欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (5): 1249-1261.doi: 10.3724/SP.J.1006.2023.24122

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于表型性状和SSR分子标记构建甘薯核心种质

陈伊航1,2(), 唐朝臣1, 张雄坚1, 姚祝芳1, 江炳志1, 王章英1,*()   

  1. 1广东省农业科学院作物研究所/广东省农作物遗传改良重点实验室, 广东广州 510640
    2西北农林科技大学草业与草原学院, 陕西杨凌 712100
  • 收稿日期:2022-05-21 接受日期:2022-09-05 出版日期:2023-05-12 网络出版日期:2022-09-22
  • 通讯作者: *王章英, E-mail: wangzhangying@gdaas.cn
  • 作者简介:E-mail: chenyihang2022@126.com
  • 基金资助:
    国家重点研发计划项目(2019YFD1000700);国家重点研发计划项目(2019YFD1000701);财政部和农业农村部国家现代农业产业技术体系建设专项, 广东省甘薯马铃薯产业技术体系建设项目(2021KJ111)

Construction of core collection of sweetpotato based on phenotypic traits and SSR markers

CHEN Yi-Hang1,2(), TANG Chao-Chen1, ZHANG Xiong-Jian1, YAO Zhu-Fang1, JIANG Bing-Zhi1, WANG Zhang-Ying1,*()   

  1. 1Crops Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou 510640, Guangdong, China
    2College of Grassland Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
  • Received:2022-05-21 Accepted:2022-09-05 Published:2023-05-12 Published online:2022-09-22
  • Contact: *E-mail: wangzhangying@gdaas.cn
  • Supported by:
    National Key Research and Development Program of China(2019YFD1000700);National Key Research and Development Program of China(2019YFD1000701);China Agriculture Research System of MOF and MARA, and the Guangdong Modern Agricultural Industry Technology System(2021KJ111)

摘要:

为更好地保存、研究和利用甘薯种质资源, 本研究以国家甘薯种质资源圃(广州)保存的1091份甘薯种质为材料, 分别采用欧氏距离和Nei’s距离进行NJ聚类分组, 组内随机取样, 构建核心种质。利用均值、方差、香农多样性指数、变异系数等指标对核心种质的表型性状数据进行代表性评价, 以及利用有效等位基因、Nei’s遗传多样性指数、Shannon’s多样性指数等指标对核心种质的SSR分子标记数据进行代表性评价; 并利用主成分分析对核心种质进行确认。结果表明, 构建的甘薯核心种质包含289份材料, 占全部种质的26.49%; 在P<0.05概率下, 核心种质中表型性状以及SSR分子标记的相关指标与全部种质无显著差异, 且二者的表型频率分布基本一致; 主成分分析表明核心种质具有与全部种质相似的遗传多样性和群体结构。建立的甘薯核心种质很好地代表了全部种质的遗传变异和群体结构, 可为甘薯的品种改良、优良基因挖掘以及种质创新奠定良好基础。

关键词: 甘薯, 核心种质, 表型性状, SSR分子标记, 种质资源

Abstract:

To better preserve, study, and utilize sweet potato collection resources, 1091 sweetpotato germplasms preserved in the National Sweetpotato Germplasm Nursery (Guangzhou) were used as the materials in this study. Euclidean distance and Nei’s distance were used for NJ cluster grouping, respectively, and random sampling was conducted within the group to construct the core collection. Mean, variance, Shannon’s diversity index, coefficient of variation, and other indicators were used to evaluate the representativeness of the core collection based on phenotypic traits data, and effective alleles, Nei’s genetic diversity index, Shannon’s diversity index, and other indicators were used to evaluate the representativeness of the core collection based on SSR markers data. The results showed that the constructed sweetpotato core collection contained 289 materials, accounting for 26.49% of the entire collection. At P < 0.05, there was no significant difference in the related indicators of phenotypic traits and SSR molecular markers between the core collection and the entire collection, and the phenotypic frequency distribution of the two germplasm was basically the same. The principal component analysis revealed that the core collection had similar genetic diversity and population structure to the entire collection. In conclusion, the established core collection of sweetpotato well represented the entire collection’s genetic variation and population structure, which could lay a good foundation for variety improvement, excellent genes mining, and germplasm innovation of sweetpotato.

Key words: sweetpotato, core collection, phenotypic traits, SSR markers, germplasm resource

表1

甘薯20个质量性状赋值"

性状
Trait
缩写
Abbreviation
赋值
Quantified value
顶叶色
Color of top leaf
CTL 浅绿=1, 绿=2, 紫绿=3, 褐绿=4, 浅紫=5, 紫=6, 褐=7, 金黄=8, 红=9
Light green=1, Green=2, Purple-green=3, Brown-green=4, Light purple=5, Purple=6, Brown=7, Golden yellow=8, Red=9
顶叶形状
Shape of top leaf
STL 圆=1, 肾=2, 心=3, 尖心=4, 三角=5, 缺刻=6
Round=1, Reniform=2, Cordate=3, Acuminate-cordate=4, Triangular=5, Incised=6
顶芽色
Color of top bud
CTB 浅绿=1, 绿=2, 浅紫=3, 紫=4, 深紫=5, 褐=6
Light green=1, Green=2, Light purple=3, Purple=4, Dark purple=5, Brown=6
叶色
Leaf color
LC 浅绿=1, 绿=2, 紫绿=3, 褐绿=4, 浅紫=5, 紫=6, 褐=7, 金黄=, 红=9
Light green=1, Green=2, Purple-green=3, Brown-green=4, Light purple=5, Purple=6, Brown=7, Golden yellow=8, Red=9
叶片形状
Shape of leaf
SL 圆=1, 肾=2, 心=3, 尖心=4, 三角=5, 缺刻=6
Round=1, Reniform=2, Cordate=3, Acuminate-cordate=4, Triangular=5, Incised=6

表2

核心种质抽样"

样本数量
Number of samples
抽样比例
Sampling ratio
<10 60%-100%
<50 50%-55%
<100 25%-30%
<200 20%-5%
≥200 15%-20%

图1

全部种质资源来源地信息"

图2

基于表型性状和SSR分子标记的全部种质聚类图 A: 基于表型性状; B: 基于SSR分子标记。"

附图1

部分SSR分子标记毛细管电泳结果 A~D分别为GDAAS0694、GDAAS0338、GDAAS0871和GDAAS0922的检测峰图。横坐标为条带位点, 纵坐标为相对荧光单位。"

表3

基于表型性状和SSR分子标记抽样结果"

类别
Class
组别
Group
样本数量
Number of samples
抽样比例
Sampling ratio (%)
抽取样本数
Number of samples extracted
表型
Trait
1 230 17.83 41
2 24 50.00 12
3 16 50.00 8
4 57 28.07 16
5 189 22.75 43
6 42 50.00 21
7 23 52.17 12
8 96 27.08 26
类别
Class
组别
Group
样本数量
Number of samples
抽样比例
Sampling ratio (%)
抽取样本数
Number of samples extracted
9 1 100.00 1
10 413 17.43 72
共计Sum 251
SSR分子标记
SSR marker
1 639 17.53 112
2 90 27.78 25
3 200 17.50 35
4 22 50.00 11
5 42 50.00 21
6 37 51.35 19
7 4 75.00 3
8 19 52.63 10
9 4 75.00 3
10 34 50.00 17
共计Sum 256
合计 Total 289

附图2

基于表型性状和SSR分子标记的核心种质聚类图 A: 基于表型性状; B: 基于SSR分子标记。"

表4

全部种质与核心种质20个性状平均值、方差、极差、变异系数、香农多样性指数和分布频率的比较"

性状
Trait
级数
Number of classes
平均值Mean 方差Variance 极差Range 变异系数CV(%) 香农多样性指数(H’) t-test显著性
Significance
全部种质
Entire collection
核心种质
Core collection
全部种质
Entire collection
核心种质
Core collection
F-
F-value
全部种质
Entire collection
核心种质
Core collection
全部种质
Entire collection
核心种质
Core collection
全部种质
Entire collection
核心种质
Core collection
CTL 9 3.31 3.09 3.72 3.61 2.79 1-9 1-8 58.32 61.46 1.69 1.65 NS
STL 6 4.6 4.54 2.03 1.88 0.54 2-6 3-6 30.93 30.19 1.68 1.15 NS
CTB 6 2.64 2.55 1.96 1.76 0.86 1-6 1-6 53.07 51.99 1.43 1.41 NS
LC 9 2.02 2.1 0.35 0.65 3.58 1-9 1-9 29.33 38.39 0.55 0.73 NS
SL 6 4.65 4.65 2.14 2.10 0.00 1-6 2-6 31.42 31.15 1.04 1.02 NS
MVP 6 3.98 3.89 2.66 2.68 0.69 1-6 1-6 41.03 42.15 1.57 1.53 NS
SVP 6 3.55 3.47 2.69 2.93 0.49 1-6 1-6 46.21 49.31 1.52 1.56 NS
PBLV 5 3.47 3.45 0.97 1.15 0.09 1-5 1-5 28.41 31.14 1.24 1.35 NS
LAS 3 1.41 1.33 0.25 0.23 5.59 0-2 0-2 35.45 35.90 0.70 0.66 *
PPC 5 2.24 2.22 0.50 0.46 0.19 1-5 1-5 31.55 30.62 0.76 0.63 NS
PBP 5 3.02 3.02 0.97 1.14 0.01 1-5 1-5 32.50 35.36 1.19 1.25 NS
CV 6 2.53 2.53 1.40 1.47 0.06 1-6 1-6 46.72 47.51 0.77 0.87 NS
PCV 7 2.63 2.62 1.71 1.80 0.00 1-7 1-7 49.78 51.14 0.81 0.87 NS
SCV 5 1.75 1.63 2.26 2.19 1.48 0-4 0-4 86.13 91.05 1.33 1.26 NS
VTP 4 1.14 1.19 0.98 1.01 0.59 0-3 0-3 86.79 84.37 1.32 1.33 NS
PT 4 2.65 2.62 0.26 0.27 0.58 1-4 1-4 19.28 19.85 0.74 0.76 NS
VP 3 1.74 1.6 0.35 0.38 12.83 1-3 1-3 34.13 38.61 0.88 0.90 ***
SRS 9 4.19 4.18 2.91 2.78 0.00 1-9 1-9 40.73 39.85 1.60 1.55 NS
SCSR 10 5.66 5.74 7.17 7.93 0.24 1-10 1-10 47.36 49.02 2.09 2.09 NS
PFC 10 3.2 3.46 5.60 6.10 2.55 1-10 1-10 73.85 71.43 1.82 1.86 NS

图3

全部种质与核心种质20个表型性状频率分布图 缩写同表1。图中黑色表示核心种质的频率分布, 浅灰色表示全部种质的频率分布。"

表5

全部种质和核心种质遗传多样性比较"

指标
Index
全部种质
Entire collection
核心种质
Core collection
样本数量Number of samples 1091 289
平均等位基因数Average number of alleles (Na) 1.88 1.92
平均有效等位基因数Average number of effective alleles (Ne) 1.25 1.32
总条带数Total number of strips 135 101
多态性条带数Number of polymorphic bands 119 93
多态性条带百分率Percentage of polymorphic bands (%) 88.15 92.08
Nei’s遗传多样性指数Nei’s genetic diversity index (He) 0.15 0.19
Shannon’s多样性指数Shannon’s diversity index (I) 0.24 0.30

图4

基于表型性状以及SSR分子标记的全部种质和核心种质主成分分布图 A: 基于表型性状; B: 基于SSR分子标记。在该图中, 红色表示核心种质的频率分布, 浅灰色表示全部种质的频率分布。"

[1] 陆漱韵, 刘庆昌, 李惟基. 甘薯育种学. 北京: 中国农业出版社, 1998. pp 19-27.
Lu S Y, Liu Q C, Li W J. Sweetpotato Breeding. Beijing: China Agriculture Press, 1998. pp 19-27. (in Chinese)
[2] 房伯平, 张雄坚, 陈景益, 安康. 我国甘薯种质资源研究的历史与现状. 广东农业科学, 2004, (增刊1): 3-5.
Fang B P, Zhang X J, Chen J Y, An K. The history and status of sweetpotato germplasm research in China. Guangdong Agric Sci, 2004, (S1): 3-5. (in Chinese with English abstract)
[3] Frankel O H, Brown A H D. Plant genetic resources today:a critical appraisal. In: Holden J H W, Williams J T, eds. Crop Genetic Resources:Conservation and Evaluation. London: George Allen and Unwin, 1984. pp 249-257.
[4] 张洪亮, 李自超, 曹永生, 裘宗恩, 余萍, 王象坤. 表型水平上检验水稻核心种质的参数比较. 作物学报, 2003, 29: 252-257.
Zhang H L, Li Z C, Cao Y S, Qiu Z E, Yu P, Wang X K. Comparison of parameters for testing the rice core collection in phenotype. Acta Agron Sin, 2003, 29: 252-257. (in Chinese with English abstract)
[5] Hao C Y, Zhang X Y, Wang L F, Dong Y S, Shang X W, Jia J Z. Genetic diversity and core collection evaluations in common wheat germplasm from the northwestern spring wheat region in China. Mol Breed, 2006, 17: 69-77.
doi: 10.1007/s11032-005-2453-6
[6] 姚启伦, 方平, 杨克诚, 潘光堂. 基于SSR标记构建西南玉米地方品种核心种质的方法. 湖南农业大学学报(自然科学版), 2009, 35(3): 225-228.
Yao Q L, Fang P, Yang K C, Pan G T. Methods of constructing a core collection of maize landraces in southwest China based on SSR data. J Hunan Agric Univ (Nat Sci), 2009, 35(3): 225-228. (in Chinese with English abstract)
[33] Huang Y Q, Yin G T, Yang J C, Yu N, Zou W T, Li R S. Developing a mini core germplasm of Pheobe bournei based on SSR molecular marker. Mol Plant Breed, 2020, 18: 2641-2648. (in Chinese with English abstract)
[34] 中华人民共和国农业部. 农作物种质资源鉴定技术规程甘薯, NY/T 1320-2007, 2007.
Ministry of Agriculture, The People’s Republic of China. Technical specification for identification of crop germplasm resources-sweetpotato [Ipomoea batatas (L.) Lam.], NY/TNY/T 1320-2007, 2007 (in Chinese)
[35] 黎裕, 王天宇. 美国植物种质资源保护与研究利用. 作物杂志, 2018, (6): 1-9.
Li Y, Wang T Y. Conservation and utilization of American plant germplasm resources. Crops, 2018, (6): 1-9. (in Chinese)
[36] Oh J H, Lee Y J, Byeon E J, Kang B C, Kyeoung D S, Kim C K. Whole-genome resequencing and transcriptomic analysis of genes regulating anthocyanin biosynthesis in black rice plants. 3 Biotech, 2018, 8: 115.
doi: 10.1007/s13205-018-1140-3
[37] Han W L, Zhao J Y, Deng X J, Gu A X, Li D L, Wang Y X, Lu X S, Zu Q L, Chen Q, Chen Q J, Zhang J F, Qu Y Y. Quantitative trait locus mapping and identification of candidate genes for resistance to Fusarium wilt race 7 using a resequencing- based high density genetic bin map in a recombinant inbred line population of Gossypium barbadense. Front Plant Sci, 2022, 13: 815643.
doi: 10.3389/fpls.2022.815643
[38] Yamakawa H, Haque E, Tanaka M, Takagi H, Tamiya S. Polyploid QTL-seq towards rapid development of tightly linked DNA markers for potato and sweetpotato breeding through whole genome resequencing. Plant Biotechnol J, 2021, 19: 2040-2051.
doi: 10.1111/pbi.13633 pmid: 34008333
[7] 刘艳阳, 梅鸿献, 杜振伟, 武轲, 郑永战, 崔向华, 郑磊. 基于表型和SSR分子标记构建芝麻核心种质. 中国农业科学, 2017, 50: 2433-2441.
doi: 10.3864/j.issn.0578-1752.2017.13.003
Liu Y Y, Mei H X, Du Z W, Wu K, Zheng Y Z, Cui X H, Zheng L. Construction of core collection of sesame based on phenotype and molecular markers. Sci Agric Sin, 2017, 50: 2433-2441. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2017.13.003
[8] 刘中华, 林志坚, 李华伟, 许泳清, 李国良, 邱永祥, 邱思鑫, 汤浩. 甘薯种质资源遗传多样性的ISSR分析. 南方农业学报, 2019, 50: 2392-2400.
Liu Z H, Lin Z J, Li H W, Xu Y Q, Li G L, Qiu Y X, Qiu S X, Tang H. Genetic diversity analysis of sweetpotato [Ipomoea batatas (L.) Lam.] by ISSR molecular markers. J Southern Agric, 2019, 50: 2392-2400. (in Chinese with English abstract)
[9] 李慧峰, 陈天渊, 黄咏梅, 吴翠荣, 李彦青, 滑金锋, 范继征. 甘薯种质资源形态标记遗传多样性分析. 西南农业学报, 2015, 28: 2401-2407.
Li H F, Chen T Y, Huang Y M, Wu C R, Li Y Q, Hua J F, Fan J Z. Genetic diversity of sweetpotato germplasm resources revealed by morphological traits. Southwest China J Agric Sci, 2015, 28: 2401-2407. (in Chinese with English abstract)
[10] 易燚波, 岑亮, 郭小路, 张启堂, 傅玉凡, 唐云明. 甘薯种质资源的遗传多样性分析. 西南大学学报(自然科学版), 2008, 30(4): 156-162.
Yi Y B, Cen L, Guo X L, Zhang Q T, Fu Y F, Tang Y M. Genetic diversity of sweetpotato germplasm resources. J Southwest Univ (Nat Sci), 2008, 30(4): 156-162 (in Chinese with English abstract).
[11] Wang Z Y, Li J, Luo Z X, Huang L F, Chen X L, Fang B P, Li Y J, Chen J Y, Zhang X J. Characterization and development of EST-derived SSR markers in cultivated sweetpotato (Ipomoea batatas). BMC Plant Biol, 2011, 11: 139-139.
doi: 10.1186/1471-2229-11-139 pmid: 22011271
[12] 罗忠霞, 房伯平, 李茹, 王章英, 黄立飞, 陈景益, 张雄坚, 李育军, 陈新亮, 黄实辉. 基于EST-SSR标记的甘薯种质资源DNA指纹图谱构建. 植物遗传资源学报, 2014, 15: 810-814.
Luo Z X, Fang B P, Li R, Wang Z Y, Huang L F, Chen J Y, Zhang X J, Li Y J, Chen X L, Huang S H. Construction of DNA fingerprint database based on EST-SSR markers for sweetpotato germplasm. J Plant Genet Resour, 2014, 15: 810-814. (in Chinese with English abstract)
[13] 王建成, 胡晋, 黄歆贤, 徐盛春. 植物遗传资源核心种质新概念与应用进展. 种子, 2008, 27(5): 47-50.
Wang J C, Hu J, Huang X X, Xu S C. New concept and application on core collection of plant germplasm resources. Seed, 2008, 27(5): 47-50. (in Chinese with English abstract)
[14] 郑福顺, 王晓敏, 李国花, 李洪磊, 周鹏泽, 王林, 白圣懿, 刘珮君, 张雪艳, 胡新华, 付金军, 高艳明, 李建设. 基于表型性状的宁夏番茄种质资源核心种质构建. 浙江大学学报(农业与生命科学版), 2021, 47: 171-181.
Zheng F S, Wang X M, Li G H, Li H L, Zhou P Z, Wang L, Bai S Y, Liu P J, Zhang X Y, Hu X H, Fu J J, Gao Y M, Li J S. Core collection construction of Ningxia tomato germplasm resources based on phenotypic traits. J Zhejiang Univ (Agric Life Sci), 2021, 47: 171-181. (in Chinese with English abstract)
[15] 汪磊, 王姣梅, 汪魏, 王玲, 王力军, 严兴初, 谭美莲. 基于表型多样性构建向日葵核心种质. 中国油料作物学报, 2021, 43: 1052-1060.
Wang L, Wang J M, Wang W, Wang L, Wang L J, Yan X C, Tan M L. Development of a core collection in sunflower (Helianthus annuus L.) germplasm using phenotypic diversity. Chin J Oil Crop Sci, 2021, 43: 1052-1060 (in Chinese with English abstract).
[16] 侯志强, 王丽慧, 赵孟良, 杨世鹏, 孙雪梅, 高洁铭, 钟启文. 基于表型数据的菊芋核心种质初步构建. 分子植物育种, 2021, 19: 3463-3472.
Hou Z Q, Wang L H, Zhao M L, Yang S P, Sun X M, Gao J M, Zhong Q W. Preliminary construction of core collection of Jerusalem artichoke based on phenotypic data. Mol Plant Breed, 2021, 19: 3463-3472. (in Chinese with English abstract)
[17] 徐超华, 刘新龙, 毛钧, 刘洪博, 林秀琴, 陆鑫, 苏火生. 基于SSR分子标记数据构建割手密核心种质库. 湖南农业大学学报(自然科学版), 2020, 46: 657-663.
Xu C H, Liu X L, Mao J, Liu H B, Lin X Q, Lu X, Su H S. Construction of a core-collection of Saccharum spontaneum based on SSR molecular markers. J Hunan Agric Univ (Nat Sci), 2020, 46: 657-663. (in Chinese with English abstract)
[18] 张馨方, 张树航, 李颖, 郭燕, 王广鹏. 基于SSR标记构建燕山板栗核心种质. 华北农学报, 2021, 36(增刊1): 31-38.
Zhang X F, Zhang S H, Li Y, Guo Y, Wang G P. Construction of core collection of Yanshan chestnut germplasm based on SSR markers. Acta Agric Boreali-Sin, 2021, 36(S1): 31-38. (in Chinese with English abstract)
doi: 10.7668/hbnxb.20192435
[19] 李金龙, 范昱, 赵梦雨, 康珍, 杨克理, 张凯旋, 周美亮. 基于表型性状和SSR分子标记构建甜荞初级核心种质. 植物遗传资源学报, 2021, 22: 1240-1247.
Li J L, Fan Y, Zhao M Y, Kang Z, Yang K L, Zhang K X, Zhou M L. Construction of primary core collection of buckwheat germplasm resources based on Phenotypic traits and SSR. J Plant Genet Resour, 2021, 22: 1240-1247 (in Chinese with English abstract).
[20] Luan M B, Chen Y M, Wang X F, Xu Y, Sun Z M, Chen J H, Wang J S. Core collection of ramie comprising 1151 germplasms based on simple sequence repeats and phenotypic markers. Braz J Bot, 2018, 41: 859-866.
doi: 10.1007/s40415-018-0504-6
[21] Wang X L, Cao Z L, Gao C J, Li K. Strategy for the construction of a core collection for Pinus yunnanensis Franch. to optimize timber based on combined phenotype and molecular marker data. Genet Resour Crop Evol, 2021, 68: 3219-3240.
doi: 10.1007/s10722-021-01182-9
[22] Sa K J, Kim D M, Oh J S, Park H, Ju K L. Construction of a core collection of native Perilla germplasm collected from South Korea based on SSR markers and morphological characteristics. Sci Rep, 2021, 11: 23891.
doi: 10.1038/s41598-021-03362-0
[23] 张允刚, 房伯平. 甘薯种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. pp 10-60.
Zhang Y G, Fang B P. Descriptors and Data Standard for Sweetpotato [Ipomoea batatas (L.) Lam.]. Beijing: China Agriculture Press, 2006. pp 10-60. (in Chinese)
[24] Meng Y S, Zhao N, Hui L I, Zhai H, Shao-Zhen H E, Liu Q C. SSR fingerprinting of 203 sweetpotato (Ipomoea batatas (L.) Lam.) varieties. J Integr Agric, 2018, 17: 86-93.
doi: 10.1016/S2095-3119(17)61687-3
[25] Hu J, Zhu J, Xu H M. Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops. Theor Appl Genet, 2000, 101: 264-268.
doi: 10.1007/s001220051478
[26] 刘遵春, 张春雨, 张艳敏, 张小燕, 吴传金, 王海波, 石俊, 陈学森. 利用数量性状构建新疆野苹果核心种质的方法. 中国农业科学, 2010, 43: 358-370.
Liu Z C, Zhang C Y, Zhang Y M, Zhang X Y, Wu C J, Wang H B, Shi J, Chen X S. Study on method of constructing core collection of Malus sieversii based on quantitative traits. Sci Agric Sin, 2010, 43: 358-370. (in Chinese with English abstract)
[27] Katinas L, Crisci J V. Agriculture biogeography: an emerging discipline in search of a conceptual framework. Prog Phys Geog, 2019, 42: 513-529.
doi: 10.1177/0309133318776493
[28] 闫彩霞, 王娟, 张浩, 李春娟, 宋秀霞, 孙全喜, 苑翠玲, 赵小波, 单世华. 基于表型性状构建中国花生地方品种骨干种质. 作物学报, 2020, 46: 520-531.
doi: 10.3724/SP.J.1006.2020.94101
Yan C X, Wang J, Zhang H, Li C J, Song X X, Sun Q X, Yuan C L, Zhao X B, Shan S H. Developing the key germplasm of Chinese peanut landraces based on phenotypic traits. Acta Agron Sin, 2020, 46: 520-531. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94101
[29] 崔竣杰, 程蛟文, 曹毅, 胡开林. 基于SSR标记和表型性状构建苦瓜核心种质的研究. 中国蔬菜, 2022, (2): 25-32.
Cui J J, Cheng J W, Cao Y, Hu K L. Construction of core bitter gourd germplasm based on SSR markers and phenotypic traits. China Veget, 2022, (2): 25-32. (in Chinese)
[30] Kumar A, Kumar S, Singh K B M, Prasad M, Thakur J K. Designing a mini-core collection effectively representing 3004 diverse rice accessions. Plant Commun, 2020, 1: 100049.
doi: 10.1016/j.xplc.2020.100049
[31] Rajput S G, Santra D K. Evaluation of genetic diversity of proso millet germplasm available in the United States using simple- sequence repeat markers. Crop Sci, 2016, 56: 2401-2409.
doi: 10.2135/cropsci2015.10.0644
[32] 李秀诗, 付瑜华, 周祥, 黎青, 刘凡值, 杨成龙, 周明强. 基于表型性状的薏苡初级核心种质库构建. 热带作物学报, 2020, 41: 669-675.
Li X S, Fu Y H, Zhou X, Li Q, Liu F Z, Yang C L, Zhou M Q. Establishment of Coix lacryma-jobi L. core germplasm collection based on phenotypic characters. Chin J Trop Crops, 2020, 41: 669-675. (in Chinese with English abstract)
[33] 黄雨芹, 尹光天, 杨锦昌, 余纽, 邹文涛, 李荣生. 基于SSR分子标记的闽楠(Phoebe bournei)核心种质的构建. 分子植物育种, 2020, 18: 2641-2648.
[1] 张静, 高文博, 晏林, 张宗文, 周海涛, 吴斌. 燕麦种质资源耐盐碱性鉴定评价及耐盐碱种质筛选[J]. 作物学报, 2023, 49(6): 1551-1561.
[2] 梅玉琴, 刘意, 王崇, 雷剑, 朱国鹏, 杨新笋. 甘薯PHB基因家族的全基因组鉴定和表达分析[J]. 作物学报, 2023, 49(6): 1715-1725.
[3] 张小红, 彭琼, 鄢铮. 盐胁迫下不同甘薯品种的转录组测序分析[J]. 作物学报, 2023, 49(5): 1432-1444.
[4] 周海平, 张帆, 陈凯, 申聪聪, 朱双兵, 邱先进, 徐建龙. 水稻种质资源稻瘟病抗性全基因组关联分析[J]. 作物学报, 2023, 49(5): 1170-1183.
[5] 孙现军, 姜奇彦, 胡正, 李宏博, 庞斌双, 张风廷, 张胜全, 张辉. 小麦种质资源苗期耐盐性鉴定评价[J]. 作物学报, 2023, 49(4): 1132-1139.
[6] 吴世雨, 陈匡稷, 吕尊富, 徐锡明, 庞林江, 陆国权. 施氮量对甘薯块根膨大过程中淀粉含量及特性的影响[J]. 作物学报, 2023, 49(4): 1090-1101.
[7] 刘明, 范文静, 赵鹏, 靳容, 张强强, 朱晓亚, 王静, 李强. 甘薯耐低钾基因型苗期筛选及综合评价[J]. 作物学报, 2023, 49(4): 926-937.
[8] 吴旭莉, 吴正丹, 晚传芳, 杜叶, 高艳, 李賾萱, 王志前, 唐道彬, 王季春, 张凯. 甘薯糖转运蛋白IbSWEET15的功能研究[J]. 作物学报, 2023, 49(1): 129-139.
[9] 姚祝芳, 张雄坚, 杨义伶, 黄立飞, 陈新亮, 姚肖健, 罗忠霞, 陈景益, 王章英, 房伯平. 177份甘薯地方资源表型性状的遗传多样性分析[J]. 作物学报, 2022, 48(9): 2228-2241.
[10] 夏秀忠, 张宗琼, 杨行海, 荘洁, 曾宇, 邓国富, 宋国显, 黄欲晓, 农保选, 李丹婷. 广西水稻地方品种核心种质芽期耐盐性全基因组关联分析[J]. 作物学报, 2022, 48(8): 2007-2015.
[11] 解黎明, 姜仲禹, 柳洪鹃, 韩俊杰, 刘本奎, 王晓陆, 史春余. 甘薯发根分枝期适宜土壤水分促进块根糖供应和块根形成的研究[J]. 作物学报, 2022, 48(8): 2080-2087.
[12] 陈璐, 周淑倩, 李永新, 陈刚, 陆国权, 杨虎清. 甘薯解偶联蛋白基因家族鉴定与表达分析[J]. 作物学报, 2022, 48(7): 1683-1696.
[13] 张钰坤, 陆赢, 崔看, 夏石头, 刘忠松. 芥菜种子颜色调控基因TT8的等位变异及其地理分布分析[J]. 作物学报, 2022, 48(6): 1325-1332.
[14] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[15] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .