欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (5): 1410-1425.doi: 10.3724/SP.J.1006.2023.21036

• 研究简报 • 上一篇    下一篇

小麦G2-like转录因子家族基因鉴定与表达模式分析

贾玉库(), 高宏欢(), 冯健超, 郝紫瑞, 王晨阳, 谢迎新, 郭天财, 马冬云()   

  1. 河南农业大学农学院/国家小麦工程技术研究中心/河南省小麦技术创新中心, 河南郑州 450046
  • 收稿日期:2022-05-13 接受日期:2022-07-22 出版日期:2023-05-12 网络出版日期:2022-08-18
  • 通讯作者: *马冬云, E-mail: xmzxmdy@126.com
  • 作者简介:贾玉库, E-mail: 13633969649@163.com;
    高宏欢, E-mail: 2972620298@qq.com第一联系人:**同等贡献
  • 基金资助:
    国家科技支撑计划项目(2015BAD26B00);河南省科技攻关项目(212102110281)

Genome-wide identification and expression analysis of G2-like transcription factors family genes in wheat

JIA Yu-Ku(), GAO Hong-Huan(), FENG Jian-Chao, HAO Zi-Rui, WANG Chen-Yang, XIE Ying-Xin, GUO Tian-Cai, MA Dong-Yun()   

  1. College of Agronomy, Henan Agricultural University/National Engineering Research Center for Wheat/Technology Innovation Center of Henan Wheat, Zhengzhou 450046, Henan, China
  • Received:2022-05-13 Accepted:2022-07-22 Published:2023-05-12 Published online:2022-08-18
  • Contact: *E-mail: xmzxmdy@126.com
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    National Science and Technology Support Program of China(2015BAD26B00);Science and Technology Project of Henan Province(212102110281)

摘要:

Golden2-Like (G2-like)转录因子, 是属于MYB类转录因子中GARP超家族的成员, 在调节叶绿体发育中起重要作用。本研究利用生物信息学方法对小麦G2-like基因进行了全基因组鉴定, 并对其理化性质、亚细胞定位、启动子顺式作用元件及对非生物胁迫和激素的响应模式进行了分析。从小麦中共鉴定出87个G2-like基因, 不均匀的分布在小麦21条染色体上, 系统发育分析将这些基因分为14个亚族。蛋白质二级结构预测表明, 小麦G2-like基因的氨基酸序列均以α螺旋和随机卷曲为主要结构。启动子顺式作用元件分析表明其上游2 kb区域含有7种(P-box、SpI、LTR、ABRE、MBS、TGA-element和AE-box)与逆境胁迫诱导相关顺式作用元件。其中Ta3AG2-like19含有顺式调控元件结合位点最多, 一共有18个结合位点。qRT-PCR验证发现, Ta3AG2-like19Ta3AG2-like20Ta4AG2-like29Ta6AG2-like52在PEG和盐胁迫下以及GA、IAA和ABA激素诱导下表达量显著上调, 这些基因可能介导了小麦对多种非生物逆境的响应。

关键词: 小麦, G2-like转录因子, 生物信息学, 逆境胁迫, 表达分析

Abstract:

Golden2-like (G2-like) transcription factor, a member of the GARP superfamily of MYB transcription factors, plays an important role in regulating chloroplast development. In this study, genome-wide identification of G2-like genes in wheat was carried out by bioinformatics methods, and their physicochemical properties, subcellular localization, cis-acting elements of promoters, and response patterns to abiotic stresses and hormones were analyzed. A total of 87 G2-like genes were identified from wheat, which distributed in evenly on 21 chromosomes in wheat. Phylogenetic analysis showed that these genes were divided into 14 subfamilies, and fragment replication was the main reason for the expansion of this gene family. The prediction of protein secondary structure revealed that α helix and random curl were the main amino acid sequences of G2-like gene in wheat. Promoter cis-acting elements showed that there were seven cis-acting elements (P-box, SpI, LTR, ABRE, MBS, TGA-Element, and AE-box) in 2-kb region upstream of the promoter. Among them, Ta3AG2-Like19 contained the most cis-regulatory element binding sites with a total of 18 binding sites. The qRT-PCR revealed. that the relative expression levels of Ta3AG2-like19, Ta3AG2-Like20, Ta4AG2-Like29, and Ta6AG2-Like52 were significantly up-regulated under PEG and salt stresses, and induced by GA, IAA, and ABA hormones. These genes may mediate the response of wheat plant to various abiotic stresses.

Key words: wheat, G2-like transcription factors, bioinformatics, adversity stress, the relative expression level

表1

部分G2-like基因荧光定量所用引物"

基因ID Gene ID 上游引物Forward primer (5°−3°) 下游引物Reverse primer (5°−3°)
TraesCS1D02G305200.2 GACACCCGAGTTACATCAGCG CCTATGGTGTTCTTGTTTGTCCC
TraesCS2A02G441300.1 CGGGCTTGTCGGAGAATGGAAC TCCTGACTTCGTACACGGTAGAGC
TraesCS3A02G361800.1 GAAGTACCGCCTCTACCTCAAG CTGGTAGGAAACGTACGGATAC
TraesCS3A02G526600.1 GGCAACCGGGACAACAACTCT CCCTGCATCCGCTTGACGT
TraesCS4A02G130000.1 TTCCAGGAGAGTCAGGGCTTA CCTCATAATGGTTTTTGGGGT
TraesCS4B02G172900.1 AATCCAATACGGAGAAGGTGC CAAGGGGCTCAGAAGACTCG
TraesCS4B02G174600.1 AGCGACGGCTACATGAACAACTG GTGTCTCGTGTGCCTTCTCCAAC
TraesCS4D02G175000.1 CGGTCCTGCTGTGACATCTGATG TGTGACGCAGCCGAATTGGAAG
TraesCS4D02G176500.1 GCCAGTCAGCCACCACCTTAATAC TGCACCTCCAGTTGTTCATGTAGC
TraesCS5A02G178500.1 TAAGGACAATGGGTGTAAAGGG TGAGCATCAAGAAGATAGGACC
TraesCS5D02G183000.1 AGATGGGTCCTACCTTCTTGATGC AGGCGAACTGCTCTGAGACGAT
TraesCS6A02G109700.1 GAACACCAATAGCCGCCTCTACG ACGCCCAGTCTTGATTCCTGAAAC
TraesCS6A02G385500.1 GCAAGTACCTGGAGATGGTGATCG GACTGCGTGTTTGAATGCTGGAAC
TraesCS7B02G315800.1 TCCATTGTCTCATGTCTCGCA AGGCAGAGCACCCATTCGC
TraesCS7D02G334100.1 AACGGCAACACTGGCAGAAC TCTTCGTCTTCCTCGCCTCTGC

表2

小麦G2-like转录因子家族成员基本信息"

基因名
Gene name
登录号
Accession number
氨基酸长度
Length of amino acids
分子量
Molecular weight (kD)
等电点
Isoelectric point
不稳定
系数
Instability coefficient
疏水性指数
Hydrophobicity index
α螺旋
α-helix
(%)
延伸链
Extending chain
(%)
β折叠
β-folding
(%)
无规则
卷曲
Random crimp (%)
亚细胞
定位
Subcellular localization
Ta1AG2-like1 TraesCS1A02G202500.1 353 38.40 8.82 41.82 0.724 28.33 9.07 10.20 52.41 N
Ta1AG2-like2 TraesCS1A02G258400.1 312 31.91 6.59 53.71 0.459 27.56 5.77 6.41 60.26 N
Ta1AG2-like3 TraesCS1A02G305500.2 407 45.60 6.35 39.59 0.776 37.59 9.09 2.46 50.86 N
Ta1BG2-like4 TraesCS1B02G216600.1 352 38.35 8.73 45.09 0.693 23.86 10.23 7.95 57.95 N
Ta1BG2-like5 TraesCS1B02G268900.1 308 31.59 6.59 52.98 0.447 27.27 7.79 7.79 57.14 N
Ta1BG2-like6 TraesCS1B02G316200.2 407 45.83 6.58 39.24 0.755 34.89 8.11 5.16 51.84 N
Ta1DG2-like7 TraesCS1D02G205800.1 352 38.33 8.78 45.10 0.749 26.14 9.66 8.81 55.40 N
Ta1DG2-like8 TraesCS1D02G257700.1 309 31.51 6.57 53.38 0.441 27.18 7.12 7.44 58.25 N
Ta1DG2-like9 TraesCS1D02G305200.2 407 45.62 6.47 39.89 0.761 33.66 9.09 3.19 54.05 N
Ta2AG2-like10 TraesCS2A02G100600.1 355 38.90 7.70 58.76 0.686 42.82 12.11 5.63 39.44 N
Ta2AG2-like11 TraesCS2A02G441300.1 279 30.63 6.19 35.67 0.589 45.88 9.68 4.30 40.14 M
Ta2AG2-like12 TraesCS2A02G488200.1 452 49.66 6.11 67.78 0.637 29.20 11.28 3.10 56.42 N
Ta2BG2-like13 TraesCS2B02G117800.1 357 39.07 7.26 57.22 0.681 42.02 10.36 3.92 43.70 N
Ta2BG2-like14 TraesCS2B02G515800.1 455 49.59 6.25 67.20 0.559 29.67 11.43 3.96 54.95 N
Ta2DG2-like15 TraesCS2D02G100100.1 357 38.95 7.71 58.72 0.644 49.30 9.24 3.92 37.54 N
Ta2DG2-like16 TraesCS2D02G488500.1 452 49.56 6.10 69.81 0.610 30.31 12.39 3.98 53.32 N
Ta3AG2-like17 TraesCS3A02G105500.2 430 46.95 5.11 54.42 0.578 29.77 6.05 3.02 61.16 P
Ta3AG2-like18 TraesCS3A02G161000.1 509 54.84 5.69 58.88 0.501 25.34 5.70 2.75 66.21 N
Ta3AG2-like19 TraesCS3A02G361800.1 225 24.23 5.85 62.38 0.568 26.67 7.11 6.22 60.00 N
Ta3AG2-like20 TraesCS3A02G526600.1 285 29.70 7.37 46.77 0.540 29.82 10.18 8.77 51.23 N
Ta3BG2-like21 TraesCS3B02G124100.1 432 46.98 5.12 57.01 0.579 26.85 3.70 3.24 66.20 P
Ta3BG2-like22 TraesCS3B02G191600.1 503 54.28 5.79 56.66 0.490 27.83 5.17 2.19 64.81 N
Ta3BG2-like23 TraesCS3B02G394200.1 225 24.31 5.84 59.07 0.566 29.33 5.33 5.78 59.56 N
Ta3BG2-like24 TraesCS3B02G594300.1 287 29.91 6.81 50.21 0.506 25.09 11.50 8.01 55.40 N
Ta3DG2-like25 TraesCS3D02G107800.1 432 47.11 5.07 53.12 0.618 30.09 6.25 3.01 60.65 P
Ta3DG2-like26 TraesCS3D02G168200.1 377 40.53 4.84 55.49 0.415 33.16 10.34 4.77 51.72 N
Ta3DG2-like27 TraesCS3D02G355500.1 227 24.43 5.84 61.74 0.541 25.55 6.17 4.85 63.44 N
Ta3DG2-like28 TraesCS3D02G531900.1 281 29.27 6.83 43.21 0.514 32.03 9.25 7.47 51.25 N
Ta4AG2-like29 TraesCS4A02G130000.1 354 39.68 8.28 57.73 0.711 36.44 8.47 3.39 51.69 N
Ta4AG2-like30 TraesCS4A02G131700.1 486 53.39 6.26 60.73 0.773 30.25 4.94 2.88 61.93 P
Ta4AG2-like31 TraesCS4A02G180900.1 341 37.76 7.02 48.84 0.709 27.86 13.49 4.99 53.67 N
Ta4BG2-like32 TraesCS4B02G172900.1 437 48.08 5.99 62.97 0.806 27.69 5.26 2.06 64.99 P
Ta4BG2-like33 TraesCS4B02G174600.1 355 39.82 7.06 58.02 0.701 39.44 9.30 3.38 47.89 N
Ta4DG2-like34 TraesCS4D02G071300.2 224 24.03 9.33 45.49 0.559 35.71 10.71 3.12 50.45 N
Ta4DG2-like35 TraesCS4D02G131500.1 341 37.91 8.54 44.89 0.728 29.62 15.25 5.28 49.85 N
Ta4DG2-like36 TraesCS4D02G175000.1 451 49.30 5.89 60.76 0.792 28.82 4.43 1.55 65.19 P
Ta4DG2-like37 TraesCS4D02G176500.1 354 39.73 8.57 57.50 0.703 41.81 7.06 3.67 47.46 N
Ta5AG2-like38 TraesCS5A02G153000.1 326 35.77 7.32 53.69 0.678 33.13 13.50 6.75 46.63 N
Ta5AG2-like39 TraesCS5A02G178500.1 255 27.69 8.71 53.52 0.500 40.00 11.76 4.71 43.53 N
Ta5AG2-like40 TraesCS5A02G178600.1 286 30.98 5.76 53.63 0.836 33.22 6.29 4.90 55.59 P
Ta5BG2-like41 TraesCS5B02G151800.1 337 37.06 7.35 46.54 0.677 31.45 12.46 5.93 50.15 N
Ta5BG2-like42 TraesCS5B02G176200.1 255 27.72 8.71 53.85 0.510 40.39 10.59 5.10 43.92 N
Ta5BG2-like43 TraesCS5B02G176300.1 286 31.02 5.75 54.74 0.856 29.72 4.55 3.15 62.59 P
Ta5DG2-like44 TraesCS5D02G158300.1 324 35.73 8.68 55.56 0.710 33.95 12.96 5.86 47.22 N
Ta5DG2-like45 TraesCS5D02G183000.1 255 27.73 8.71 53.52 0.509 36.47 10.59 4.31 48.63 N
Ta5DG2-like46 TraesCS5D02G183100.1 286 31.02 5.75 53.39 0.853 31.82 5.59 2.45 60.14 P
Ta6AG2-like47 TraesCS6A02G108800.1 415 45.89 6.18 61.00 0.640 28.19 8.67 2.65 60.48 N
Ta6AG2-like48 TraesCS6A02G109700.1 477 52.25 8.92 51.15 0.699 28.51 11.11 5.24 55.14 N
Ta6AG2-like49 TraesCS6A02G155400.1 362 39.28 8.30 45.73 0.540 39.23 11.33 5.25 44.20 N
Ta6AG2-like50 TraesCS6A02G254700.1 303 33.19 9.44 63.28 0.558 39.93 6.60 6.93 46.53 N
Ta6AG2-like51 TraesCS6A02G269000.1 276 30.36 8.92 29.87 0.561 45.65 10.51 5.07 38.77 N
Ta6AG2-like52 TraesCS6A02G385500.1 406 45.10 5.98 46.92 0.645 30.54 9.36 2.96 57.14 N
Ta6BG2-like53 TraesCS6B02G137300.1 409 45.35 7.23 57.66 0.652 33.25 6.85 1.96 57.95 N
Ta6BG2-like54 TraesCS6B02G138200.1 528 58.32 7.88 54.92 0.705 31.25 8.71 4.36 55.68 N
Ta6BG2-like55 TraesCS6B02G183500.1 362 39.29 7.78 48.07 0.536 41.44 9.39 4.42 44.75 N
Ta6BG2-like56 TraesCS6B02G270800.1 318 34.61 9.27 53.80 0.524 38.68 6.92 4.09 50.31 M
Ta6BG2-like57 TraesCS6B02G296300.1 280 30.91 8.72 28.89 0.585 46.07 11.43 4.64 37.86 N
Ta6BG2-like58 TraesCS6B02G394700.1 534 58.47 5.51 41.81 0.376 33.71 9.55 6.18 50.56 C
Ta6BG2-like59 TraesCS6B02G424600.1 431 48.08 6.09 39.85 0.637 32.02 9.51 2.09 56.38 N
Ta6DG2-like60 TraesCS6D02G097000.1 386 42.63 6.28 52.91 0.682 31.35 8.81 1.30 58.55 N
Ta6DG2-like61 TraesCS6D02G098200.1 475 51.73 8.92 50.50 0.648 36.42 9.26 4.63 49.68 N
Ta6DG2-like62 TraesCS6D02G145300.1 363 39.35 8.30 48.93 0.528 36.09 10.74 3.86 49.31 N
Ta6DG2-like63 TraesCS6D02G236000.1 304 33.43 9.65 59.00 0.578 40.79 7.89 3.29 48.03 N
Ta6DG2-like64 TraesCS6D02G245900.1 277 30.36 8.72 28.00 0.542 47.65 10.11 3.97 38.27 N
Ta6DG2-like65 TraesCS6D02G370300.1 407 45.39 5.90 40.98 0.635 32.92 6.63 2.70 57.74 N
Ta7AG2-like66 TraesCS7A02G339800.1 461 49.17 5.30 65.82 0.319 31.45 8.46 3.25 56.83 N
Ta7AG2-like67 TraesCS7A02G345200.1 512 55.89 9.36 52.35 0.785 33.40 6.84 5.47 54.30 N
Ta7AG2-like68 TraesCS7A02G381900.1 339 36.57 5.69 46.54 0.594 28.91 7.96 5.01 58.11 N
Ta7AG2-like69 TraesCS7A02G415800.1 454 49.57 5.71 65.91 0.706 28.63 7.93 1.32 62.11 N
Ta7AG2-like70 TraesCS7A02G469900.1 249 27.44 6.76 61.15 0.816 31.73 11.65 6.02 50.60 N
Ta7AG2-like71 TraesCS7A02G470100.1 252 27.84 7.09 71.64 0.840 28.57 11.11 6.75 53.57 M
Ta7AG2-like72 TraesCS7A02G470200.1 246 27.56 8.39 71.73 0.725 30.89 10.57 5.28 53.25 N
Ta7AG2-like73 TraesCS7A02G483100.1 348 37.47 6.83 53.15 0.457 39.66 7.18 3.16 50.00 N
Ta7BG2-like74 TraesCS7B02G251400.1 459 49.29 5.24 64.16 0.381 33.99 7.19 2.61 56.21 N
Ta7BG2-like75 TraesCS7B02G315800.1 454 49.53 5.71 67.55 0.719 29.07 7.05 1.54 62.33 N
Ta7BG2-like76 TraesCS7B02G372000.1 250 27.76 7.77 64.83 0.853 28.80 10.40 6.00 54.80 N
Ta7BG2-like77 TraesCS7B02G372100.1 240 27.00 9.12 64.75 0.945 25.00 13.33 7.50 54.17 N
Ta7BG2-like78 TraesCS7B02G372200.1 245 27.17 7.75 72.37 0.736 33.06 6.53 5.71 54.69 N
Ta7BG2-like79 TraesCS7B02G385700.1 348 37.41 7.17 53.37 0.449 39.08 7.18 3.74 50.00 N
Ta7DG2-like80 TraesCS7D02G334100.1 517 55.27 8.40 46.25 0.750 33.27 7.54 4.84 54.35 N
Ta7DG2-like81 TraesCS7D02G347500.1 458 48.96 5.51 65.44 0.369 29.69 6.33 2.84 61.14 N
Ta7DG2-like82 TraesCS7D02G409100.1 454 49.40 5.78 64.55 0.667 28.63 7.27 1.32 62.78 N
Ta7DG2-like83 TraesCS7D02G457300.1 250 27.67 8.33 64.87 0.858 27.20 8.80 6.00 58.00 N
Ta7DG2-like84 TraesCS7D02G457400.1 251 27.67 7.16 73.87 0.881 28.29 7.17 6.77 57.77 N
Ta7DG2-like85 TraesCS7D02G457500.1 246 27.74 9.21 67.18 0.798 32.93 9.35 6.91 50.81 N
Ta7DG2-like86 TraesCS7D02G457600.1 247 27.27 6.50 72.08 0.678 35.22 8.50 4.86 51.42 N
Ta7DG2-like87 TraesCS7D02G470000.1 348 37.40 7.17 52.82 0.449 41.38 6.90 4.89 46.84 N

图1

小麦G2-like基因的系统发育关系、保守蛋白基序结构和基因结构 A: 利用MEGA7基于小麦G2-like蛋白全长序列构建系统发育树。B: 小麦G2-like蛋白的基序组成。不同颜色表示motif 1~motif 10; 蛋白质的长度可以用底部的刻度来估计。C: 小麦G2-like基因的外显子-内含子结构。绿色方框表示未翻译的5-和3-区域;黄色框表示外显子; 黑线表示内含子。"

图2

小麦G2-like基因染色体定位 标度代表兆碱基(Mb)。"

图3

小麦G2-like基因的染色体位置及共线性关系 所有的共线区域和基因由灰线连接, G2-like基因的片段重复基因对用红线标出。"

图4

小麦G2-like基因启动子区域与抗逆相关的7种顺式作用元件 顺式作用元件用不同的彩色方框表示。"

图5

不同时期籽粒、叶片、根和穗中87个G2-like基因表达谱热图 S: 幼苗期; V: 期; R: 生殖期。红色或绿色代表每个样品中每个转录本的较高或较低的相对丰度。"

图6

小麦G2-like基因在热、干旱以及热和干旱共同胁迫下的表达模式 D1、D6:干旱处理1、6 h; H1、H6: 高温处理1、6 h; D+H1、D+H6: 在高温和干旱胁迫下处理时间为1、6 h。红色和绿色分别代表每个样品中每个转录本的较高和较低的相对丰度。"

图7

定量实时PCR分析14个G2-like基因对NaCl、PEG处理的响应 *表示处理间存在显著差异(P <0.05)。"

图8

定量实时PCR分析14个G2-like基因对ABA、GA和IAA处理的响应 *表示处理间存在显著差异(P < 0.05)。"

[1] Janmohannadi M, Zolla L, Rinalducci S M. Low temperature tolerance in plants: changes at the protein level. Phytochemistry, 2015, 117: 76-89.
doi: S0031-9422(15)30012-1 pmid: 26068669
[2] Rinalducci S, Egidi M G, Karimzadeh G, Jazii F R, Zolla L. Proteomic analysis of a spring wheat cultivar in response to prolonged cold stress. Electrophoresis, 2011, 32: 1807-1818.
doi: 10.1002/elps.201000663 pmid: 21710550
[3] Gibson L R, Paulsen G. Yield components of wheat grown under high temperature stress during reproductive growth. Crop Sci, 1999, 39: 1841-1846.
doi: 10.2135/cropsci1999.3961841x
[4] Farooq M, Hussain M, Siddique K H M. Drought stress in wheat during flowering and grain-filling periods. Crit Rev Plant Sci, 2014, 33: 331-349.
doi: 10.1080/07352689.2014.875291
[5] Mohammadi R. Efficiency of yield-based drought tolerance indices to identify tolerant genotypes in durum wheat. Euphytica, 2016, 211: 71-89.
doi: 10.1007/s10681-016-1727-x
[6] Ding H, Ma D, Huang X, Hou J, Wang C, Xie Y, Wang Y, Qin H, Guo T. Exogenous hydrogen sulfide alleviates salt stress by improving antioxidant defenses and the salt overly sensitive pathway in wheat seedlings. Acta Physiol Plant, 2019, 41: 123.
doi: 10.1007/s11738-019-2918-6
[7] Saqib M, Akhtar J, Qureshi R H. Pot study on wheat growth in saline and waterlogged compacted soil: I. Grain yield and yield components. Soil Tillage Res, 2004, 77: 169-177.
doi: 10.1016/j.still.2003.12.004
[8] Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. AP2/ERF family transcription factors in plant abiotic stress responses. BBA-Gene Regul Mech, 2012, 1819: 86-96.
[9] Chrispeels H E, Oettinger H, Janvier N, Tague B W. AtZFP1, encoding Arabidopsis thaliana C2H2 zinc-finger protein 1, is expressed downstream of photomorphogenic activation. Plant Mol Biol, 2000, 42: 279-290.
pmid: 10794528
[10] Jenkins M T. A second gene producing golden plant color in maize. Am Nat, 1926, 60: 484-488.
doi: 10.1086/280119
[11] Brand A, Borovsky Y, Hill T, Rahman K A A, Bellalou A, Van Deynze A, Paran I. CaGLK2 regulates natural variation of chlorophyll content and fruit color in pepper fruit. Theor Appl Genet, 2014, 127: 2139-2148.
doi: 10.1007/s00122-014-2367-y
[12] Fitter D W, Martin D J, Copley M J, Scotland R W, Langdale J A. GLK gene pairs regulate chloroplast development in diverse plant species. Plant J, 2002, 31: 713-727.
doi: 10.1046/j.1365-313x.2002.01390.x pmid: 12220263
[13] Powell A L T, Nguyen C V, Hill T, Cheng K L, Figueroa-Balderas R, Aktas H, Ashrafi H, Pons C, Fernández-Muñoz R, Vicente A, Lopez-Baltazar J, Barry C S, Liu Y S, Chetelat R, Granell A, Van Deynze A, Giovannoni J J, Bennett A B. Uniform ripening encodes a Golden 2-like transcription factor regulating tomato fruit chloroplast development. Science, 2012, 336: 1711-1715.
doi: 10.1126/science.1222218 pmid: 22745430
[14] Jarvis P, López-Juez E. Biogenesis and homeostasis of chloroplasts and other plastids. Nat Rev Mol Cell Biol, 2013, 14: 787-802.
doi: 10.1038/nrm3702
[15] Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta S L, Kebrom T H, Provart N, Patel R, Myers C R, Reidel E J, Turgeon R, Liu P, Sun Q, Nelson T, Brutnell T P. The developmental dynamics of the maize leaf transcriptome. Nat Genet, 2010, 42: 1060-1067.
doi: 10.1038/ng.703 pmid: 21037569
[16] Chang Y M, Liu W Y, Shih A C-C, Shen M N, Lu C H, Lu M-Y J, Yang H W, Wang T Y, Chen S C-C, Chen S M, Li W H, Ku M S B. Characterizing regulatory and functional differentiation between maize mesophyll and bundle sheath cells by transcriptomic analysis. Plant Physiol, 2012, 160: 165-177.
doi: 10.1104/pp.112.203810
[17] 刘俊芳. 番茄G2-like转录因子家族生物信息学分析及抗逆相关基因鉴定. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2018.
Liu J F. Bioinformatics Analysis of Tomato G2-like Transcription Factor Family and Identification of Resistance-related Genes. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2018. (in Chinese with English abstract)
[18] Petridis A, Döll S, Nichelmann L, Bilger W, Mock H P. Arabidopsis thaliana G2-LIKE FLAVONOID REGULATOR and BRASSINOSTEROID ENHANCED EXPRESSION1 are low-temperature regulators of flavonoid accumulation. New Phytol, 2016, 211: 912-925.
doi: 10.1111/nph.2016.211.issue-3
[19] Liu F, Xu Y, Han G, Zhou L, Ali A, Zhu S, Li X. Molecular evolution and genetic variation of G2-like transcription factor genes in maize. PLoS One, 2016, 11: e0161763.
[20] Nagatoshi Y, Mitsuda N, Hayashi M, Inoue S, Okuma E, Kubo A, Murata Y, Seo M, Saji H, Kinoshita T, Oheme-Takagi M. GOLDEN 2-LIKE transcription factors for chloroplast development affect ozone tolerance through the regulation of stomatal movement. Proc Natl Acad Sci USA, 2016, 113: 4218-4223.
doi: 10.1073/pnas.1513093113 pmid: 27035938
[21] Chen M, Ji M, Wen B, Liu L, Li S, Chen X, Gao D, Li L. GOLDEN 2-LIKE transcription factors of plants. Front Plant Sci, 2016, 7: 1509.
pmid: 27757121
[22] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33: 1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904
[23] Chen C, Xia R, Chen H, He Y. TBtools, a toolkit for biologists integrating various HTS-data handling tools with a user-friendly interface. Mol Plant, 2018, 13: 1194-1202.
doi: 10.1016/j.molp.2020.06.009
[24] Wang Y, Tang H, DeBarry J D, Tan X, Li J, Wang X, Lee T, Jin H, Marler B, Guo H, Kissinger J C, Paterson 1 A H. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucl Acids Res, 2012, 40: e49.
[25] Krzywinski M, Schein J, Birol İ, Connors J, Gascoyne R, Horsman D, Jones S J, Marra M A. Circos: an information aesthetic for comparative genomics. Genom Res, 2009, 19: 1639-1645.
doi: 10.1101/gr.092759.109
[26] Zhang Z, Li J, Zhao X Q, Wang J, Wong G K S, Yu J. KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genom Proteom Bioinf, 2006, 4: 259-263.
doi: 10.1016/S1672-0229(07)60007-2 pmid: 17531802
[27] Kang C H, Jung W Y, Kang Y H, Kim J Y, Kim D G, Jeong J C, Baek D W, Jin J B, Lee J Y, Kim M O, Chung W S, Mengiste T, Koiwa H, Kwak S S, Bahk J D, Lee S Y, Nam J S, Yun D J, Cho M J. AtBAG6, a novel calmodulin-binding protein, induces programmed cell death in yeast and plants. Cell Death Differ, 2006, 13: 84-95.
pmid: 16003391
[28] Koundrioukoff S, Polo S, Almouzni G. Interplay between chromatin and cell cycle checkpoints in the context of ATR/ATM- dependent checkpoints. DNA Repair, 2004, 3: 969-978.
doi: 10.1016/j.dnarep.2004.03.010 pmid: 15279783
[29] Meshorer E. Chromatin in embryonic stem cell neuronal differentiation. Histol Histopathol, 2007, 22: 311-319.
doi: 10.14670/HH-22.311 pmid: 17163405
[30] Cannon S B, Mitra A, Baumgarten A, Young N D, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol, 2004, 4: 10.
doi: 10.1186/1471-2229-4-10
[31] Kong F, Wang J, Cheng L, Liu S, Wu J, Peng Z, Lu G. Genome-wide analysis of the mitogen-activated protein kinase gene family in Solanum lycopersicum Gene, 2012, 499: 108-120.
doi: 10.1016/j.gene.2012.01.048
[32] Tao Y, Wang F, Jia D, Li J, Zhang Y, Jia C, Wang D, Pan H. Cloning and functional analysis of the promoter of a stress- inducible gene (ZmRXO1) in maize. Plant Mol Biol Rep, 2014, 33: 200-208.
doi: 10.1007/s11105-014-0741-1
[33] Lee S C, Kim S H, Kim S R. Drought inducible OsDhn1 promoter is activated by OsDREB1A and OsDREB1D. J Plant Biol, 2013, 56: 115-121.
doi: 10.1007/s12374-012-0377-3
[34] Nakashima K, Jan A, Todaka D, Maruyama K, Goto S, Shinozaki K, Yamaguchi-Shinozaki K. Comparative functional analysis of six drought-responsive promoters in transgenic rice. Planta, 2014, 239: 47-60.
doi: 10.1007/s00425-013-1960-7 pmid: 24062085
[35] 张新宇, 赵兰杰, 李艳军. 盐胁迫对拟南芥AtPUB18基因的诱导表达及其启动子分析. 西北植物学报, 2014, 34(1): 54-59.
Zhang X Y, Zhao L J, Li Y J. Salt Stress induced expression and promoter analysis of AtPUB18 gene in Arabidopsis thaliana. Acta Bot Boreali-Occident Sin, 2014, 34(1): 54-59. (in Chinese with English abstract)
[36] Yasumura Y, Moylan E C, Langdale J A. A conserved transcription factor mediates nuclear control of organelle biogenesis in anciently diverged land plants. Plant Cell, 2005, 17: 1894-1907.
doi: 10.1105/tpc.105.033191 pmid: 15923345
[37] Ahmad R, Liu Y, Wang T J, Meng Q, Yin H, Wang X, Wu Y, Nan N, Liu B, Zheng Y X. GOLDEN2-LIKE transcription factors regulate WRKY40 expression in response to abscisic acid. Plant Physiol, 2019, 179: 1844-1860.
doi: 10.1104/pp.18.01466
[38] Yin X, Cui Y, Wang M, Xia X. Overexpression of a novel MYB-related transcription factor, OsMYBR1, confers improved drought tolerance and decreased ABA sensitivity in rice. Biochem Biophys Res Commun, 2017, 490: 1355-1361.
doi: 10.1016/j.bbrc.2017.07.029
[39] Guo H, Wu T, Li S, He Q, Yang Z, Zhang W, Gan Y, Sun P, Xiang G, Zhang H, Deng H. The methylation patterns and transcriptional responses to chilling stress at the seedling stage in rice. Int J Mol Sci, 2019, 20: 5089-5106.
doi: 10.3390/ijms20205089
[40] Sagar M, Chervin C, Mila I, Hao Y, Roustan J, Benichou M, Gibon Y, Biais B, Maury P, Latche A, Pech J C, Bouzayen M, Zouine M. SlARF4, an auxin response factor involved in the control of sugar metabolism during tomato fruit development. Plant Physiol, 2013, 161: 1362-1374.
doi: 10.1104/pp.113.213843 pmid: 23341361
[1] 王昊, 孙妮娜, 王矗, 肖露凝, 肖蓓, 李栋, 刘洁, 秦冉, 吴永振, 孙晗, 赵春华, 李林志, 崔法, 刘伟. 烟农系列小麦高产遗传基础解析[J]. 作物学报, 2023, 49(6): 1584-1600.
[2] 高欣, 郭雷, 单宝雪, 肖延军, 刘秀坤, 李豪圣, 刘建军, 赵振东, 曹新有. 淀粉颗粒类型及其比例在小麦品质特性形成与改良中的作用[J]. 作物学报, 2023, 49(6): 1447-1454.
[3] 梅玉琴, 刘意, 王崇, 雷剑, 朱国鹏, 杨新笋. 甘薯PHB基因家族的全基因组鉴定和表达分析[J]. 作物学报, 2023, 49(6): 1715-1725.
[4] 卢茂昂, 彭小爱, 张玲, 汪建来, 何贤芳, 朱玉磊. 基于55K SNP芯片揭示小麦育种亲本遗传多样性[J]. 作物学报, 2023, 49(6): 1708-1714.
[5] 刘佳, 邹晓悦, 马继芳, 王永芳, 董志平, 李志勇, 白辉. 谷子MAPK家族成员的鉴定及其对生物胁迫的响应分析[J]. 作物学报, 2023, 49(6): 1480-1495.
[6] 冯连杰, 于振文, 张永丽, 石玉. 灌溉对小麦分蘖发生和不同茎蘖光合同化物生产分配及成穗的影响[J]. 作物学报, 2023, 49(6): 1653-1667.
[7] 刘佳, 龚方仪, 刘亚西, 颜泽洪, 钟晓英, 陈厚霖, 黄林, 伍碧华. 野生二粒小麦主要农艺特性融入普通小麦的全基因组关联分析[J]. 作物学报, 2023, 49(5): 1184-1196.
[8] 张晓, 陆成彬, 江伟, 张勇, 吕国锋, 吴宏亚, 王朝顺, 李曼, 吴素兰, 高德荣. 弱筋小麦育种品质选择指标及亲本组配原则[J]. 作物学报, 2023, 49(5): 1282-1291.
[9] 孙现军, 姜奇彦, 胡正, 李宏博, 庞斌双, 张风廷, 张胜全, 张辉. 小麦种质资源苗期耐盐性鉴定评价[J]. 作物学报, 2023, 49(4): 1132-1139.
[10] 孙全喜, 苑翠玲, 牟艺菲, 闫彩霞, 赵小波, 王娟, 王奇, 孙慧, 李春娟, 单世华. 花生SWEET基因全基因组鉴定及表达分析[J]. 作物学报, 2023, 49(4): 938-954.
[11] 张金鑫, 葛均筑, 马玮, 丁在松, 王新兵, 李从锋, 周宝元, 赵明. 华北平原冬小麦-夏玉米种植体系周年水分高效利用研究进展[J]. 作物学报, 2023, 49(4): 879-892.
[12] 朱治, 李龙, 李超男, 毛新国, 郝晨阳, 朱婷, 王景一, 常建忠, 景蕊莲. 小麦转录因子TaMYB5-3B与株高和千粒重相关[J]. 作物学报, 2023, 49(4): 906-916.
[13] 周宾寒, 杨竹, 王书平, 方正武, 胡赞民, 徐兆师, 张迎新. 小麦幼苗活性LTR反转录转座子筛选及其对非生物胁迫的响应[J]. 作物学报, 2023, 49(4): 966-977.
[14] 杨斌, 乔玲, 赵佳佳, 武棒棒, 温宏伟, 张树伟, 郑兴卫, 郑军. 小麦旗叶叶绿素含量的QTL定位及验证[J]. 作物学报, 2023, 49(3): 744-754.
[15] 王雪, 谷淑波, 林祥, 王威雁, 张保军, 朱俊科, 王东. 微喷补灌水肥一体化对冬小麦产量及水分和氮素利用效率的影响[J]. 作物学报, 2023, 49(3): 784-794.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .