** 0.829** 0.835** 0.430ns 0.847** 1
产量×穗粗Y×ED 0.953** 0.653** 0.686** 0.259ns 0.942** 0.794** 1
产量×突尖长度Y×BTL 0.150ns 0.216ns 0.106ns 0.161ns 0.140ns 0.239ns 0.084ns 1
产量×穗粒重Y×GWE 0.963** 0.783** 0.755** 0.397ns 0.934** 0.883** 0.969** 0.072ns 1
产量×百粒重Y×HSW 0.901** 0.502* 0.544* 0.151ns 0.860** 0.758** 0.911** 0.106ns 0.866** 1

表6

2021年产量与性状组合皮尔逊相关性分析"

组合Combination Y×GP Y×PH Y×EH Y×LR Y×GMC Y×EL Y×ED Y×BTL Y×HSW
产量×生育期Y×GP 1
产量×株高Y×PH 0.374ns 1
产量×穗位高Y×EH 0.642ns 0.138ns 1
产量×倒伏率Y×LR -0.154ns -0.648ns 0.248ns 1
产量×籽粒含水量Y×GMC 0.878* 0.529ns 0.623ns 0.038ns 1
产量×穗长Y×EL 0.842* 0.612ns 0.237ns -0.630ns 0.665ns 1
产量×穗粗Y×ED 0.902* 0.414ns 0.760ns 0.125ns 0.976** 0.612ns 1
产量×突尖长度Y×BTL 0.422ns 0.960** 0.053 -0.532ns 0.630ns 0.634ns 0.485ns 1
产量×百粒重Y×HSW 0.877* 0.673ns 0.429ns -0.247ns 0.947** 0.832* 0.876* 0.769 1

图4

2020-2021年参试品种GYT双标图的平均相关性测试功能、适应性和品种排序图 A, B和C分别是2020年参试品种GYT双标图的平均测试相关性功能图、适应性功能图和品种排序图。D、E和F分别是2021年参试品种GYT双标图的平均测试相关性功能图、适应性功能图和品种排序图。"

图5

2020-2021年黄淮海夏玉米区域试验GYT双标图品种间比较图"

图6

2020-2021年参试品种籽粒产量GGE双标图对比"

[1] 王克如, 李璐璐, 鲁镇胜, 高尚, 王浥州, 黄兆福, 谢瑞芝, 明博, 侯鹏, 薛军, 张镇涛, 侯梁宇, 李少昆. 黄淮海夏玉米机械化粒收质量及其主要影响因素. 农业工程学报, 2021, 37(7): 1-7.
Wang K R, Li L L, Lu Z S, Gao S, Wang Y Z, Huang Z F, Xie R Z, Ming B, Hou P, Xue J, Zhang Z T, Hou L Y, Li S K. Mechanized grain harvesting quality of summer maize and its major influencing factors in Huanghuaihai region of China. Trans CSAE, 2021, 37(7): 1-7. (in Chinese with English abstract)
[2] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性. 作物学报, 2022, 48: 1526-1536.
doi: 10.3724/SP.J.1006.2022.13036
Xu T J, Zhang Y, Zhao J R, Wang R H, Lyu T F, Liu Y E, Cai W T, Liu H W, Chen C Y, Wang Y D. Canopy structure, photosynthesis, grain filling, and dehydration characteristics of maize varieties suitable for grain mechanical harvesting. Acta Agron Sin, 2022, 48: 1526-1536. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.13036
[3] De Leon N, Jannink J L, Edwards J W, Kaeppler S M. Introduction to a special issue on genotype by environment interaction. Crop Sci, 2016, 56: 2081-2089.
doi: 10.2135/cropsci2016.07.0002in
[4] Malik W A, Forkman J, Piepho H P. Testing multiplicative terms in AMMI and GGE models for multienvironment trials with replicates. Theor Appl Genet, 2019, 132: 2087-2096.
doi: 10.1007/s00122-019-03339-8 pmid: 30982926
[5] Yue H W, Gauch H G, Wei J W, Xie J L, Chen S P, Peng H C, Bu J Z, Jiang X W. Genotype by environment interaction analysis for grain yield and yield components of summer maize hybrids across the Huanghuaihai region in China. Agriculture, 2022, 12: 602.
doi: 10.3390/agriculture12050602
[6] 严威凯. 品种选育与评价的原理和方法评述. 作物学报, 2022, 48: 2137-2154.
doi: 10.3724/SP.J.1006.2022.11105
Yan W K. A critical review on the principles and procedures for cultivar development and evaluation. Acta Agron Sin, 2022, 48: 2137-2154. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.11105
[7] 朱亚利, 王晨光, 杨梅, 郑学慧, 赵成凤, 张仁和. 不同熟期玉米不同粒位籽粒灌浆和脱水特性对密度的响应. 作物学报, 2021, 47: 507-519.
doi: 10.3724/SP.J.1006.2021.03024
Zhu Y L, Wang C G, Yang M, Zheng X H, Zhao C F, Zhang R H. Response of grain filling and dehydration characteristics of kernels located in different ear positions in the different maturity maize hybrids to plant density. Acta Agron Sin, 2021, 47: 507-519. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.03024
[8] Yue H W, Wang Y B, Wei J W, Meng Q M, Yang B L. Chen S P, Peng H C, Xie J L, Jiang X W. Effects of genotype-by- environment interaction on the main agronomic traits of maize hybrids. Appl Ecol Environ Res, 2020, 18: 1437-1458.
doi: 10.15666/aeer
[9] 徐田军, 吕天放, 赵久然, 王荣焕, 邢锦丰, 张勇, 蔡万涛, 刘月娥, 刘秀芝, 陈传永, 王元东, 刘春阁. 不同播期条件下黄淮海区主推夏播玉米品种籽粒灌浆特性. 作物学报, 2021, 47: 566-574.
doi: 10.3724/SP.J.1006.2021.03023
Xu T J, Lyu T F, Zhao J R, Wang R H, Xing J F, Zhang Y, Cai W T, Liu Y E, Liu X Z, Chen C Y, Wang Y D, Liu C G. Grain filling characteristics of summer maize varieties under different sowing dates in the Huang-Huai-Hai region. Acta Agron Sin, 2021, 47: 566-574. (in Chinese with English abstract)
[10] 李少昆. 我国玉米机械粒收质量影响因素及粒收技术的发展方向. 石河子大学学报(自然科学版), 2017, 35: 265-272.
Li S K. Factors affecting the quality of maize grain mechanical harvest and the development trend of grain harvest technology. J Shihezi Univ (Nat Sci Edn), 2017, 35: 265-272. (in Chinese with English abstract)
[11] Kendal E. Comparing durum wheat cultivars by genotype × yield × trait and genotype × trait biplot method. Chil J Agric Res, 2019, 79: 512-522.
doi: 10.4067/S0718-58392019000400512
[12] Karahan T, Akgün I. Selection of barley (Hordeum vulgare) genotypes by GYT (genotype × yield × trait) biplot technique and its comparison with GT (genotype × trait). Appl Ecol Environ Res, 18: 1347-1359.
doi: 10.15666/aeer
[13] Al-Naggar A M M, Shafik M M, Musa R Y M. Genetic diversity based on morphological traits of 19 maize genotypes using principal component analysis and GT biplot. Annu Res Rev Biol, 2020, 35: 68-85.
[14] Yan W K, Frégeau-Reid J. Genotype by yield × trait (GYT) biplot: a novel approach for genotype selection based on multiple traits. Sci Rep, 2018, 8: 8242.
doi: 10.1038/s41598-018-26688-8
[15] Gouveia B T, Barrios S C L, Do Valle C B, Gomes R D C, Machado W K R, Bueno Filho J S D S, Nunes J A R. Selection strategies for increasing the yield of high nutritional value leaf mass in Urochloa hybrids. Euphytica, 2020, 216: 38.
doi: 10.1007/s10681-020-2574-3
[16] Woyann L G, Meira D, Zdziarski A D, Matei G, Milioli A S, Rosa A C, Benin G. Multiple-trait selection of soybean for biodiesel production in Brazil. Ind Crop Prod, 2019, 140: 111721.
doi: 10.1016/j.indcrop.2019.111721
[17] Mohammadi R. Genotype by yield × trait biplot for genotype evaluation and trait profiles in durum wheat. Cereal Res Commun, 2019, 47: 541-551.
doi: 10.1556/0806.47.2019.32
[18] NY/T 1209- 2020. 农作物品种试验与信息化技术规程:玉米. 北京: 中国农业出版社, 2020.
NY/T 1209- 2020. Regulations for the Variety Tests and Information of Field Crop:Maize (Zea mays L.). Beijing: China Agriculture Press, 2020. (in Chinese)
[19] Yan W, Wu H X. Application of GGE biplot analysis to evaluate genotype (G), environment (E), and G × E interaction on Pinus radiata: a case study. New Zealand J For Sci, 2008, 38: 132-142.
[20] Pourdad S S, Moghaddam M J. Study on seed yield stability of sunflower inbred lines through GGE biplot. Helia, 2013, 36: 19-28.
doi: 10.2298/HEL1358019P
[21] 叶夕苗, 程鑫, 安聪聪, 袁剑龙, 余斌, 文国宏, 李高峰, 程李香, 王玉萍, 张峰. 马铃薯产量组分的基因型与环境互作及稳定性. 作物学报, 2020, 46: 354-364.
doi: 10.3724/SP.J.1006.2020.94089
Ye X M, Cheng X, An C C, Yuan J L, Yu B, Wen G H, Li G F, Cheng L X, Wang Y P, Zhang F. Genotype × environment interaction and stability of yield components for potato lines. Acta Agron Sin, 2020, 46: 354-364. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94089
[22] Rakshit S, Ganapathy K N, Gomashe S S, Rathore A, Ghorade R B, Kumar M V, Patil J V. GGE biplot analysis to evaluate genotype, environment and their interactions in sorghum multi- location data. Euphytica, 2012, 185: 465-479.
doi: 10.1007/s10681-012-0648-6
[23] Tang Q Y, Zhang C X. Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Sci, 2013, 20: 254-260.
doi: 10.1111/j.1744-7917.2012.01519.x
[24] 岳海旺, 魏建伟, 谢俊良, 姚文影, 曹红梅, 陈淑萍, 彭海成, 卜俊周. 基因型和环境互作对黄淮海夏玉米品种籽粒产量的影响. 中国农业大学学报, 2022, 27(4): 31-43.
Yue H W, Wei J W, Xie J L, Yao W Y, Cao H M, Chen S P, Peng H C, Bu J Z. Effect of interaction between genotype and environment on the grain yield of summer maize hybrids in Huanghuaihai region. J China Agric Univ, 2022, 27(4): 31-43. (in Chinese with English abstract)
[25] 岳海旺, 魏建伟, 卜俊周, 陈淑萍, 彭海成, 李春杰, 李媛, 谢俊良, 叶美金. 河北省春播玉米品种产量和主要穗部性状GGE双标图分析. 玉米科学, 2018, 26(4): 28-35.
Yue H W, Wei J W, Bu J Z, Chen S P, Peng H C, Li C J, Li Y, Xie J L, Ye M J. GGE-biplot analysis of grain yield and main ear characteristics for spring maize in Hebei province. J Maize Sci, 2018, 26(4): 28-35. (in Chinese with English abstract)
[26] 岳海旺, 李春杰, 李媛, 卜俊周, 魏建伟, 彭海成, 陈淑萍, 谢俊良. 河北省春播玉米品种产量稳定性及试点辨别力综合分析. 核农学报, 2018, 32: 1267-1280.
doi: 10.11869/j.issn.100-8551.2018.07.1267
Yue H W, Li C J, Li Y, Bu J Z, Wei J W, Peng H C, Chen S P, Xie J L. Comprehensive analysis of yield stability and testing site discrimination of spring sowing maize variety in Hebei province. J Nucl Agric Sci, 2018, 32: 1267-1280. (in Chinese with English abstract)
doi: 10.11869/j.issn.100-8551.2018.07.1267
[27] Dolatabad S S, Choukan R, Hervan E M, Dehghani H. Biplot analysis for multi-environment trials of maize (Zea mays L.) hybrids in Iran. Crop Pasture Sci, 2010, 61: 700-707.
doi: 10.1071/CP09325
[28] Xu N Y, Fok M, Li J, Yang X N, Yan W K. Optimization of cotton variety registration criteria aided with a genotype-by-trait biplot analysis. Sci Rep, 2017, 7: 17237.
doi: 10.1038/s41598-017-17631-4 pmid: 29222523
[29] Boureima S, Abdoua Y. Genotype by yield × trait combination biplot approach to evaluate sesame genotypes on multiple traits basis. Turk J Field Crops, 2019, 24: 237-244.
[30] Da Cruz D P, De Oliveira T R A, Gomes A B S, Gravina L M, Rocha R S, Da Costa Jaeggi M E P, Daher R F. Selection of cowpea lines for multiple traits by GYT biplot analysis. J Agric Stud, 2020, 8: 124-137.
[31] Tsenov N, Gubatov T, Yanchev I. Genotype selection for grain yield and quality based on multiple traits of common wheat (Triticum aestivum L.). Cereal Res Commun, 2021, 49: 119-124.
doi: 10.1007/s42976-020-00080-7
[32] Yue H W, Wei J W, Xie J L, Chen S P, Peng H C, Cao H M, Bu J Z, Jiang X W. A study on genotype-by-environment interaction analysis for agronomic traits of maize genotypes across Huang- Huai-Hai region in China. Phyton-Int J Exp Bot, 2022, 91: 57-81.
[33] Badu-Apraku B, Bankole F A, Ajayo B S, Fakorede M A B, Akinwale R O, Talabi A O, Ortega-Beltran A. Identification of early and extra-early maturing tropical maize inbred lines resistant to Exserohilum turcicum in sub-Saharan Africa. Crop Prot, 2021, 139: 105386.
doi: 10.1016/j.cropro.2020.105386
[34] Sofi P A, Saba I, Ara A, Rehman K. Comparative efficiency of GY × T approach over GT approach in genotypic selection in multiple trait evaluations: case study of common bean (Phaseolus vulgaris) grown under temperate Himalayan conditions. Agric Res, 2021, 9: 1-9.
doi: 10.1007/s40003-019-00403-z
[35] Yue H W, Jiang X W, Wei J W, Xie J L, Chen S P, Peng H C, Bu J Z. A study on genotype × environment interactions for the multiple traits of maize hybrids in China. Agron J, 2021, 113: 4889-4899.
doi: 10.1002/agj2.v113.6
[36] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价. 作物学报, 2021, 47: 660-671.
doi: 10.3724/SP.J.1006.2021.04135
Xu N Y, Zhao S Q, Zhang F, Fu X Q, Yang X N, Qiao Y T, Sun S X. Retrospective evaluation of cotton varieties nationally registered for the Northwest Inland cotton growing regions based on GYT biplot analysis. Acta Agron Sin, 2021, 47: 660-671. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04135
[1] 张振博, 贾春兰, 任佰朝, 刘鹏, 赵斌, 张吉旺. 氮磷配施对夏玉米产量和叶片衰老特性的影响[J]. 作物学报, 2023, 49(6): 1616-1629.
[2] 李慧, 王旭敏, 刘苗, 刘朋召, 李巧丽, 王小利, 王瑞, 李军. 基于夏玉米产量和氮素利用的水氮减量方案优选[J]. 作物学报, 2023, 49(5): 1292-1304.
[3] 张俊杰, 陈金平, 汤钰镂, 张锐, 曹红章, 王丽娟, 马梦金, 王浩, 王泳超, 郭家萌, KRISHNA SV Jagadish, 杨青华, 邵瑞鑫. 花期前后干旱胁迫对复水后夏玉米光合特性与产量的影响[J]. 作物学报, 2023, 49(5): 1397-1409.
[4] 许乃银, 王扬, 王丹涛, 宁贺佳, 杨晓妮, 乔银桃. 棉花纤维质量指数的构建与WGT双标图分析[J]. 作物学报, 2023, 49(5): 1262-1271.
[5] 刘昕萌, 程乙, 刘玉文, 庞尚水, 叶秀芹, 卜艳霞, 张吉旺, 赵斌, 任佰朝, 任昊, 刘鹏. 黄淮海区域现代夏玉米品种产量与资源利用效率的差异分析[J]. 作物学报, 2023, 49(5): 1363-1371.
[6] 张金鑫, 葛均筑, 马玮, 丁在松, 王新兵, 李从锋, 周宝元, 赵明. 华北平原冬小麦-夏玉米种植体系周年水分高效利用研究进展[J]. 作物学报, 2023, 49(4): 879-892.
[7] 宋杰, 王少祥, 李亮, 黄金苓, 赵斌, 张吉旺, 任佰朝, 刘鹏. 施钾量对夏玉米氮、磷、钾吸收利用和籽粒产量的影响[J]. 作物学报, 2023, 49(2): 539-551.
[8] 刘梦, 张垚, 葛均筑, 周宝元, 吴锡冬, 杨永安, 侯海鹏. 不同降雨年型施氮量与收获期对夏玉米产量及氮肥利用效率的影响[J]. 作物学报, 2023, 49(2): 497-510.
[9] 张振博, 屈馨月, 于宁宁, 任佰朝, 刘鹏, 赵斌, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和内源激素作用的影响[J]. 作物学报, 2022, 48(9): 2366-2376.
[10] 裴丽珍, 陈远学, 张雯雯, 肖华, 张森, 周元, 徐开未. 有机物料还田对夏玉米穗位叶光合性能及氮代谢的影响[J]. 作物学报, 2022, 48(8): 2115-2124.
[11] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[12] 朱亚迪, 王慧琴, 王洪章, 任昊, 吕建华, 赵斌, 张吉旺, 任佰朝, 殷复伟, 刘鹏. 不同夏玉米品种大喇叭口期耐热性评价和鉴定指标筛选[J]. 作物学报, 2022, 48(12): 3130-3143.
[13] 宋杰, 任昊, 赵斌, 张吉旺, 任佰朝, 李亮, 王少祥, 黄金苓, 刘鹏. 施钾量对夏玉米维管组织结构与物质运输性能的影响[J]. 作物学报, 2022, 48(11): 2908-2919.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 李静, 王洪章, 刘鹏, 张吉旺, 赵斌, 任佰朝. 夏玉米不同栽培模式花后叶片光合性能的差异[J]. 作物学报, 2021, 47(7): 1351-1359.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .