欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (6): 1653-1667.doi: 10.3724/SP.J.1006.2022.21045

• 耕作栽培·生理生化 • 上一篇    下一篇

灌溉对小麦分蘖发生和不同茎蘖光合同化物生产分配及成穗的影响

冯连杰(), 于振文, 张永丽*(), 石玉   

  1. 山东农业大学农学院/作物生物学国家重点实验室/农业农村部作物生理生态与耕作重点实验室, 山东泰安 271018
  • 收稿日期:2022-06-28 接受日期:2022-10-10 出版日期:2023-06-12 网络出版日期:2022-12-26
  • 通讯作者: *张永丽, E-mail: zhangyl@sdau.edu.cn
  • 作者简介:E-mail: 18853866772@163.com
  • 基金资助:
    泰山学者工程专项;财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-3-1-19);国家自然科学基金项目(31771717)

Effects of irrigation on tiller occurrence, photo-assimilates production and distribution in different stem and tillers and spike formation in wheat

FENG Lian-Jie(), YU Zhen-Wen, ZHANG Yong-Li*(), SHI Yu   

  1. College of Agronomy, Shandong Agricultural University/State Key Laboratory of Crop Biology/Key Laboratory of Crop Ecophysiology and Farming System, Ministry of Agriculture and Rural Affairs, Tai’an 271018, Shandong, China
  • Received:2022-06-28 Accepted:2022-10-10 Published:2023-06-12 Published online:2022-12-26
  • Contact: *E-mail: zhangyl@sdau.edu.cn
  • Supported by:
    Special funds for Taishan Scholars Project;China Agriculture Research System of MOF and MARA(CARS-3-1-19);National Natural Science Foundation of China(31771717)

摘要:

依据土壤墒情适量灌溉可增加小麦穗数, 实现节水高产, 但该灌溉条件下分蘖发生和成穗的生理机制尚不明确。本试验于2019—2020和2020—2021两个小麦生长季, 以中穗型品种济麦22和大穗型品种山农23为试验材料, 设置全生育期不灌溉、节水灌溉和充分灌溉3个处理, 研究了不同穗型小麦分蘖发生和成穗规律。结果表明, 2个品种节水灌溉处理的分蘖节面积和反式玉米素含量、越冬期和返青期主茎最上部展开叶光合参数均高于不灌溉处理, 促进了II、III、IP、IV和其余蘖发生, 济麦22和山农23单株总茎蘖数比不灌溉处理越冬期两年度平均增加1.01个和0.75个, 拔节期分别增加0.71个和0.56个。节水灌溉处理下2个品种拔节期各茎蘖最上部展开叶光合参数、干物质重和13C同化物分配量均高于不灌溉处理, 促进了分蘖成穗, 济麦22和山农23的单株成穗数比不灌溉处理两年度平均增加0.36和0.41个, 籽粒产量增加35.00%和44.27%, 水分利用效率增加9.23%和8.55%。增加灌水至充分灌溉处理, 2个品种越冬期和拔节期单株总茎蘖数较节水灌溉处理增加, 但单株成穗数、公顷穗数和籽粒产量无显著变化, 水分利用效率降低。品种间比较, 各灌溉处理下济麦22的单株总茎蘖数和单株成穗数均高于山农23, 亦归因于济麦22较高的分蘖节面积和反式玉米素含量、各茎蘖较高的光合能力。相关性分析表明, 2个品种单株总茎蘖数、单株成穗数、公顷穗数和籽粒产量与分蘖节总面积和反式玉米素含量、主茎最上部展开叶净光合速率呈正相关, 与生长素和脱落酸含量呈负相关。说明节水灌溉通过适当增加分蘖节面积和激素含量、提高各茎蘖光合同化物生产和分配能力, 促进了分蘖发生和成穗, 获得较高的籽粒产量和水分利用效率。

关键词: 灌溉, 不同穗型小麦, 分蘖发生, 同化物生产分配, 成穗

Abstract:

Moderate irrigation based on soil moisture content could increase spike number of wheat, and realize water-saving and high-yielding cultivation, but the physiological mechanism of tiller occurrence and spike formation under this condition is still unclear. A field experiment was conducted in wheat growth seasons of 2019-2020 and 2020-2021, in which the medium-spike wheat Jimai 22 and large-spike wheat Shannong 23 were used as the experimental materials. Three treatments were designed in this field experiment, including no irrigation during the whole growth period, water-saving irrigation, and sufficient irrigation. The characteristics of tiller occurrence and spike formation of wheat were studied. The results showed that the tiller node area and trans zeatin content, the photosynthetic parameters of the uppermost unfloding leaves in main stem at wintering and turn-green stage of two wheat cultivars under water-saving irrigation treatment were higher than no irrigation treatment. Under water-saving irrigation, the stem number of tillers II, III, IP, IV, and others in two spike-type wheat cultivars were increased, the total stem number per plant of Jimai 22 and Shannong 23 under W70 were 1.01 and 0.75 higher at wintering stage and 0.71 and 0.56 higher at jointing stage. The photosynthetic parameter of the uppermost unfolding leaves at jointing stage, dry matter weight and distribution amount of 13C assimilates of main stem and tillers in different positions increased significantly, the total spike number per plant of Jimai 22 and Shannong 23 were 0.36 and 0.41 higher than no irrigation in two years. The grain yield of Jimai 22 and Shannong 23 under water-saving irrigation treatment increased by 35.00% and 44.27%, and water use efficiency increased by 9.23% and 8.55% than no irrigation, respectively. Further increasing the amount of irrigation to sufficient irrigation treatment could increase the total stem number per plant at wintering and jointing stage, but there was no significant difference with water-saving irrigation in the total formation spike number per plant, spike number, and grain yield per hectare, water use efficiency was decreased. Comparison among the cultivars the total stem and spike number per plant of Jimai 22 were higher than Shannong 23, the main reason was that Jimai 22 had higher tiller node area and trans zeatin content, photosynthetic capacity in main stem, and tillers in different positions. The correlation analysis showed that the total stem number and spike number per plant, spike number, and grain yield per hectare were positively correlated with the tiller node area and trans zeatin content, and net photosynthetic rate of the uppermost unfolding leaves in main stem in two wheat cultivars, and there was significantly negatively correlated with auxin and abscisic acid content. These results indicated that the water-saving irrigation could regulate tiller occurrence and spike formation by increasing tiller node area and hormone content, improving the capacity of photo-assimilates production and distribution in main stem and tillers in different positions, thus resulting in the higher yield and water use efficiency.

Key words: irrigation, different spike types wheat, tiller occurrence, photo-assimilates production and distribution, spike formation

图1

2019-2020和2020-2021年冬小麦生长季月平均降水量和月平均气温"

表1

灌溉对小麦越冬期不同茎蘖分蘖节面积和总面积的影响(2020-2021年)"

品种
Cultivar
处理
Treatment
分蘖节面积 Tiller node area (mm2) 分蘖节总面积
Total area of tiller node (mm2)
O I II 其余分蘖Other tillers
J22 W0 4.20 e 1.05 e 0.64 e 0.22 e 6.11 d
W70 6.09 b 1.20 d 1.11 c 1.80 b 10.20 b
W90 6.50 a 1.36 c 1.26 b 2.27 a 11.39 a
S23 W0 3.56 f 1.26 d 0.96 d 5.78 e
W70 4.68 d 1.76 b 1.23 b 1.01 d 8.68 c
W90 5.06 c 1.89 a 1.36 a 1.66 c 9.97 b

图2

灌溉对小麦分蘖节激素含量和比值的影响 不同小写字母表示数值间在0.05概率水平差异显著。tZ: 反式玉米素; IAA: 生长素; ABA: 脱落酸。"

图3

灌溉对小麦越冬期和返青期主茎净光合速率、蒸腾速率和气孔导度的影响 不同小写字母表示数值间在0.05概率水平差异显著。"

图4

灌溉对小麦拔节期不同茎蘖净光合速率、蒸腾速率和气孔导度的影响 不同小写字母表示数值间在0.05概率水平差异显著。"

图5

灌溉对小麦开花期主茎净光合速率、蒸腾速率和气孔导度的影响 不同小写字母表示数值间在0.05概率水平差异显著。"

表2

灌溉对小麦不同茎蘖干物质重和13C同化物分配量的影响"

品种
Cultivar
处理
Treatment
干物质重
Dry matter weight (g)
13C同化物分配量
Distribution amount of 13C assimilates (mg)
O I II III O I II III
标记后7 d (单茎) 7 days after labeling (stem)
J22 W0 1.84 d 1.64 c 1.04 c 0.57 c 2.98 b 2.52 c 1.57 c 0.43 b
W70 2.04 c 1.87 b 1.36 a 1.14 a 3.40 a 3.23 a 2.76 a 1.62 a
S23 W0 2.18 b 1.91 b 0.71 d 0.46 d 2.65 c 2.25 d 0.72 d 0.23 d
W70 2.49 a 2.37 a 1.29 b 0.61 b 3.26 a 2.92 b 2.23 b 0.34 c
成熟期(籽粒) Maturity (grain)
J22 W0 1.34 d 1.23 d 0.87 c 0.98 b 0.94 c 0.86 c
W70 1.50 c 1.49 c 1.19 b 0.73 a 1.36 a 1.32 a 1.16 a 0.90 a
S23 W0 1.97 b 1.59 b 0.88 c 0.79 d
W70 2.13 a 2.06 a 1.61 a 1.32 a 1.24 b 1.09 b
成熟期(营养器官) Maturity (vegetative organ)
J22 W0 1.41 d 1.37 c 1.19 c 0.53 b 0.49 b 0.40 b
W70 1.81 c 1.86 b 1.64 b 1.47 a 0.65 a 0.61 a 0.50 a 0.49 a
S23 W0 2.27 b 2.04 b 0.39 c 0.33 c
W70 2.65 a 2.62 a 2.37 a 0.54 b 0.48 b 0.36 c

表3

灌溉对小麦主茎叶龄、单株不同茎蘖发生数和单株总茎蘖数的影响"

生长季和
生育时期
Growth
season and growth stage
品种
Cultivar
处理
Treatment
主茎叶龄
Leaf age of mean stem
不同茎蘖发生数
Stem number in main stem and tillers in different positions per plant (stem plant-1)
单株总茎蘖数
Total stem number
per plant
(stem plant-1)
O I II III IP IV 其余分蘖
Other
tillers
2019-2020
越冬期
Wintering
J22 W0 5.5 c 1.00 a 1.00 a 0.83 b 0.57 d 0.34 d 0.16 c 3.90 e
W70 6.3 b 1.00 a 1.00 a 1.00 a 0.84 a 0.62 b 0.27 b 4.73 b
W90 6.8 a 1.00 a 1.00 a 1.00 a 0.88 a 0.73 a 0.41 a 5.02 a
S23 W0 5.1 d 1.00 a 1.00 a 0.67 c 0.44 e 0.13 f 3.24 f
W70 5.7 c 1.00 a 1.00 a 0.98 a 0.64 c 0.29 e 0.17 c 4.08 d
W90 6.1 b 1.00 a 1.00 a 0.94 a 0.73 b 0.43 c 0.24 b 4.34 c
2020-2021
越冬期
Wintering
J22 W0 5.3 d 1.00 a 1.00 a 0.72 c 0.30 c 0.12 d 0.07 d 3.21 d
W70 6.1 b 1.00 a 1.00 a 1.00 a 0.71 b 0.47 b 0.22 b 4.40 b
W90 6.5 a 1.00 a 1.00 a 0.99 a 0.84 a 0.67 a 0.30 a 4.80 a
S23 W0 4.9 e 1.00 a 1.00 a 0.58 d 0.12 d 2.70 e
W70 5.4 d 1.00 a 1.00 a 0.77 c 0.39 c 0.10 d 0.09 d 3.35 d
W90 5.8 c 1.00 a 1.00 a 0.90 b 0.63 b 0.31 c 0.14 c 3.98 c
2020-2021
拔节期
Jointing
J22 W0 9.3 c 1.00 a 1.00 a 0.90 b 0.77 c 0.63 c 0.57 c 1.68 c 6.54 c
W70 10.2 b 1.00 a 1.00 a 1.00 a 0.87 b 0.76 b 0.69 b 1.93 b 7.25 b
W90 10.9 a 1.00 a 1.00 a 1.00 a 0.99 a 0.88 a 0.79 a 2.05 a 7.71 a
S23 W0 8.7 d 1.00 a 1.00 b 0.83 c 0.70 d 0.40 d 0.30 d 0.34 f 4.58 f
W70 9.5 c 1.00 a 1.00 a 0.91 b 0.80 c 0.57 c 0.43 c 0.43 e 5.14 e
W90 10.1 b 1.00 a 1.00 a 0.99 a 0.99 a 0.83 a 0.68 b 0.69 d 6.18 d

表4

灌溉对小麦成熟期不同茎蘖成穗数和单株成穗数的影响"

生长季
Growth season
品种
Cultivar
处理
Treatment
不同茎蘖成穗数
Formation spike number of main stem and tillers in different positions per plant (stem plant-1)
单株成穗数
Total Formation spike number per plant (stem plant-1)
O I II III
2019-2020 J22 W0 1.00 a 0.90 b 0.34 b 2.24 b
W70 1.00 a 1.00 a 0.53 a 0.04 b 2.58 a
W90 1.00 a 1.00 a 0.33 b 0.20 a 2.53 a
S23 W0 1.00 a 0.42 e 1.42 d
W70 1.00 a 0.64 c 0.14 d 1.79 c
W90 1.00 a 0.56 d 0.23 c 1.80 c
2020-2021 J22 W0 1.00 a 1.00 a 0.30 c 2.30 b
W70 1.00 a 1.00 a 0.57 a 0.11 b 2.68 a
W90 1.00 a 1.00 a 0.40 b 0.29 a 2.69 a
S23 W0 1.00 a 0.41 d 1.41 d
W70 1.00 a 0.67 b 0.19 d 1.86 c
W90 1.00 a 0.60 c 0.29 c 1.90 c
F
F-value
生长季 Growth season (G) 8.33** 7.00* 16.33** 25.55**
品种 Cultivar (C) 2045.37** 761.29** 280.33** 2448.32**
灌溉 Irrigation (I) 78.04** 148.61** 126.33** 242.40**
G×C 0.33ns 0.57ns 16.33** 2.89ns
G×I 0.78ns 6.64** 4.33* 3.17ns
C×I 30.70** 73.96** 126.33** 2.47ns
G×C×I 6.78** 0.68ns 4.33* 0.12ns

图6

灌溉对小麦各生育时期群体总茎蘖数的影响"

表5

灌溉对小麦籽粒产量及其构成因素、总耗水量和水分利用效率的影响"

生长季
Growth season
品种
Cultivar
处理
Treatment
公顷穗数
Spike number per hectare
(×104 hm-2)
穗粒数
Grain
number per spike
千粒重
1000-grain weight (g)
籽粒产量
Grain yield
(kg hm-2)
总耗水量
Water
consumption amount (mm)
水分利用效率
Water use
efficiency
(kg hm-2 mm−1)
2019-2020 J22 W0 503.67 b 28.32 d 38.11 c 5435.99 c 326.49 e 16.64 e
W70 580.17 a 31.68 c 41.88 b 7623.94 b 419.07 c 18.19 c
W90 574.33 a 31.55 c 41.64 b 7545.21 b 471.73 a 15.99 f
S23 W0 321.33 d 42.43 b 41.33 b 5634.95 c 300.04 f 18.79 b
W70 401.83 c 46.32 a 43.20 a 8040.71 a 392.03 d 20.51 a
W90 406.33 c 45.95 a 42.58 a 7950.05 a 449.42 b 17.69 d
2020-2021 J22 W0 516.82 b 31.33 d 40.19 d 6507.55 c 373.36 e 17.43 d
W70 601.21 a 33.02 c 42.53 c 8443.04 b 443.17 c 19.05 b
W90 604.12 a 32.95 c 42.29 c 8418.14 b 516.34 a 16.30 e
S23 W0 320.15 d 42.23 b 44.33 b 5989.29 d 307.28 f 19.49 b
W70 422.58 c 45.00 a 45.96 b 8739.80 a 415.39 d 21.04 a
W90 435.76 c 44.82 a 45.27 a 8841.58 a 481.15 b 18.37 c
F
F-value
生长季 Growth season (G) 30.47** 4.91* 169.90** 194.76** 135.24** 37.64**
品种 Cultivar (C) 2746.76** 3101.84** 306.04ns 13.26** 179.33** 542.44**
灌溉 Irrigation (I) 295.00** 65.77** 83.53** 748.05** 1211.92** 279.32**
G×C 0.54ns 36.07** 24.68** 5.96* 12.12** 0.04ns
G×I 4.09* 3.68* 2.74ns 0.80ns 2.93ns 0.51ns
C×I 3.26ns 1.09ns 10.38ns 10.49** 5.68* 0.62ns
G×C×I 0.47ns 0.21ns 1.14ns 4.08* 5.07* 0.96ns

表6

皮尔逊相关性分析"

性状Trait TAD tZ IAA ABA NPW NPT TNJ SNP HSN GY
TAD 0.967** -0.979** -0.856** 0.954** 0.983** 0.948** 0.945** 0.966** 0.969**
tZ 0.985** -0.967** -0.908** 0.949** 0.953** 0.981** 0.864** 0.887** 0.877**
IAA -0.922** -0.913** 0.876** -0.921** -0.962** -0.941** -0.926** -0.920** -0.923**
ABA -0.939** -0.945** 0.919** -0.812** -0.804** -0.866** -0.693* -0.705* -0.744*
NPW 0.897** 0.874** -0.961** -0.935** 0.983** 0.929** 0.836** 0.912** 0.888**
NPT 0.968** 0.974* -0.833** -0.917** 0.823** 0.929** 0.913** 0.961** 0.942**
TNJ 0.919** 0.881* -0.922** -0.943** 0.919** 0.850** 0.867** 0.868** 0.869**
SNP 0.968** 0.983** -0.854** -0.913** 0.828** 0.976** 0.820** 0.970** 0.977**
HSN 0.957** 0.962** -0.806** -0.884** 0.788** 0.966** 0.797* 0.989** 0.985**
GY 0.954** 0.969** -0.820** -0.856** 0.765** 0.956** 0.774* 0.984** 0.987**
[1] 孟丽梅, 杨子光, 孙军伟, 张珂, 郭军伟. 黄淮旱地组小麦品种抗旱性鉴定比较分析. 农学学报, 2020, 10(8): 6-12.
doi: 10.11923/j.issn.2095-4050.cjas20191200309
Meng L M, Yang Z G, Sun W J, Zhang K, Guo J W. Drought resistance identification of wheat varieties in Huanghuai dryland group: comparative analysis. J Agric, 2020, 10(8): 6-12. (in Chinese with English abstract)
doi: 10.11923/j.issn.2095-4050.cjas20191200309
[2] Li Y, Huang G H, Chen Z J, Xiong Y W, Huang Q Z, Xu X, Huo Z L. Effects of irrigation and fertilization on grain yield, water and nitrogen dynamics and their use efficiency of spring wheat farmland in an arid agricultural watershed of Northwest China. Agric Water Manage, 2022, 260: 107277.
doi: 10.1016/j.agwat.2021.107277
[3] Li Q Q, Bian C Y, Liu X H, Ma C J, Liu Q R. Winter wheat grain yield and water use efficiency in wide-precision planting pattern under deficit irrigation in North China Plain. Agric Water Manag, 2015, 153: 71-76.
doi: 10.1016/j.agwat.2015.02.004
[4] Li X M, Xia X C, Xiao Y G, He Z H, Wang D S, Trethowan R, Wang H J, Chen X M. QTL mapping for plant height and yield components in common wheat under water-limited and full irrigation environments. Crop Past Sci, 2015, 66: 660-670.
doi: 10.1071/CP14236
[5] Li D X, Zhang D, Wang H G, Li H R, Fang Q, Li H Y, Li R Q. Optimized planting density maintains high wheat yield under limiting irrigation in North China Plain. Int J Plant Prod, 2020, 14: 107-117.
doi: 10.1007/s42106-019-00071-7
[6] Zhao H X, Zhang P, Wang Y Y, Ning T Y, Xu C L, Wang P. Canopy morphological changes and water use efficiency in winter wheat under different irrigation treatments. J Integr Agric, 2020, 19: 1105-1116.
doi: 10.1016/S2095-3119(19)62750-4
[7] Xie Y X, Zhang H, Zhu Y J, Zhao L, Yang J H, Cha F N, Liu C, Wang C Y, Guo T C. Grain yield and water use of winter wheat as affected by water and sulfur supply in the North China Plain. J Integr Agric, 2017, 16: 614-625.
doi: 10.1016/S2095-3119(16)61481-8
[8] Guo Z J, Yu Z W, Wang D, Shi Y, Zhang Y L. Photosynthesis and winter wheat yield responses to supplemental irrigation based on measurement of water content in various soil layers. Field Crops Res, 2014, 166: 102-111.
doi: 10.1016/j.fcr.2014.06.004
[9] 许骥坤, 石玉, 赵俊晔, 张永丽, 于振文. 测墒补灌对小麦水分利用特征和产量的影响. 水土保持学报, 2015, 29: 277-281.
Xu J K, Shi Y, Zhao J Y, Zhang Y L, Yu Z W. Effect of supplemental irrigation with micro-sprinkling hoses and water and fertilizer integration on yield and water nitrogen use efficiency in winter wheat. J Soil Water Conserv, 2015, 29: 277-281. (in Chinese with English abstract)
[10] 石玉华, 初金鹏, 尹立俊, 贺明荣, 邓淑珍, 张良, 孙晓乐, 田奇卓, 代兴龙. 宽幅播种提高不同播期小麦产量与氮素利用率. 农业工程学报, 2018, 34(17): 127-133.
Shi Y H, Chu J P, Yin L J, He M R, Deng S Z, Zhang L, Sun X L, Tian Q Z, Dai X L. Wide-range sowing improving yield and nitrogen use efficiency of wheat sown at different dates. Trans CSAE, 2018, 34(17): 127-133. (in Chinese with English abstract)
[11] Hu Y S, Ren T H, Li Z, Tang Y Z, Ren Z L, Yan B J. Molecular mapping and genetic analysis of a QTL controlling spike formation rate and tiller number in wheat. Gene, 2017, 634: 15-21.
doi: 10.1016/j.gene.2017.08.039
[12] 李敏敏, 李卓夫, 王晓楠, 付连双, 宋永超, 王璐. 寒地冬小麦不同品种越冬期组织结构的差异. 麦类作物学报, 2016, 36: 795-800.
Li M M, Li Z F, Wang X N, Fu L S, Song Y C, Wang L. Differences of organization structure in different winter wheat varieties at over-wintering stage in cold region. J Triticeae Crops, 2016, 36: 795-800. (in Chinese with English abstract)
[13] 冯伟, 徐丽娜, 朱云集, 王晨阳, 郭天财. 小麦‘兰考矮早八’茎蘖分蘖节的内源激素差异及其密度调控效应. 植物生理学报, 2011, 47: 581-588.
Feng W, Xu L N, Zhu Y J, Wang C Y, Guo T C. Differences of endogenous hormones in tillering node between main stem and tillers and their regulation by density in wheat ‘Lankao Aizao 8’. Plant Physiol J, 2011, 47: 581-588 (in Chinese with English abstract).
doi: 10.1104/pp.47.4.581
[14] 张敏, 王岩岩, 蔡瑞国, 李婧实, 王文颇, 周印富, 李彦生, 杨树宗. 播期推迟对冬小麦产量形成和籽粒品质的调控效应. 麦类作物学报, 2013, 33: 325-330.
Zhang M, Wang Y Y, Cai R G, Li J S, Wang W P, Zhou Y F, Li Y S, Yang S Z. Regulating effect of delayed sowing date on yield formation and grain quality of winter wheat. J Triticeae Crops, 2013, 33: 325-330. (in Chinese with English abstract)
[15] 欧行奇, 王永霞, 李新华, 乔红, 王紫娟, 欧阳娟. 百农207不同生育期的光合、干物质动态与产量性状研究. 东北农业科学, 2020, 45(4): 13-15.
Ou X Q, Wang Y X, Li X H, Qiao H, Wang Z J, Ouyang J. Study on photosynthesis, dry matter dynamics and yield characters of Bainong 207 at different growth stages. J Northeast Agric Sci, 2020, 45(4): 13-15. (in Chinese with English abstract)
[16] 蔡铁, 徐海成, 尹燕枰, 杨卫兵, 彭佃亮, 倪英丽, 徐彩龙, 杨东清, 王振林. 外源IAA、GA3和ABA影响不同穗型小麦分蘖发生的机制. 作物学报, 2013, 39: 1835-1842.
doi: 10.3724/SP.J.1006.2013.01835
Cai T, Xu H C, Yin Y P, Yang W B, Peng D L, Ni Y L, Xu C L, Yang D Q, Wang Z L. Mechanisms of tiller occurrence affected by exogenous IAA, GA3, and ABA in wheat with different spike-types. Acta Agron Sin, 2013, 39: 1835-1842. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.01835
[17] 周羊梅, 顾正中, 王安邦, 朱新开, 郭文善. 小麦主茎光合产物的运转与分配. 核农学报, 2008, 22: 80-83.
Zhou Y M, Gu Z Z, Wang A B, Zhu X K, Guo W S. The transportation and distribution of 14C-photosynthate produced in main stems of wheat. J Nucl Agric Sci, 2008, 22: 80-83. (in Chinese with English abstract)
[18] 胡卫丽, 王永华, 李刘霞, 轩红梅, 郭天财. 氮密调控对两种穗型冬小麦品种茎蘖干物质积累与转运的影响. 麦类作物学报, 2014, 34: 808-815.
Hu W L, Wang Y H, Li L X, Xuan H M, Guo T C. Effects of nitrogen and plant density on dry matter accumulation and translocation in main stem and tillers of two spike-types of winter wheat varieties. J Triticeae Crops, 2014, 34: 808-815. (in Chinese with English abstract)
[19] Wang X J, Wu W, Liao Y C. Mitigating ammonia volatilization and increasing nitrogen use efficiency through appropriate nitrogen management under supplemental irrigation and rainfed condition in winter wheat. Agric Water Manag, 2021, 255: 107050.
doi: 10.1016/j.agwat.2021.107050
[20] 王思宇, 荣晓椒, 樊高琼, 吴舸, 胡雯媚. 播期对四川小麦分蘖发生、消亡及成穗特性的影响. 麦类作物学报, 2017, 37: 656-665.
Wang S Y, Rong X J, Fan G Q, Wu G, Hu W M. Effect of sowing dates on tiller occurring, withering away and earbearing. J Triticeae Crops, 37: 656-665. (in Chinese with English abstract)
[21] Xu C L, Cao Y B, Tian B J, Ren J H, Meng Q F, Wang P. Effects of EDAH, a novel plant growth regulator, on mechanical strength, stalk vascular bundles and grain yield of summer maize at high densities. Field Crops Res, 2017, 200: 71-79.
doi: 10.1016/j.fcr.2016.10.011
[22] Yang R C, Yang T, Zhang H J, Qi Y, Xing Y X, Zhang N, Li R, Weeda S, Ren S X, Ouyang B, Guo Y D. Hormone profiling and transcription analysis reveal a major role of ABA in tomato salt tolerance. Plant Physiol Biochem, 2014, 77: 23-34.
doi: 10.1016/j.plaphy.2014.01.015
[23] Li Y H, Shi D Y, Li G H, Zhao B, Zhang J W, Liu P, Ren B Z, Dong S T. Maize/peanut intercropping increases photosynthetic characteristics, 13C-photosynthate distribution, and grain yield of summer maize. J Integr Agric, 2019, 18: 2219-2229.
doi: 10.1016/S2095-3119(19)62616-X
[24] Liu Z, Ma F Y, Hu T X, Zhao K G, Gao T P, Zhao H X, Ning T Y. Using stable isotopes to quantify water uptake from different soil layers and water use efficiency of wheat under long-term tillage and straw return practices. Agric Water Manag, 2020, 229: 105933.
doi: 10.1016/j.agwat.2019.105933
[25] Hou H Z, Zhang X C, Xin J D, Fang Y J, Yu X F, Wang H L, Ma Y F. Effects of soil-plastic mulching on water consumption characteristics and grain yield of spring wheat in a semiarid area. Irrig Drain, 2020, 69: 914-927.
doi: 10.1002/ird.v69.4
[26] Al-Ghobari H M, Mohammad F S, El Marazky M S A. Effect of intelligent irrigation on water use efficiency of wheat crop in arid region. J Anim Plant Sci, 2013, 23: 1691-1699.
[27] 王森, 尚云秋, 朱俊科, 谷淑波, 王东. 不同播种方案下补灌对冬小麦水分利用和产量的影响. 麦类作物学报, 2021, 41: 1151-1160.
Wang S, Shang Y Q, Zhu J K, Gu S B, Wang D. Effect of supplemental irrigation on water use and grain yield of winter wheat with different sowing schemes. J Triticeae Crops, 2021, 41: 1151-1160. (in Chinese with English abstract)
[28] 张现超, 乔冬梅, 齐学斌, 郭魏, 周媛, 肖亚涛. 不同井渠配比灌水模式对土壤盐分及冬小麦生长发育的影响. 灌溉排水学报, 2015, 34(4): 49-54.
Zhang X C, Qiao D M, Qi X B, Guo W, Zhou Y, Xiao Y T. Effects of irrigation models with different well-canal water percentages on the growth of winter wheat and soil salt. J Irrig Drain, 2015, 34(4): 49-54. (in Chinese with English abstract)
[29] 张晶, 党建友, 张定一, 王姣爱, 裴雪霞, 姬虎太, 闫翠萍, 程麦凤. 微喷灌水肥一体化小麦磷钾肥减施稳产提质研究. 中国土壤与肥料, 2018, (5): 115-121.
Zhang J, Dang J Y, Zhang D Y, Wang J A, Pei X X, Ji H T, Yan C P, Cheng M F. Study on effect of micro-sprinkler irrigation combined with reduced phosphorus, potassium fertilizer on yield and quality of wheat. Soils Fert Sci China, 2018, (5): 115-121. (in Chinese with English abstract)
[30] 党红凯, 曹彩云, 郑春莲, 马俊永, 郭丽, 王亚楠, 李伟, 李科江. 造墒与播后镇压对小麦冬前耗水和生长发育的影响. 中国生态农业学报, 2016, 24: 1071-1079.
Dang H K, Cao C Y, Zheng C L, Ma J Y, Guo L, Wang Y N, Li W, Li K J. Effects of pre-sowing irrigation and post-sowing soil compaction on water use and growth of winter wheat. Chin J Eco-Agric, 2016, 24: 1071-1079. (in Chinese with English abstract)
[31] 刘冲, 贾永红, 张金汕, 孙鹏, 李俊志, 李鹏, 石书兵. 播种方式和灌水量对春小麦干物质和产量的影响. 麦类作物学报, 2019, 39: 728-737.
Liu C, Jia Y H, Zhang J S, Sun P, Li J Z, Li P, Shi S B. Effects of sowing patterns and irrigation amount on dry matter and yield of spring wheat. J Triticeae Crops, 2019, 39: 728-737. (in Chinese with English abstract)
[32] 肖云, 陈松鹤, 杨洪坤, 张雪, 郭翔, 樊高琼. 优化栽培管理对四川丘陵旱地不同穗型小麦分蘖质量与产量形成的影响. 核农学报, 2021, 35: 2616-2625.
doi: 10.11869/j.issn.100-8551.2021.11.2616
Xiao Y, Chen S H, Yang H K, Zhang X, Guo X, Fan G Q. Effects of optimal management on tillering quality and yield of two spike-type wheat cultivars in hilly dryland of Sichuan. J Nucl Agric Sci, 2021, 35: 2616-2625. (in Chinese with English abstract)
doi: 10.11869/j.issn.100-8551.2021.11.2616
[33] Cai T, Xu H C, Peng D L, Yin Y P, Yang W B, Ni Y L, Chen X G, Xu C L, Yang D Q, Cui Z Y, Wang Z L. Exogenous hormonal application improves grain yield of wheat by optimizing tiller productivity. Field Crops Res, 2014, 155: 172-183.
doi: 10.1016/j.fcr.2013.09.008
[34] 郭天财, 盛坤, 冯伟, 徐丽娜, 王晨阳. 种植密度对两种穗型小麦品种分蘖期茎蘖生理特性的影响. 西北植物学报, 2009, 29: 350-355.
Guo T C, Sheng K, Feng W, Xu L N, Wang C Y. Effects of plant density on physiological characteristics of different stems during tillering stage in two spike-types winter wheat cultivars. Acta Bot Boreali-Occident Sin, 2009, 29: 350-355. (in Chinese with English abstract)
[35] 张经廷, 吕丽华, 董志强, 张丽华, 姚艳荣, 申海平, 姚海坡, 贾秀领. 华北冬小麦开花期补灌的增产效应及其影响因素. 作物学报, 2019, 45: 1746-1755.
doi: 10.3724/SP.J.1006.2019.81060
Zhang J T, Lyu L H, Dong Z Q, Zhang L H, Yao Y R, Shen H P, Yao H P, Jia X L. Yield-increasing effect of supplementary irrigation at winter wheat flowering and influencing factors based on water and nitrogen coupling in north China. Acta Agron Sin, 2019, 45: 1746-1755. (in Chinese with English abstract)
[36] Tatar Q, Cakalogullari U, Aykut Tonk F, Istipliler D, Karakoc R. Effect of drought stress on yield and quality traits of common wheat during grain filling stage. Turk J Field Crops, 2020, 25: 236-244.
[37] 郑飞娜, 初金鹏, 张秀, 费立伟, 代兴龙, 贺明荣. 播种方式与种植密度互作对大穗型小麦品种产量和氮素利用率的调控效应. 作物学报, 2020, 46: 423-431.
doi: 10.3724/SP.J.1006.2020.91046
Zheng F N, Chu J P, Zhang X, Fei L W, Dai X L, He M R. Interactive effects of sowing pattern and planting density on grain yield and nitrogen use efficiency in large spike wheat cultivar. Acta Agron Sin, 2020, 46: 423-431 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2020.91046
[38] 杨贝贝, 赵丹丹, 任永哲, 辛泽毓, 王志强, 林同保. 不同小麦品种对干旱胁迫的形态生理响应及抗旱性分析. 河南农业大学学报, 2017, 51: 131-139.
Yang B B, Zhao D D, Ren Y Z, Xin Z Y, Wang Z Q, Lin T B. Drought resistance of different wheat cultivar and physiological response to drought stress. J Henan Agric Univ, 2017, 51: 131-139. (in Chinese with English abstract)
[1] 李盼, 陈桂平, 苟志文, 殷文, 樊志龙, 胡发龙, 范虹, 柴强. 绿洲灌区春小麦光能利用与水分生产效益对秸秆还田方式的响应[J]. 作物学报, 2023, 49(5): 1316-1326.
[2] 张金鑫, 葛均筑, 马玮, 丁在松, 王新兵, 李从锋, 周宝元, 赵明. 华北平原冬小麦-夏玉米种植体系周年水分高效利用研究进展[J]. 作物学报, 2023, 49(4): 879-892.
[3] 付景, 王亚, 杨文博, 王越涛, 李本银, 王付华, 王生轩, 白涛, 尹海庆. 干湿交替灌溉耦合施氮量对水稻籽粒灌浆生理和根系生理的影响[J]. 作物学报, 2023, 49(3): 808-820.
[4] 史梦霞, 张佳笑, 石晓宇, 褚庆全, 陈阜, 雷永登. 近20年河北省几种高耗水作物的水分利用效率分析[J]. 作物学报, 2021, 47(12): 2450-2458.
[5] 姜丽娜,马静丽,方保停,马建辉,李春喜,王志敏,蒿宝珍. 限水减氮对豫北冬小麦产量和植株不同层次器官干物质运转的影响[J]. 作物学报, 2019, 45(6): 957-966.
[6] 鱼海跃,闫岩,张钰石,张明才,李召虎. 不同灌溉条件下冠菌素对大豆光合特性与产量的调控效应[J]. 作物学报, 2019, 45(12): 1851-1858.
[7] 赵佳佳,马小飞,郑兴卫,郝建宇,乔玲,葛川,王爱爱,张树伟,张晓军,姬虎太,郑军. 不同水分条件下HMW-GS对小麦品质的影响[J]. 作物学报, 2019, 45(11): 1682-1690.
[8] 张经廷,吕丽华,董志强,张丽华,姚艳荣,申海平,姚海坡,贾秀领. 华北冬小麦开花期补灌的增产效应及其影响因素[J]. 作物学报, 2019, 45(11): 1746-1755.
[9] 石洪亮,严青青,张巨松,李春艳,窦海涛. 氮肥对非充分灌溉下棉花花铃期光合特性及产量的补偿作用[J]. 作物学报, 2018, 44(8): 1196-1204.
[10] 徐云姬, 许阳东, 李银银, 钱希旸, 王志琴, 杨建昌. 干湿交替灌溉对水稻花后同化物转运和籽粒灌浆的影响[J]. 作物学报, 2018, 44(04): 554-568.
[11] 袁莉民, 展明飞, 章星传, 王志琴, 杨建昌. 水稻穗上不同粒位籽粒胚乳结构及其结实期灌溉方式对它的调控作用[J]. 作物学报, 2018, 44(02): 245-259.
[12] 高亮,张维宏*,杜雄,郭江,宋晋辉,王晓明,赵治海. 覆膜和补灌对杂交谷子产量形成与水分利用效率的影响[J]. 作物学报, 2017, 43(01): 122-132.
[13] 钟晓媛,赵敏,李俊杰,陈多,田青兰,王丽,黄光忠,任万军. 播栽期对机插超级杂交籼稻分蘖成穗的影响及与气象因子的关系[J]. 作物学报, 2016, 42(11): 1708-1720.
[14] 褚光,展明飞,朱宽宇,王志琴,杨建昌*. 干湿交替灌溉对水稻产量与水分利用效率的影响[J]. 作物学报, 2016, 42(07): 1026-1036.
[15] 吕伟生,曾勇军*,石庆华,潘晓华,黄山,商庆银,谭雪明,李木英,胡水秀. 机插早稻分蘖成穗特性及基本苗公式参数研究[J]. 作物学报, 2016, 42(03): 427-436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .