欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (6): 1668-1677.doi: 10.3724/SP.J.1006.2023.24175

• 耕作栽培·生理生化 • 上一篇    下一篇

磷肥用量对油菜籽产量及品质的影响

闫金垚(), 宋毅, 陆志峰, 任涛, 鲁剑巍*()   

  1. 华中农业大学资源与环境学院/农业农村部长江中下游耕地保育重点实验室/华中农业大学微量元素研究中心, 湖北武汉 430070
  • 收稿日期:2022-08-03 接受日期:2022-10-10 出版日期:2023-06-12 网络出版日期:2022-10-18
  • 通讯作者: *鲁剑巍, E-mail: lunm@mail.hzau.edu.cn
  • 作者简介:E-mail: yanjinyao@webmail.hzau.edu.cn
  • 基金资助:
    国家重点研发计划项目(2021YFD1600500);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-12);中央高校基本科研业务费专项基金(2662021ZH001)

Effect of phosphorus fertilizer rate on rapeseed yield and quality (Brassica napus L.)

YAN Jin-Yao(), SONG Yi, LU Zhi-Feng, REN Tao, LU Jian-Wei*()   

  1. College of Resources and Environment, Huazhong Agricultural University/ Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2022-08-03 Accepted:2022-10-10 Published:2023-06-12 Published online:2022-10-18
  • Contact: *E-mail: lunm@mail.hzau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2021YFD1600500);China Agriculture Research System of MOF and MARA(CARS-12);Fundamental Research Funds for the Central Universities(2662021ZH001)

摘要:

油菜是重要的油料作物, 对缺磷敏感, 我国油菜主产区土壤供磷状况较差, 缺磷常导致油菜籽减产。于2019—2021年度2季在长江中游地区进行磷肥用量田间试验, 设置0、45、90、135和180 kg P2O5 hm-2 5个施磷水平, 探究磷营养供应状况同时对油菜籽产量和品质的影响。结果表明, 施磷显著增加油菜单株角果数、角粒数和千粒重, 进而增加了油菜产量。不施磷处理的平均产量仅190 kg hm-2, 施磷增产8.5~12.5倍, 根据产量效应得到的最高产量施磷量为51.8~65.0 kg P2O5 hm-2。油菜籽磷含量、含水率、含油率、蛋白质、硫甙、油酸、亚麻酸和硬脂酸对磷肥用量的响应均达到极显著水平, 芥酸、亚油酸和棕榈酸的响应较小。随着施磷量的增加, 油菜籽含油率呈先增后降的趋势(施磷90 kg P2O5 hm-2和135 kg P2O5 hm-2最高), 蛋白质含量呈缓慢升高趋势, 硫甙含量显著降低。在磷肥投入量为90~135 kg P2O5 hm-2时获得最大油分产量和蛋白质产量。过量的磷肥施用会降低油菜籽的油酸含量, 提高了亚麻酸含量。通径分析表明, 籽粒磷含量、含油率和亚麻酸含量对产量有较大的直接正作用, 含水率、蛋白质和亚麻酸通过籽粒磷含量对产量有较大的间接正作用, 硫甙、油酸、亚油酸和硬脂酸通过籽粒磷含量对产量有较大的间接负作用。综合结果显示, 以油菜籽产量和食用油品质为目标的推荐磷肥用量为45~90 kg P2O5 hm-2, 以追求饲用饼粕蛋白质产量为目标, 推荐磷肥用量为90~135 kg P2O5 hm-2

关键词: 磷肥用量, 油菜, 产量, 品质, 产油量

Abstract:

Rapeseed is an important oil crop and is sensitive to phosphorus deficiency. The soil phosphorus supply in the main rapeseed producing areas in China is poor, and phosphorus deficiency often leads to yield reduction of seed. To investigate the effects of phosphorus nutrient supply status on rapeseed yield and quality at the same time, a phosphorus fertilizer rate field experiment was conducted in two seasons of 2019-2021 in the middle reaches of Yangtze River with five treatments of 0, 45, 90, 135, and 180 kg P2O5 hm-2. The results showed that phosphorus application significantly increased the number of pods per plant, seed number, and 1000-seed weight, and thus increasing rapeseed yield. The average yield without phosphorus treatment was only 190 kg hm-2, and phosphorus application increased the yield by 8.5-12.5 times, and the maximum yields obtained according to yield effects corresponded to phosphorus applications of 51.8-65.0 kg P2O5 hm-2. The response of rapeseed phosphorus content, water content, oil content, protein, glucosinolate, oleic acid, linolenic acid, and stearic acid to phosphorus fertilizer rate reached highly significant levels, while erucic acid, linoleic acid, and palmitic acid showed less response. The oil content of rapeseed tended to increase and then decrease with increasing phosphorus application (highest at 90 kg P2O5 hm-2 and 135 kg P2O5 hm-2), protein content tended to increase slowly, and glucosinolate content decreased significantly. Excessive application of phosphorus fertilizer decreased the oleic acid content and increased the linolenic acid content of rapeseed. Path analysis showed that seed phosphorus content, oil content, and linolenic acid content had a greater direct positive effect on yield, water content, protein and linolenic acid had a greater indirect positive effect on yield through seed phosphorus content, and glucosinolate, oleic acid, linoleic acid, and stearic acid had a greater indirect negative effect on yield through seed phosphorus content. The combined results showed that the recommended phosphorus fertilizer rate for targeting rapeseed yield and edible oil quality was 45-90 kg P2O5 hm-2, and for pursuing forage cake meal protein yield, the recommended phosphorus fertilizer rate was 90-135 kg P2O5 hm-2.

Key words: phosphorus fertilizer rate, rapeseed, yield, quality, oil production

表1

供试土壤基础理化性质"

年份
Year
pH 有机质
Organic matter
(g kg-1)
全氮
Total N
(g kg-1)
有效磷
Olsen-P
(mg kg-1)
速效钾
Available K
(mg kg-1)
有效硼
Available B
(mg kg-1)
2019/2020 5.76 36.50 1.75 6.96 71.13 0.38
2020/2021 5.22 31.76 1.94 4.98 58.90 0.25

图1

不同施磷量对2019/2020和2020/2021年油菜产量的影响 图中P和Y分别代表磷肥和产量, *和**分别表示在P < 0.05和P < 0.01水平差异显著。"

表2

不同施磷量对2019/2020和2020/2021年油菜产量构成的影响"

磷肥用量
P rates
(kg P2O5 hm-2)
单株角果数
Number of pods per plant (No. plant-1)
角粒数
Seed number (No. pod-1)
千粒重
1000-seed weight (g)
2019/2020 2020/2021 平均Average 2019/2020 2020/2021 平均Average 2019/2020 2020/2021 平均Average
0 93 c 24 c 59 20.1 b 15.4 b 17.7 2.82 c 4.21 b 3.51
45 392 b 184 b 288 23.8 ab 20.9 a 22.4 3.20 b 5.27 a 4.23
90 406 ab 197 ab 302 25.2 a 21.6 a 23.4 3.42 a 5.47 a 4.45
135 431 a 209 ab 320 24.2 a 20.9 a 22.6 3.32 ab 5.61 a 4.46
180 424 a 221 a 323 24.2 a 19.6 a 21.9 3.33 ab 5.41 a 4.37
方差分析ANOVA FF-value
磷肥 Phosphorus (P) 309.4** 9.4** 40.9**
年份 Year (Y) 1021.4** 35.8** 1262.0**
P×Y 25.0** 0.3ns 7.5**

表3

不同施磷量对油菜籽磷含量的影响"

磷肥用量
P rates (kg P2O5 hm-2)
磷含量 P content (%)
2019/2020 2020/2021
0 0.32 c 0.28 d
45 0.41 c 0.50 c
90 0.58 b 0.66 b
135 0.70 a 0.69 ab
180 0.69 ab 0.72 a
方差分析ANOVA FF-value
磷肥 Phosphorus (P) 90.7**
年份 Year (Y) 3.3ns
P×Y 2.3ns

表4

不同施磷量对油菜籽含水率、含油率、蛋白质含量及硫甙含量的影响"

磷肥用量
P rates
(kg P2O5 hm-2)
含水率
Water content
(%)
含油率
Oil content
(%)
蛋白质含量
Protein content
(%)
硫甙
Glucosinolate
(μmol g-1)
2019/2020 2020/2021 2019/2020 2020/2021 2019/2020 2020/2021 2019/2020 2020/2021
0 8.1 b 8.5 b 41.2 c 45.7 ab 21.8 c 25.7 c 28.5 a 26.1 ab
45 8.1 b 9.1 ab 42.8 ab 46.8 a 22.5 c 25.6 c 25.8 ab 26.3 a
90 9.0 a 10.6 ab 42.2 abc 46.9 a 23.6 bc 26.1 bc 26.6 ab 23.3 ab
135 9.3 a 10.2 ab 43.0 a 45.1 b 24.4 ab 27.2 b 25.6 ab 21.9 ab
180 9.7 a 11.0 a 41.8 bc 44.7 b 25.8 a 29.4 a 23.3 b 21.1 b
方差分析ANOVA FF-value
磷肥Phosphorus (P) 5.7** 5.1** 20.1** 4.8**
年份Year (Y) 9.7** 186.6** 102.7** 7.8*
P×Y 0.4ns 3.4* 0.7ns 0.9ns

表5

不同施磷量对油菜籽油分和蛋白质产量的影响"

磷肥用量
P rates (kg P2O5 hm-2)
籽粒油分产量
Seed oil yield (kg hm-2)
籽粒蛋白质产量
Seed protein yield (kg hm-2)
2019/2020 2020/2021 平均Average 2019/2020 2020/2021 平均Average
0 93 c 70 b 82 49 c 40 d 44
45 921 b 833 a 877 484 b 455 c 470
90 1250 a 925 a 1088 696 a 514 bc 605
135 1291 a 940 a 1116 734 a 566 ab 650
180 1280 a 903 a 1091 789 a 594 a 692
方差分析ANOVA FF-value
磷肥 Phosphorus (P) 92.6** 114.0**
年份 Year (Y) 32.3** 27.9**
P×Y 3.2* 3.3*

表6

不同施磷量对油菜籽脂肪酸组分的影响"

磷肥用量
P rates
(kg P2O5 hm-2)
芥酸
Erucic acid
(%)
油酸
Oleic acid
(%)
亚油酸
Linoleic acid
(%)
亚麻酸
Linolenic acid (%)
硬脂酸
Stearic acid
(kg hm-2)
棕榈酸
Palmitic acid
(kg hm-2)
2019/
2020
2020/
2021
2019/
2020
2020/
2021
2019/
2020
2020/
2021
2019/
2020
2020/
2021
2019/
2020
2020/
2021
2019/
2020
2020/
2021
0 1.5 a 2.0 a 76.5 a 70.5 a 17.8 a 17.3 a 6.5 b 8.4 b 3.3 a 1.2 a 4.7 a 4.6 a
45 1.4 a 2.0 a 76.7 a 67.1 ab 17.6 a 16.7 a 7.0 ab 9.4 ab 3.0 ab 0.9 ab 4.9 a 4.5 a
90 1.4 a 2.0 a 74.8 a 67.2 ab 17.6 a 16.6 a 8.2 a 9.7 ab 2.9 ab 0.8 ab 4.8 a 4.5 a
135 1.3 a 2.0 a 71.8 ab 66.7 ab 17.6 a 16.6 a 8.2 a 9.3 ab 3.1 ab 0.8 ab 4.9 a 4.6 a
180 1.2 a 1.8 a 65.9 b 61.3 b 17.6 a 16.0 a 8.3 a 11.1 a 2.7 b 0.5 b 4.8 a 4.4 a
方差分析ANOVA FF-value
磷肥 Phosphorus (P) 0.2ns 5.5** 1.0ns 5.3** 4.8** 0.7ns
年份 Year (Y) 8.7** 20.5** 15.6** 33.3** 547.3** 27.0**
P×Y 0.1ns 0.4ns 0.5ns 0.8ns 0.2ns 1.0ns

图2

油菜籽产量与品质性状间的相关关系 相关关系分析所用数据为试验所有养分、品质和脂肪酸数据。*、**和***分别表示在P < 0.05、P < 0.01和P < 0.001水平差异显著。"

表7

油菜籽主要品质性状与产量的通径分析"

性状
Trait
直接通径系数
Direct path
coefficient
间接通径系数 Indirect path coefficient 决定系数
Determination coefficient
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
X1 0.743 -0.014 -0.004 -0.199 0.060 0.012 0.058 0.016 0.148 0.059 -0.006 0.873
X2 -0.021 0.487 0.001 -0.175 0.032 -0.017 0.075 0.024 0.137 0.063 0.005 0.609
X3 0.215 -0.014 0.000 0.060 -0.028 -0.008 -0.019 0.003 0.014 -0.022 -0.005 0.195
X4 -0.290 0.509 -0.013 -0.045 0.051 0.017 0.077 0.021 0.155 0.056 -0.004 0.535
X5 -0.101 -0.441 0.007 0.059 0.145 -0.028 -0.032 -0.004 -0.051 -0.054 0.011 -0.489
X6 -0.094 -0.096 -0.004 0.019 0.053 -0.030 0.014 0.020 0.007 0.034 -0.002 -0.079
X7 -0.117 -0.369 0.013 0.034 0.191 -0.027 0.011 -0.021 -0.114 -0.068 -0.001 -0.467
X8 -0.050 -0.236 0.010 -0.013 0.124 -0.008 0.037 -0.050 -0.090 -0.073 0.033 -0.316
X9 0.242 0.455 -0.012 0.012 -0.186 0.021 -0.003 0.055 0.019 0.037 -0.015 0.625
X10 -0.131 -0.335 0.010 0.037 0.124 -0.042 0.024 -0.060 -0.028 -0.069 -0.003 -0.474
X11 0.059 -0.081 0.004 0.017 0.026 0.007 -0.018 0.005 0.001 -0.062 0.007 -0.036
[1] 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40: 613-617.
Wang H Z. New-demand oriented oilseed rape industry developing strategy. Chin J Oil Crop Sci, 2018, 40: 613-617. (in Chinese with English abstract)
[2] 廖伯寿, 殷艳, 马霓. 中国油料作物产业发展回顾与展望. 农学学报, 2018, 8(1): 107-112.
Liao B S, Yin Y, Ma N. Review and future prospects of oil crops industry development in China. J Agric, 2018, 8(1): 107-112. (in Chinese with English abstract)
[3] USDA. World agricultural production. (2020-11-10) [2021-03-12]. http://apps.fas.usda.gov/psdonline/app/index.html#/app/downloads.
[4] 王汉中, 殷艳. 我国油料产业形势分析与发展对策建议. 中国油料作物学报, 2014, 36: 41-42.
Wang H Z, Yin Y. Analysis and strategy for oil crop industry in China. Chin J Oil Crop Sci, 2014, 36: 41-42. (in Chinese with English abstract)
[5] 殷艳, 尹亮, 张学昆, 郭静利, 王积军. 我国油菜产业高质量发展现状和对策. 中国农业科技导报, 2021, 23(8): 1-7.
Yin Y, Yin L, Zhang X K, Guo J L, Wang J J. Status and countermeasure of the high-quality development of rapeseed industry in China. J Agric Sci Technol, 2021, 23(8): 1-7. (in Chinese with English abstract)
[6] 刘红恩, 胡承孝, 聂兆军, 孙学成, 谭启玲. 钼磷配合施用对甘蓝型油菜产量和籽粒品质的影响. 植物营养与肥料学报, 2012, 18: 678-688.
Liu H E, Hu C X, Nie Z J, Sun X C, Tan Q L. Interactive effects of molybdenum and phosphorus fertilizers on grain yield and quality of Brassica napus. Plant Nutr Fert Sci, 2012, 18: 678-688. (in Chinese with English abstract)
[7] Hu Y F, Ye X S, Shi L, Duan H Y, Xu F S. Genotypic differences in root morphology and phosphorus uptake kinetics in Brassica napus under low phosphorus supply. J Plant Nutr, 2010, 33: 889-901.
doi: 10.1080/01904161003658239
[8] 邹娟, 鲁剑巍, 陈防, 李银水. 氮磷钾硼肥施用对长江流域油菜产量及经济效益的影响. 作物学报, 2009, 35: 87-92.
doi: 10.3724/SP.J.1006.2009.00087
Zou J, Lu J W, Chen F, Li Y S. Effect of nitrogen, phosphorus, potassium, and boron fertilizers on yield and profit of rapeseed (Brassica napus L.) in the Yangtze River Basin. Acta Agron Sin, 2009, 35: 87-92. (in Chinese with English abstract)
[9] 邹娟, 鲁剑巍, 李银水, 吴江生, 陈防. 氮、磷、钾、硼肥对甘蓝型油菜籽品质的影响. 植物营养与肥料学报, 2008, 14: 961-968.
Zou J, Lu J W, Li Y S, Wu J S, Chen F. Effects of N, P, K and B fertilization on quality of Brassica napus. Plant Nutr Fert Sci, 2008, 14: 961-968. (in Chinese with English abstract)
[10] 沈金雄, 李志宇, 廖星, 郭庆元. 磷对甘蓝型油菜产量及矿质营养吸收与积累的影响. 作物学报, 2006, 32: 1231-1235.
Shen J X, Li Z Y, Liao X, Guo Q Y. Effect of phosphorus on yield and mineral nutrient absorption and accumulation in rape seed (Brassica napus L.). Acta Agron Sin, 2006, 32: 1231-1235. (in Chinese with English abstract)
[11] 李银水, 鲁剑巍, 廖星, 邹娟, 李小坤, 余常兵, 马常宝, 高祥照. 磷肥用量对油菜产量及磷素利用效率的影响. 中国油料作物学报, 2011, 33: 52-56.
Li Y S, Lu J W, Liao X, Zou J, Li X K, Yu C B, Ma C B, Gao X Z. Effect of phosphorus application rate on yield and fertilizer- phosphorus utilization efficiency in rapeseed. Chin J Oil Crop Sci, 2011, 33: 52-56. (in Chinese with English abstract)
[12] 王寅, 鲁剑巍, 李小坤, 任涛, 丛日环, 占丽平. 长江流域直播冬油菜氮磷钾硼肥施用效果. 作物学报, 2013, 39: 1491-1500.
doi: 10.3724/SP.J.1006.2013.01491
Wang Y, Lu J W, Li X K, Ren T, Cong R H, Zhan L P. Effects of nitrogen, phosphorus, potassium, and boron fertilizers on winter oilseed rape (Brassica napus L.) direct-sown in the Yangtze River Basin. Acta Agron Sin, 2013, 39: 1491-1500. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.01491
[13] 张海伟, 徐芳森. 不同磷水平下甘蓝型油菜光合特性的基因型差异研究. 植物营养与肥料学报, 2010, 16: 1196-1202.
Zhang H W, Xu F S. Genotypic differences in photosynthetic characteristics in Brassica napus at different phosphorus levels. Plant Nutr Fert Sci, 2010, 16: 1196-1202. (in Chinese with English abstract)
[14] Diepenbrock W. Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crops Res, 2000, 67: 35-49.
doi: 10.1016/S0378-4290(00)00082-4
[15] 雷建明, 杨志奇, 俄胜哲, 罗照霞, 袁金华, 郭永杰, 车宗贤. 磷及有机肥对白菜型冬油菜产量及品质的影响. 干旱地区农业研究, 2016, 34(5): 146-151.
Lei J M, Yang Z Q, E S Z, Luo Z X, Yuan J H, Guo Y J, Che Z X. Effects of phosphorus and manure on canola growth period, grain yield and quality. Agric Res Arid Areas, 2016, 34(5): 146-151. (in Chinese with English abstract)
[16] 李志玉, 胡琼, 廖星, 郭庆元, 秦亚平. 优质油菜中油杂8号施用氮磷硼肥的产量和品质效应. 中国油料作物学报, 2005, 27: 59-63.
Li Z Y, Hu Q, Liao X, Guo Q Y, Qin Y P. Effects of nitrogen, phosphorus and boron on the yield and quality of high-efficient oilseed rape hybrid Zhongyouza No.8. Chin J Oil Crop Sci, 2005, 27: 59-63. (in Chinese with English abstract)
[17] 张芳, 赵永国, 谷铁城, 张冬晓, 刘凤兰, 郭瑞星, 付桂萍, 张学昆. 2001-2010 年国家审定冬油菜品种的产量与主要性状分析. 中国油料作物学报, 2012, 34: 239-244.
Zhang F, Zhao Y G, Gu T C, Zhang D X, Liu F L, Guo R X, Fu G P, Zhang X K. Yield and agronomic traits of winter rapeseed cultivars registered in China from 2001 to 2010. Chin J Oil Crop Sci, 2012, 34: 239-244. (in Chinese with English abstract)
[18] 钱武, 戴成满, 郑成彧, 林秀秀, 梁全兴, 李飞, 吴景芳, 陈豪杰. 甘蓝型冬油菜在不同地区生育期、品质和产量差异性分析. 浙江农业科学, 2018, 59: 715-718.
Qian W, Dai C M, Zheng C Y, Lin X X, Liang Q F, Li F, Wu J F, Chen H J. Analysis of differences in growing period, quality and yield of Brassica napus L. in different regions. J Zhejiang Agric Sci, 2018, 59: 715-718. (in Chinese with English abstract)
[19] 曾宇, 雷雅丽, 李京, 胡立勇. 氮、磷、钾用量与种植密度对油菜产量和品质的影响. 植物营养与肥料学报, 2012, 18: 146-153.
Zeng Y, Lei Y L, Li J, Hu L Y. Effects of application amounts of nitrogen, phosphate, and potassium and planting density on yield and quality of rapeseed. Plant Nutr Fert Sci, 2012, 18: 146-153. (in Chinese with English abstract)
[20] 闫金垚, 郭丽璇, 王昆昆, 廖世鹏, 陆志峰, 丛日环, 李小坤, 任涛, 鲁剑巍. 长江流域稻-油轮作区土壤磷库现状及环境风险分析. 土壤学报, 2021, 60: 247-257.
Yan J Y, Guo L X, Wang K K, Liao S P, Lu Z F, Cong R H, Li X K, Ren T, Lu J W. Status of soil phosphorus pool and environmental risk assessment in rice-oilseed rape rotation area in the Yangtze River basin. Acta Pedol Sin, 2021, 60: 247-257. (in Chinese with English abstract)
[21] 鲁明星, 邹娟, 鲁剑巍, 王倩怡, 吴礼树. 湖北省油菜磷肥施用效果与土壤速效磷分级标准研究. 中国油料作物学报, 2006, 28: 448-452.
Lu M X, Zou J, Lu J W, Wang Q Y, Wu L S. Study on response of rapeseed to P application and classification criterion for available P in the soil. Chin J Oil Crop Sci, 2006, 28: 448-452. (in Chinese with English abstract)
[22] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. pp 25-114.
Bao S D. Soil Agricultural Chemistry Analysis. Beijing: China Agriculture Press, 2000. pp 25-114. (in Chinese)
[23] 智文良. 油菜生态雄性不育系373S及油菜籽近红外品质分析的研究. 西北农林科技大学硕士学位论文, 陕西杨凌, 2012.
Zhi W L. Studies on Ecotypical Male Sterile Line 373S and Determination of Rapeseed Quality with NYDL-3000. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2012. (in Chinese with English abstract)
[24] 汪瑞清, 杨国正, 史茜莎, 姚艳丽, 宋峥, 彭运磊. 氮磷钾镁锌混合施用对油菜产油量和蛋白质产量的影响. 湖北农业科学, 2009, 48: 1096-1100.
Wang R Q, Yang G Z, Shi Q S, Yao Y L, Song Z, Peng Y L. Effects of the mixed application of N, P, K, Mg, Zn on oil and protein yield of rapeseed (Brassica napus L.). Hubei Agric Sci, 2009, 48: 1096-1100. (in Chinese with English abstract)
[25] 刘荣, 尤晶晶, 郑经东, 王龙, 左青松. 磷肥用量对盐地条件下油菜干物质积累和分配的影响. 安徽农业科学, 2022, 50: 132-134.
Liu R, You J J, Zheng J D, Wang L, Zuo Q S. Effects of P rate on biomass accumulation and partitioning of canola (Brassica napus L.) in saline soil. J Anhui Agric Sci, 2022, 50: 132-134. (in Chinese with English abstract)
[26] Cheema M A, Malik M A, Hussain A, Shah S H, Basra S. Effects of time and rate of nitrogen and phosphorus application on the growth and the seed and oil yields of canola (Brassica napus L.). J Agron Crop Sci, 2010, 186: 103-110.
doi: 10.1046/j.1439-037X.2001.00463.x
[27] Diepenbrock W. Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crops Res, 2000, 67: 35-49.
doi: 10.1016/S0378-4290(00)00082-4
[28] 刘开昌, 胡昌浩, 董树亭, 王空军, 李爱芹. 高油玉米需磷特性及磷素对籽粒营养品质的影响. 作物学报, 2001, 27: 267-272.
Liu K C, Hu C H, Dong S T, Wang K J, Li A Q. Characteristic of phosphorus absorption of high oil maize and effects of phosphor on its kernel quality. Acta Agron Sin, 2001, 27: 267-272. (in Chinese with English abstract)
[29] 王雪, 樊军鹏, 李海涛, 石磊, 蔡红梅, 徐芳森, 刘克德, 丁广大. 低磷胁迫对甘蓝型油菜自然群体产量及品质的影响. 中国农业科技导报, 2018, 20(2): 93-100.
doi: 10.13304/j.nykjdb.2017.0308
Wang X, Fan J P, Li H T, Shi L, Cai H M, Xu F S, Liu K D, Ding G D. Effect of phosphorus deficiency on seed yield and quality of a Brassica napus natural population. J Agric Sci Technol, 2018, 20(2): 93-100. (in Chinese with English abstract)
[30] Pinkerton A. Critical phosphorus concentrations in oilseed rape (Brassica napus) and Indian mustard (Brassica juncea) as affected by nitrogen and plant age. Aust J Exp Agric, 1991, 31: 107-115.
doi: 10.1071/EA9910107
[31] 张子龙. 甘蓝型黄籽油菜主要营养特性及其产量和品质的形成与调控规律研究. 西南大学博士学位论文, 重庆, 2007.
Zhang Z L. Studies on Main Nutritional Characteristics and the Formation and Regulation of Yield and Quality in Yellow-seeded Rapeseed (Brassica napus L.). PhD Dissertation of Southwestern University, Chongqing, China, 2007 (in Chinese with English abstract).
[32] 袁兆国. 低磷胁迫对双低油菜产量与品质的影响. 扬州大学硕士学位论文, 江苏扬州, 2007.
Yuan Z G. Response of Yield and Quality to Low-P Stress and Fertilizer Application in a Double-low Oilseed rape. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2007. (in Chinese with English abstract)
[33] Majerowicz N, Kerbauy G B. Effects of nitrogen forms on dry matter partitioning and nitrogen metabolism in two contrasting genotypes of Catasetum fimbriatum (Orchidaceas). Environ Exp Bot, 2002, 47: 249-258.
doi: 10.1016/S0098-8472(01)00131-9
[34] 王旭东, 于振文, 石玉, 王小燕. 磷对小麦旗叶氮代谢有关酶活性和籽粒蛋白质含量的影响. 作物学报, 2006, 32: 339-344.
Wang X D, Yu Z W, Shi Y, Wang X Y. Effects of phosphorus on activities of enzymes related to nitrogen metabolism in flag leaves and protein contents in grains of wheat. Acta Agron Sin, 2006, 32: 339-344. (in Chinese with English abstract)
[35] 石桃雄, 王少思, 石磊, 梦金陵, 徐芳森. 不同氮、磷水平对“双高”油菜品种宁油7号和“双低”油菜品种Tapidor生长和品质的影响. 植物营养与肥料学报, 2010, 16: 959-964.
Shi T X, Wang S S, Shi L, Meng J L, Xu F S. Effects of different nitrogen and phosphorus levels on seed yield and quality parameters of double high and double low Brassica napus. Plant Nutr Fert Sci, 2010, 16: 959-964 (in Chinese with English abstract).
[36] 肖庆生, 夏志涛, 周灿金, 邹崇顺, 张学昆, 廖星. 氮磷钾肥对迟直播油菜产量和品质的影响. 中国油料作物学报, 2010, 32: 263-269.
Xiao Q S, Xia Z T, Zhou C J, Zou C S, Zhang X K, Liao X. Effects of N, P, K fertilization on yield and quality of delayed direct-seeding rapeseed (Brassica napus L.). Chin J Oil Crop Sci, 2010, 32: 263-269. (in Chinese with English abstract)
[37] 刘列钊, 李加纳. 利用甘蓝型油菜高密度SNP遗传图谱定位油酸、亚麻酸及芥酸含量QTL位点. 中国农业科学, 2014, 47: 24-32.
doi: 10.3864/j.issn.0578-1752.2014.01.003
Liu L Z, Li J N. QTL mapping of oleic acid, linolenic acid and erucic acid content in Vrassica napus by using the high density SNP genetic map. Sci Agric Sin, 2014, 47: 24-32. (in Chinese with English abstract)
[38] 蒙姜宇, 傅鹰, 贺亚军, 钱伟. 利用DH和IF2群体检测油菜籽粒油酸、亚油酸、亚麻酸含量QTL. 作物学报, 2019, 45: 1338-1348.
doi: 10.3724/SP.J.1006.2019.84172
Meng J Y, Fu Y, He Y J, Qian W. QTL mapping of oleic acid, linoleic acid and linolenic acid contents in Brassica napus L. using DH and IF2 populations. Acta Agron Sin, 2019, 45: 1338-1348. (in Chinese with English abstract)
[39] 毛龙. 甘蓝型油菜SNP遗传连锁图谱的构建及品质性状QTL定位. 华中农业大学硕士学位论文. 湖北武汉, 2013.
Mao L. Construction of a Genetic Linkage Map Using SNP Array and QTL Analysis of Quality Traits in Brassica napus. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2013. (in Chinese with English abstract)
[40] Hossain Z, Johnson E N, Wang L, Blackshaw R E, Gan Y T. Comparative analysis of oil and protein content and seed yield of five Brassicaceae oilseeds on the Canadian prairie. Ind Crop Prod, 2019, 136: 77-86.
doi: 10.1016/j.indcrop.2019.05.001
[41] Rathke G W, Christen O, Diepenbrock W. Effects of nitrogen source and rate on productivity and quality of winter oilseed rape (Brassica napus L.) grown in different crop rotations. Field Crops Res, 2005, 94: 103-113.
doi: 10.1016/j.fcr.2004.11.010
[42] 王华志, 王道波, 李秋霖, 王凤玲, 熊素敏. 油脂中脂肪酸成分与人体健康. 粮油加工, 2010, (6): 16-19.
Wang Z H, Wang D B, Li Q X, Wang F L, Xiong S M. Fatty acids in oils and fats and human health. Cereals Oils Proc, 2010, (6): 16-19. (in Chinese with English abstract)
[43] 王月, 朱宝, 蒋金金, 王幼平. 菜籽饼粕饲用价值及其品质改良的研究进展. 分子植物育种, 2015, 13: 929-936.
Wang Y, Zhu B, Jiang J J, Wang Y P. A review on feeding value and quality improvement of rapeseed meal. Mol Plant Breed, 2015, 13: 929-936. (in Chinese with English abstract)
[1] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成[J]. 作物学报, 2023, 49(7): 1919-1929.
[2] 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响[J]. 作物学报, 2023, 49(7): 1895-1905.
[3] 张露露, 张学美, 牟文燕, 黄宁, 郭子糠, 罗一诺, 魏蕾, 孙利谦, 王星舒, 石美, 王朝辉. 我国主要麦区小麦籽粒锰含量: 品种与土壤因素的影响[J]. 作物学报, 2023, 49(7): 1906-1918.
[4] 董志强, 吕丽华, 姚艳荣, 张经廷, 张丽华, 姚海坡, 申海平, 贾秀领. 水氮互作下强筋小麦师栾02-1产量和品质[J]. 作物学报, 2023, 49(7): 1942-1953.
[5] 邓艾兴, 李歌星, 吕玉平, 刘猷红, 孟英, 张俊, 张卫建. 齐穗后遮阴时长对西北稻区粳稻产量和品质的影响[J]. 作物学报, 2023, 49(7): 1930-1941.
[6] 宋毅, 李静, 谷贺贺, 陆志峰, 廖世鹏, 李小坤, 丛日环, 任涛, 鲁剑巍. 氮肥用量对冬油菜籽粒产量和品质的影响[J]. 作物学报, 2023, 49(7): 2002-2011.
[7] 李荣, 勉有明, 侯贤清, 李培富, 王西娜. 施氮对还田秸秆腐解及养分释放、土壤肥力与玉米产量的影响[J]. 作物学报, 2023, 49(7): 2012-2022.
[8] 唐玉凤, 姚敏, 何昕, 官梅, 刘忠松, 官春云, 钱论文. 甘蓝型油菜SGR基因家族的全基因组鉴定与功能分析[J]. 作物学报, 2023, 49(7): 1829-1842.
[9] 袁大双, 张晓莉, 朱冬鸣, 杨友鸿, 姚梦楠, 梁颖. BnMAPK2 对甘蓝型油菜耐旱性的影响[J]. 作物学报, 2023, 49(6): 1518-1531.
[10] 杨一丹, 何督, 刘静, 张岩, 陈飞志, 巫燕飞, 杜雪竹. 寄主诱导的基因沉默干扰核盘菌致病基因OAH在甘蓝型油菜抗菌核病中的应用[J]. 作物学报, 2023, 49(6): 1542-1550.
[11] 余新颖, 王春云, 李大双, 王宗铠, 蒯婕, 汪波, 王晶, 徐正华, 周广生. 高产油菜品种稳产性形成机制[J]. 作物学报, 2023, 49(6): 1601-1615.
[12] 徐冉, 陈松, 徐春梅, 刘元辉, 章秀福, 王丹英, 褚光. 施氮量对籼粳杂交稻甬优1540产量和氮肥利用效率的影响及其机制[J]. 作物学报, 2023, 49(6): 1630-1642.
[13] 张振博, 贾春兰, 任佰朝, 刘鹏, 赵斌, 张吉旺. 氮磷配施对夏玉米产量和叶片衰老特性的影响[J]. 作物学报, 2023, 49(6): 1616-1629.
[14] 雷新慧, 冷佳俊, 陶金才, 万晨茜, 吴怡欣, 王家乐, 王鹏科, 冯佰利, 王孟, 高金锋. 叶面喷施亚硒酸钠对甜荞光合特性、产量及硒积累效应的影响[J]. 作物学报, 2023, 49(6): 1678-1689.
[15] 陶玥玥, 盛雪雯, 徐坚, 沈园, 王海候, 陆长婴, 沈明星. 长三角水稻-油菜周年两熟温光资源分配与利用特征[J]. 作物学报, 2023, 49(5): 1327-1338.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .