作物学报 ›› 2023, Vol. 49 ›› Issue (5): 1410-1425.doi: 10.3724/SP.J.1006.2023.21036
贾玉库(), 高宏欢(), 冯健超, 郝紫瑞, 王晨阳, 谢迎新, 郭天财, 马冬云()
JIA Yu-Ku(), GAO Hong-Huan(), FENG Jian-Chao, HAO Zi-Rui, WANG Chen-Yang, XIE Ying-Xin, GUO Tian-Cai, MA Dong-Yun()
摘要:
Golden2-Like (G2-like)转录因子, 是属于MYB类转录因子中GARP超家族的成员, 在调节叶绿体发育中起重要作用。本研究利用生物信息学方法对小麦G2-like基因进行了全基因组鉴定, 并对其理化性质、亚细胞定位、启动子顺式作用元件及对非生物胁迫和激素的响应模式进行了分析。从小麦中共鉴定出87个G2-like基因, 不均匀的分布在小麦21条染色体上, 系统发育分析将这些基因分为14个亚族。蛋白质二级结构预测表明, 小麦G2-like基因的氨基酸序列均以α螺旋和随机卷曲为主要结构。启动子顺式作用元件分析表明其上游2 kb区域含有7种(P-box、SpI、LTR、ABRE、MBS、TGA-element和AE-box)与逆境胁迫诱导相关顺式作用元件。其中Ta3AG2-like19含有顺式调控元件结合位点最多, 一共有18个结合位点。qRT-PCR验证发现, Ta3AG2-like19、Ta3AG2-like20、Ta4AG2-like29和Ta6AG2-like52在PEG和盐胁迫下以及GA、IAA和ABA激素诱导下表达量显著上调, 这些基因可能介导了小麦对多种非生物逆境的响应。
[1] |
Janmohannadi M, Zolla L, Rinalducci S M. Low temperature tolerance in plants: changes at the protein level. Phytochemistry, 2015, 117: 76-89.
doi: S0031-9422(15)30012-1 pmid: 26068669 |
[2] |
Rinalducci S, Egidi M G, Karimzadeh G, Jazii F R, Zolla L. Proteomic analysis of a spring wheat cultivar in response to prolonged cold stress. Electrophoresis, 2011, 32: 1807-1818.
doi: 10.1002/elps.201000663 pmid: 21710550 |
[3] |
Gibson L R, Paulsen G. Yield components of wheat grown under high temperature stress during reproductive growth. Crop Sci, 1999, 39: 1841-1846.
doi: 10.2135/cropsci1999.3961841x |
[4] |
Farooq M, Hussain M, Siddique K H M. Drought stress in wheat during flowering and grain-filling periods. Crit Rev Plant Sci, 2014, 33: 331-349.
doi: 10.1080/07352689.2014.875291 |
[5] |
Mohammadi R. Efficiency of yield-based drought tolerance indices to identify tolerant genotypes in durum wheat. Euphytica, 2016, 211: 71-89.
doi: 10.1007/s10681-016-1727-x |
[6] |
Ding H, Ma D, Huang X, Hou J, Wang C, Xie Y, Wang Y, Qin H, Guo T. Exogenous hydrogen sulfide alleviates salt stress by improving antioxidant defenses and the salt overly sensitive pathway in wheat seedlings. Acta Physiol Plant, 2019, 41: 123.
doi: 10.1007/s11738-019-2918-6 |
[7] |
Saqib M, Akhtar J, Qureshi R H. Pot study on wheat growth in saline and waterlogged compacted soil: I. Grain yield and yield components. Soil Tillage Res, 2004, 77: 169-177.
doi: 10.1016/j.still.2003.12.004 |
[8] | Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. AP2/ERF family transcription factors in plant abiotic stress responses. BBA-Gene Regul Mech, 2012, 1819: 86-96. |
[9] |
Chrispeels H E, Oettinger H, Janvier N, Tague B W. AtZFP1, encoding Arabidopsis thaliana C2H2 zinc-finger protein 1, is expressed downstream of photomorphogenic activation. Plant Mol Biol, 2000, 42: 279-290.
pmid: 10794528 |
[10] |
Jenkins M T. A second gene producing golden plant color in maize. Am Nat, 1926, 60: 484-488.
doi: 10.1086/280119 |
[11] |
Brand A, Borovsky Y, Hill T, Rahman K A A, Bellalou A, Van Deynze A, Paran I. CaGLK2 regulates natural variation of chlorophyll content and fruit color in pepper fruit. Theor Appl Genet, 2014, 127: 2139-2148.
doi: 10.1007/s00122-014-2367-y |
[12] |
Fitter D W, Martin D J, Copley M J, Scotland R W, Langdale J A. GLK gene pairs regulate chloroplast development in diverse plant species. Plant J, 2002, 31: 713-727.
doi: 10.1046/j.1365-313x.2002.01390.x pmid: 12220263 |
[13] |
Powell A L T, Nguyen C V, Hill T, Cheng K L, Figueroa-Balderas R, Aktas H, Ashrafi H, Pons C, Fernández-Muñoz R, Vicente A, Lopez-Baltazar J, Barry C S, Liu Y S, Chetelat R, Granell A, Van Deynze A, Giovannoni J J, Bennett A B. Uniform ripening encodes a Golden 2-like transcription factor regulating tomato fruit chloroplast development. Science, 2012, 336: 1711-1715.
doi: 10.1126/science.1222218 pmid: 22745430 |
[14] |
Jarvis P, López-Juez E. Biogenesis and homeostasis of chloroplasts and other plastids. Nat Rev Mol Cell Biol, 2013, 14: 787-802.
doi: 10.1038/nrm3702 |
[15] |
Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta S L, Kebrom T H, Provart N, Patel R, Myers C R, Reidel E J, Turgeon R, Liu P, Sun Q, Nelson T, Brutnell T P. The developmental dynamics of the maize leaf transcriptome. Nat Genet, 2010, 42: 1060-1067.
doi: 10.1038/ng.703 pmid: 21037569 |
[16] |
Chang Y M, Liu W Y, Shih A C-C, Shen M N, Lu C H, Lu M-Y J, Yang H W, Wang T Y, Chen S C-C, Chen S M, Li W H, Ku M S B. Characterizing regulatory and functional differentiation between maize mesophyll and bundle sheath cells by transcriptomic analysis. Plant Physiol, 2012, 160: 165-177.
doi: 10.1104/pp.112.203810 |
[17] | 刘俊芳. 番茄G2-like转录因子家族生物信息学分析及抗逆相关基因鉴定. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2018. |
Liu J F. Bioinformatics Analysis of Tomato G2-like Transcription Factor Family and Identification of Resistance-related Genes. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2018. (in Chinese with English abstract) | |
[18] |
Petridis A, Döll S, Nichelmann L, Bilger W, Mock H P. Arabidopsis thaliana G2-LIKE FLAVONOID REGULATOR and BRASSINOSTEROID ENHANCED EXPRESSION1 are low-temperature regulators of flavonoid accumulation. New Phytol, 2016, 211: 912-925.
doi: 10.1111/nph.2016.211.issue-3 |
[19] | Liu F, Xu Y, Han G, Zhou L, Ali A, Zhu S, Li X. Molecular evolution and genetic variation of G2-like transcription factor genes in maize. PLoS One, 2016, 11: e0161763. |
[20] |
Nagatoshi Y, Mitsuda N, Hayashi M, Inoue S, Okuma E, Kubo A, Murata Y, Seo M, Saji H, Kinoshita T, Oheme-Takagi M. GOLDEN 2-LIKE transcription factors for chloroplast development affect ozone tolerance through the regulation of stomatal movement. Proc Natl Acad Sci USA, 2016, 113: 4218-4223.
doi: 10.1073/pnas.1513093113 pmid: 27035938 |
[21] |
Chen M, Ji M, Wen B, Liu L, Li S, Chen X, Gao D, Li L. GOLDEN 2-LIKE transcription factors of plants. Front Plant Sci, 2016, 7: 1509.
pmid: 27757121 |
[22] |
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33: 1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904 |
[23] |
Chen C, Xia R, Chen H, He Y. TBtools, a toolkit for biologists integrating various HTS-data handling tools with a user-friendly interface. Mol Plant, 2018, 13: 1194-1202.
doi: 10.1016/j.molp.2020.06.009 |
[24] | Wang Y, Tang H, DeBarry J D, Tan X, Li J, Wang X, Lee T, Jin H, Marler B, Guo H, Kissinger J C, Paterson 1 A H. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucl Acids Res, 2012, 40: e49. |
[25] |
Krzywinski M, Schein J, Birol İ, Connors J, Gascoyne R, Horsman D, Jones S J, Marra M A. Circos: an information aesthetic for comparative genomics. Genom Res, 2009, 19: 1639-1645.
doi: 10.1101/gr.092759.109 |
[26] |
Zhang Z, Li J, Zhao X Q, Wang J, Wong G K S, Yu J. KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genom Proteom Bioinf, 2006, 4: 259-263.
doi: 10.1016/S1672-0229(07)60007-2 pmid: 17531802 |
[27] |
Kang C H, Jung W Y, Kang Y H, Kim J Y, Kim D G, Jeong J C, Baek D W, Jin J B, Lee J Y, Kim M O, Chung W S, Mengiste T, Koiwa H, Kwak S S, Bahk J D, Lee S Y, Nam J S, Yun D J, Cho M J. AtBAG6, a novel calmodulin-binding protein, induces programmed cell death in yeast and plants. Cell Death Differ, 2006, 13: 84-95.
pmid: 16003391 |
[28] |
Koundrioukoff S, Polo S, Almouzni G. Interplay between chromatin and cell cycle checkpoints in the context of ATR/ATM- dependent checkpoints. DNA Repair, 2004, 3: 969-978.
doi: 10.1016/j.dnarep.2004.03.010 pmid: 15279783 |
[29] |
Meshorer E. Chromatin in embryonic stem cell neuronal differentiation. Histol Histopathol, 2007, 22: 311-319.
doi: 10.14670/HH-22.311 pmid: 17163405 |
[30] |
Cannon S B, Mitra A, Baumgarten A, Young N D, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol, 2004, 4: 10.
doi: 10.1186/1471-2229-4-10 |
[31] |
Kong F, Wang J, Cheng L, Liu S, Wu J, Peng Z, Lu G. Genome-wide analysis of the mitogen-activated protein kinase gene family in Solanum lycopersicum Gene, 2012, 499: 108-120.
doi: 10.1016/j.gene.2012.01.048 |
[32] |
Tao Y, Wang F, Jia D, Li J, Zhang Y, Jia C, Wang D, Pan H. Cloning and functional analysis of the promoter of a stress- inducible gene (ZmRXO1) in maize. Plant Mol Biol Rep, 2014, 33: 200-208.
doi: 10.1007/s11105-014-0741-1 |
[33] |
Lee S C, Kim S H, Kim S R. Drought inducible OsDhn1 promoter is activated by OsDREB1A and OsDREB1D. J Plant Biol, 2013, 56: 115-121.
doi: 10.1007/s12374-012-0377-3 |
[34] |
Nakashima K, Jan A, Todaka D, Maruyama K, Goto S, Shinozaki K, Yamaguchi-Shinozaki K. Comparative functional analysis of six drought-responsive promoters in transgenic rice. Planta, 2014, 239: 47-60.
doi: 10.1007/s00425-013-1960-7 pmid: 24062085 |
[35] | 张新宇, 赵兰杰, 李艳军. 盐胁迫对拟南芥AtPUB18基因的诱导表达及其启动子分析. 西北植物学报, 2014, 34(1): 54-59. |
Zhang X Y, Zhao L J, Li Y J. Salt Stress induced expression and promoter analysis of AtPUB18 gene in Arabidopsis thaliana. Acta Bot Boreali-Occident Sin, 2014, 34(1): 54-59. (in Chinese with English abstract) | |
[36] |
Yasumura Y, Moylan E C, Langdale J A. A conserved transcription factor mediates nuclear control of organelle biogenesis in anciently diverged land plants. Plant Cell, 2005, 17: 1894-1907.
doi: 10.1105/tpc.105.033191 pmid: 15923345 |
[37] |
Ahmad R, Liu Y, Wang T J, Meng Q, Yin H, Wang X, Wu Y, Nan N, Liu B, Zheng Y X. GOLDEN2-LIKE transcription factors regulate WRKY40 expression in response to abscisic acid. Plant Physiol, 2019, 179: 1844-1860.
doi: 10.1104/pp.18.01466 |
[38] |
Yin X, Cui Y, Wang M, Xia X. Overexpression of a novel MYB-related transcription factor, OsMYBR1, confers improved drought tolerance and decreased ABA sensitivity in rice. Biochem Biophys Res Commun, 2017, 490: 1355-1361.
doi: 10.1016/j.bbrc.2017.07.029 |
[39] |
Guo H, Wu T, Li S, He Q, Yang Z, Zhang W, Gan Y, Sun P, Xiang G, Zhang H, Deng H. The methylation patterns and transcriptional responses to chilling stress at the seedling stage in rice. Int J Mol Sci, 2019, 20: 5089-5106.
doi: 10.3390/ijms20205089 |
[40] |
Sagar M, Chervin C, Mila I, Hao Y, Roustan J, Benichou M, Gibon Y, Biais B, Maury P, Latche A, Pech J C, Bouzayen M, Zouine M. SlARF4, an auxin response factor involved in the control of sugar metabolism during tomato fruit development. Plant Physiol, 2013, 161: 1362-1374.
doi: 10.1104/pp.113.213843 pmid: 23341361 |
[1] | 王昊, 孙妮娜, 王矗, 肖露凝, 肖蓓, 李栋, 刘洁, 秦冉, 吴永振, 孙晗, 赵春华, 李林志, 崔法, 刘伟. 烟农系列小麦高产遗传基础解析[J]. 作物学报, 2023, 49(6): 1584-1600. |
[2] | 高欣, 郭雷, 单宝雪, 肖延军, 刘秀坤, 李豪圣, 刘建军, 赵振东, 曹新有. 淀粉颗粒类型及其比例在小麦品质特性形成与改良中的作用[J]. 作物学报, 2023, 49(6): 1447-1454. |
[3] | 梅玉琴, 刘意, 王崇, 雷剑, 朱国鹏, 杨新笋. 甘薯PHB基因家族的全基因组鉴定和表达分析[J]. 作物学报, 2023, 49(6): 1715-1725. |
[4] | 卢茂昂, 彭小爱, 张玲, 汪建来, 何贤芳, 朱玉磊. 基于55K SNP芯片揭示小麦育种亲本遗传多样性[J]. 作物学报, 2023, 49(6): 1708-1714. |
[5] | 刘佳, 邹晓悦, 马继芳, 王永芳, 董志平, 李志勇, 白辉. 谷子MAPK家族成员的鉴定及其对生物胁迫的响应分析[J]. 作物学报, 2023, 49(6): 1480-1495. |
[6] | 冯连杰, 于振文, 张永丽, 石玉. 灌溉对小麦分蘖发生和不同茎蘖光合同化物生产分配及成穗的影响[J]. 作物学报, 2023, 49(6): 1653-1667. |
[7] | 刘佳, 龚方仪, 刘亚西, 颜泽洪, 钟晓英, 陈厚霖, 黄林, 伍碧华. 野生二粒小麦主要农艺特性融入普通小麦的全基因组关联分析[J]. 作物学报, 2023, 49(5): 1184-1196. |
[8] | 张晓, 陆成彬, 江伟, 张勇, 吕国锋, 吴宏亚, 王朝顺, 李曼, 吴素兰, 高德荣. 弱筋小麦育种品质选择指标及亲本组配原则[J]. 作物学报, 2023, 49(5): 1282-1291. |
[9] | 孙现军, 姜奇彦, 胡正, 李宏博, 庞斌双, 张风廷, 张胜全, 张辉. 小麦种质资源苗期耐盐性鉴定评价[J]. 作物学报, 2023, 49(4): 1132-1139. |
[10] | 孙全喜, 苑翠玲, 牟艺菲, 闫彩霞, 赵小波, 王娟, 王奇, 孙慧, 李春娟, 单世华. 花生SWEET基因全基因组鉴定及表达分析[J]. 作物学报, 2023, 49(4): 938-954. |
[11] | 张金鑫, 葛均筑, 马玮, 丁在松, 王新兵, 李从锋, 周宝元, 赵明. 华北平原冬小麦-夏玉米种植体系周年水分高效利用研究进展[J]. 作物学报, 2023, 49(4): 879-892. |
[12] | 朱治, 李龙, 李超男, 毛新国, 郝晨阳, 朱婷, 王景一, 常建忠, 景蕊莲. 小麦转录因子TaMYB5-3B与株高和千粒重相关[J]. 作物学报, 2023, 49(4): 906-916. |
[13] | 周宾寒, 杨竹, 王书平, 方正武, 胡赞民, 徐兆师, 张迎新. 小麦幼苗活性LTR反转录转座子筛选及其对非生物胁迫的响应[J]. 作物学报, 2023, 49(4): 966-977. |
[14] | 杨斌, 乔玲, 赵佳佳, 武棒棒, 温宏伟, 张树伟, 郑兴卫, 郑军. 小麦旗叶叶绿素含量的QTL定位及验证[J]. 作物学报, 2023, 49(3): 744-754. |
[15] | 王雪, 谷淑波, 林祥, 王威雁, 张保军, 朱俊科, 王东. 微喷补灌水肥一体化对冬小麦产量及水分和氮素利用效率的影响[J]. 作物学报, 2023, 49(3): 784-794. |
|