欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (6): 1542-1550.doi: 10.3724/SP.J.1006.2023.24126

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

寄主诱导的基因沉默干扰核盘菌致病基因OAH在甘蓝型油菜抗菌核病中的应用

杨一丹1(), 何督1, 刘静2, 张岩1, 陈飞志1, 巫燕飞1, 杜雪竹1,*()   

  1. 1湖北大学生命科学学院/省部共建生物催化与酶工程国家重点实验室, 湖北武汉 430062
    2农业农村部油料作物生物学与遗传育种重点实验室, 湖北武汉 430062
  • 收稿日期:2022-05-26 接受日期:2022-10-10 出版日期:2023-06-12 网络出版日期:2022-10-31
  • 通讯作者: *杜雪竹, E-mail: duxuezhusk@163.com
  • 作者简介:E-mail: duxuezhusk@163.com
  • 基金资助:
    农业农村部油料作物生物学与遗传育种重点实验室开放课题基金(KF2022001);国家自然科学基金项目(31771837)

Application of host-induced gene silencing interfering with Sclerotinia sclerotiorum pathogenic gene OAH in Brassica napus resistance to Sclerotinia sclerotiorum

YANG Yi-Dan1(), HE Du1, LIU Jing2, ZHANG Yan1, CHEN Fei-Zhi1, WU Yan-Fei1, DU Xue-Zhu1,*()   

  1. 1School of Life Sciences, Hubei University/State Key Laboratory of Biocatalysis and Enzyme Engineering, Wuhan 430062, Hubei, China
    2Key Laboratory of Biology and Genetics and Breeding of Oil Crops, Ministry of Agriculture and Rural Affairs, Hubei University, Wuhan 430062, Hubei, China
  • Received:2022-05-26 Accepted:2022-10-10 Published:2023-06-12 Published online:2022-10-31
  • Contact: *E-mail: duxuezhusk@163.com
  • Supported by:
    Open Project Foundation of Key Laboratory of Oil Crop Biology and Genetics and Breeding of the Ministry of Agriculture and Rural Affairs(KF2022001);National Natural Science Foundation of China(31771837)

摘要:

油菜是我国第一大油料作物, 菌核病是我国油菜面临的主要病害之一。本试验利用HIGS技术将核盘菌中关键致病基因SS1G_08218 (OAH)的干扰片段转化到甘蓝型油菜中, 获得含有siRNA的转基因油菜植株, 研究HIGS介导的SsOAH基因沉默对油菜抗菌核病的影响。接种核盘菌后的抗病鉴定结果表明, SS.OAH.RNAi转基因油菜植株对核盘菌抗性增强; R18、R25和R36株系叶片接菌后病斑部位核盘菌菌丝内的OAH基因表达量均低于野生型, 证明siRNA在转基因油菜中成功表达; 在添加了转基因油菜叶片提取物的培养基上培养的核盘菌扩展面积显著小于野生型, 分别降低35.29%、21.98%、31.53%, 且菌丝生长显著迟缓, 扩展长度较短, 分支少, 生长过程中发生断裂, 生长异常, 将其接种于正常的野生型油菜后, 其致病力明显下降; 对转基因油菜叶片接种核盘菌后观察发现, 叶片上的菌丝扩展较为稀疏, 生长受阻, 侵染垫形成受到抑制, 暗示在油菜中表达OAH 基因的干扰片段影响了菌丝生长和扩展; 进一步检测其病斑组织中的草酸含量发现, 接菌36 h、48 h后转基因油菜病斑组织中的草酸含量为391 μg g-1、446 μg g-1, 与野生型相比分别减少54 μg g-1、32 μg g-1。这一研究表明在油菜中表达核盘菌OAH的干扰片段能够降低核盘菌侵染时草酸的积累, 从而增强转基因油菜对核盘菌的抗性水平。本试验利用HIGS技术研究了干扰核盘菌关键致病基因OAH增强油菜对核盘菌的抗性, 为选育油菜抗菌核病品种提供理论基础和种质资源。

关键词: 甘蓝型油菜, 核盘菌, HIGS, 草酰乙酸乙酰水解酶, 草酸

Abstract:

Rapeseed is the largest oil crop in China, and Sclerotinia sclerotiorum is one of the main diseases of rapeseed in China. In this experiment, to study the effect of HIGS-mediated SsOAH gene silencing on the resistance to S. sclerotiorum in Brassica napus, the interference fragment of the key pathogenic gene SS1G_08218 (OAH) in S. sclerotiorum was transformed into Brassica napus by HIGS technique, and the transgenic plants containing siRNA were obtained. The results of disease resistance identification after inoculation with S. sclerotiorum showed that the resistance of SS.OAH.RNAi transgenic rapeseed plants to S. sclerotiorum was enhanced, and the relative expression levels of OAH genes in S. sclerotiorum mycelia of R18, R25, and R36 lines were lower than wild type, indicating that siRNA was successfully expressed in transgenic rapeseed. The lesion size of S. sclerotiorum cultured on the medium supplemented with transgenic rapeseed leaf extract was significantly smaller than wild type, which decreased by 35.29%, 21.98%, and 31.53% respectively. The mycelium grew slowly, the expansion length was shorter, the branches were few, and the growth was abnormal. After inoculating it into normal wild type rapeseed, its pathogenicity decreased significantly. After inoculating the transgenic rapeseed leaves with S. sclerotiorum, it was observed that the mycelium expansion on the leaves was sparse, the growth was blocked, and the infection pad formation was inhibited, suggesting that the interference fragments expressing OAH gene in rapeseed affected the mycelium growth and expansion. Compared with the wild type, the content of oxalic acid in the lesion tissue of transgenic rapeseed was 391 μg g-1 and 446 μg g-1 at 36 hpi and 48 hpi, which decreased 54 μg g-1 and 32 μg g-1, respectively. This study showed that the interference fragment expressing S. sclerotiorum OAH in rapeseed could reduce the accumulation of oxalic acid during S. sclerotiorum infection and enhance the resistance level of transgenic rapeseed to S. sclerotiorum. In this experiment, HIGS technique was used to improve resistance to S. sclerotiorum by transforming interference fragments of OAH gene in rapeseed, and to provide a theoretical basis and germplasm resources for breeding S. sclerotiorum resistant varieties.

Key words: Brassica napus, Sclerotinia sclerotiorum, HIGS, oxalyl acetate acetylhydrolase, oxalic acid

表1

Buffer提取液配制"

试剂
Reagent
相对分子质量
Relative molecular weight (g mol-1)
浓度
Concentration (mmol L-1)
配制1000 mL
Formulated 1000 mL
MES 195.24 50 9.762
Triscl 121.14 100 12.114
EDTA 372.24 0.1 0.037,224
NaCl 58.44 30 1.7532

图1

核盘菌侵染野生型油菜后相关致病基因的表达情况"

图2

OAH干扰终载体菌落PCR检测 M: DL2000; 1~8: 菌落PCR片段。"

图3

T2代SS.OAH.RNAi转基因植株部分阳性鉴定凝胶电泳图 M: Trans 2K; WT: 阴性对照。"

图4

T2代SS.OAH.RNAi 转基因油菜株系离体叶片接菌36 h病斑面积统计图 WT: 野生甘蓝型油菜; R25、R36、R18为T2代SS.OAH.RNAi转基因株系材料。"

图5

T2代SS.OAH.RNAi转基因油菜株系茎秆接菌4 d病斑统计图 WT: 野生甘蓝型油菜; R25、R36、R18为T2代SS.OAH.RNAi转基因株系材料。"

图6

T2代SS.OAH.RNAi转基因油菜叶片接菌后病斑部位核盘菌菌丝内OAH基因的表达模式分析 WT: 野生甘蓝型油菜; R25、R36、R18为T2代SS.OAH.RNAi转基因株系材料。"

图7

油菜叶片提取物培养核盘菌抗性鉴定 WT: 野生甘蓝型油菜; R25、R36、R18为T2代SS.OAH.RNAi转基因株系材料。Mock: PDA培养基培养的核盘菌; A:添加提取物的PDA培养基培养核盘菌40 h后的菌丝扩展面积统计; B: 标尺为1 cm; B1: 无添加萃取液的PDA活化的菌丝; B2: 添加了野生型油菜叶片萃取液活化的核盘菌; B3~B5为添加了SS.OAH.RNAi转基因油菜(R18、R25、R36)叶片萃取液活化的核盘菌; B6~B10: 分别对应图B1~B5在体视显微镜下观察到的核盘菌菌丝生长情况; C: 野生型油菜与转基因油菜(R18、R25、R36)叶片提取物制成的培养基培养的核盘菌菌丝接种于野生型油菜后48 h的病斑扩展情况, 标尺为2 cm。"

图8

棉蓝染色观察油菜叶片接菌情况 WT: 野生甘蓝型油菜; R25、R36、R18为T2代SS.OAH.RNAi转基因株系材料。"

图9

T2代SS.OAH.RNAi转基因植株叶片病斑部位草酸含量测定 字母表示具有统计学意义的差异值, 基于P < 0.05的单因素方差分析。"

[1] 李慧, 文李, 刘凯, 官春云. 油菜抗菌核病机制研究进展. 作物研究, 2015, 29(1): 84-90.
Li H, Wen L, Liu K, Guan C Y. Research progress on resistance mechanism of Brassica napus to Sclerotinia sclerotiorum. Crop Res, 2015, 29(1): 84-90. (in Chinese with English abstract)
[2] Liang X, Rollins J A. Mechanisms of broad host range necrotrophic pathogenesis in Sclerotinia sclerotiorum. Phytopathology, 2018, 108: 1128-1140.
doi: 10.1094/PHYTO-06-18-0197-RVW
[3] 吴健, 周永明, 王幼平. 油菜与核盘菌互作分子机理研究进展. 中国油料作物学报, 2018, 40: 721-729.
Wu J, Zhou Y M, Wang Y P. Research progress on molecular mechanisms of Brassica napus Sclerotinia sclerotiorum interaction. Chin Oil Crop Sci, 2018, 40: 721-729. (in Chinese with English abstract)
[4] 杨清坡, 刘万才, 黄冲. 近10年油菜主要病虫害发生危害情况的统计和分析. 植物保护, 2018, 44(3): 24-30.
Yang Q P, Liu W C, Huang C. Statistics and analysis of oilseed rape losses caused by main diseases and insect pests in recent 10 years. Plant Prot Sci, 2018, 44(3): 24-30. (in Chinese with English abstract)
[5] Wu J, Zhao Q, Yang Q, Liu H, Li Q Y, Yi X Q, Cheng Y, Guo L, Fan C C, Zhou Y Z. Comparative transcriptomic analysis uncovers the complexgenetic network for resistance to Sclerotinia sclerotiorum in Brassica napus. Sci Rep, 2016, 6: 19007.
doi: 10.1038/srep19007
[6] Adams P B, Ayers W A. Ecology of Sclerotinia species. Phytopathology, 1979, 69: 896-896.
doi: 10.1094/Phyto-69-896
[7] Willetts H J, Wong J. The biology of Sclerotinia sclerotiorum, S. trifoliorum and S. minor with emphasis on specific nomenclature. Bot Rev, 1980, 46: 101-165.
doi: 10.1007/BF02860868
[8] Godoy G, Steadman J R, Dickman M B, Dam R. Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris. Mol Plant Pathol, 1990, 37: 179-191.
doi: 10.1111/radm.2007.37.issue-3
[9] Liang Y, Strelkov S E, Kav N N V. Oxalic acid-mediated stress responses in Brassica napus L. Proteomics, 2010, 9: 3156-3173.
doi: 10.1002/pmic.200800966
[10] Williams B, Kabbage M, Kim H J, Britt R, Dickman M B. Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment. PLoS Pathog, 2011, 7: e1002107.
[11] Heller A, Witt G T. Oxalic acid has an additional. detoxifying function in Sclerotinia sclerotiorum pathogenesis. PLoS One, 2013, 8: e72292.
doi: 10.1371/journal.pone.0072292
[12] Riou C, Freyssinet G, Fevre M. Production of cell wall-degrading enzymes by the phytopathogenic fungus Sclerotinia sclerotiorum. Appl Environ Microb, 1991, 57:1478-1484.
doi: 10.1128/aem.57.5.1478-1484.1991 pmid: 16348487
[13] Evans M V D, Christine S. Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can J Microbiol, 1996, 42: 881-895.
doi: 10.1139/m96-114
[14] Derbyshire M, Mbengue M, Barascud M, Navaud O, Raffaele S. Small RNAs from the plant pathogenic fungus Sclerotinia sclerotiorum highlight host candidate genes associated with quantitative disease resistance. Mol Plant Pathol, 2019, 20: 1279-1297.
doi: 10.1111/mpp.12841 pmid: 31361080
[15] Wu J, Zhao Q, Yang Q, Liu H, Li Q, Yi X, Cheng Y, Guo L, Fan C, Zhou Y. Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus. Sci Rep, 2016, 6: 19007-19022.
doi: 10.1038/srep19007
[16] Xu J, Wang X, Li Y, Zeng J, Wang G, Deng C, Guo W. Host-induced gene silencing of a regulator of G protein signalling gene (VdRGS1) confers resistance to Verticillium wilt in cotton. Plant Biotechnol J, 2018, 16: 1629-1643.
doi: 10.1111/pbi.2018.16.issue-9
[17] Nowara D, Gay A, Lacomme C, Shaw J, Ridout C, Douchkov D, Hensel G, Kumlehn J, Schweizer P. HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell, 2010, 22: 3130-3141.
doi: 10.1105/tpc.110.077040
[18] Yin C, Jurgenson J E, Hulbert S H. Development of a host-induced rnai system in the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Mol Plant Microbe Interact, 2011, 24: 554-561.
doi: 10.1094/MPMI-10-10-0229
[19] Zhu L, Zhu J, Liu Z, Wang Z, Zhou C, Wang H. Host-induced gene silencing of rice blast fungus Magnaporthe oryzae pathogenicity genes mediated by the brome mosaic virus. Genes, 2017, 8: 241.
doi: 10.3390/genes8100241
[20] McCaghey M, Shao D, Kurcezewski J, Lindstrom A, Ranjan A, Whitham S A, Conley S P, Williams B, Smith D L, Kabbage M. Host-induced gene silencing of a Sclerotinia sclerotiorum oxaloacetate acetylhydrolase using bean pod mottle virus as a vehicle reduces disease on soybean. Front Plant Sci, 2021, 12: 677631.
doi: 10.3389/fpls.2021.677631
[21] Rana K, Yuan J, Liao H, Banga S S, Kumar R, Qian W, Ding Y. Host-induced gene silencing reveals the role of Sclerotinia sclerotiorum oxaloacetate acetylhydrolase gene in fungal oxalic acid accumulation and virulence. Microbiol Res, 2022, 258: 126981.
doi: 10.1016/j.micres.2022.126981
[22] Nakayashiki H, Nguyen Q B. RNA interference: roles in fungal biology. Curr Opin Microbiol, 2008, 11: 494-502.
doi: 10.1016/j.mib.2008.10.001 pmid: 18955156
[23] Spiering M J, Moon C D, Wilkinson H H, Schardl C L. Gene clusters for insecticidal loline alkaloids in the grass-endophytic fungus Neotyphodium uncinatum. Genetics, 2005, 169: 1403-1414.
pmid: 15654104
[1] 唐玉凤, 姚敏, 何昕, 官梅, 刘忠松, 官春云, 钱论文. 甘蓝型油菜SGR基因家族的全基因组鉴定与功能分析[J]. 作物学报, 2023, 49(7): 1829-1842.
[2] 袁大双, 张晓莉, 朱冬鸣, 杨友鸿, 姚梦楠, 梁颖. BnMAPK2 对甘蓝型油菜耐旱性的影响[J]. 作物学报, 2023, 49(6): 1518-1531.
[3] 杨太桦, 杨福权, 郜耿东, 殷帅, 金庆东, 徐林珊, 蒯婕, 汪波, 徐正华, 葛贤宏, 王晶, 周广生. 初步探究LncRNA在甘蓝型油菜生态型分化中的作用[J]. 作物学报, 2023, 49(5): 1197-1210.
[4] 张盈川, 吴晓明玉, 陶保龙, 陈丽, 鲁海琴, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-miR43-FBXL调控模块参与甘蓝型油菜铝胁迫的功能分析[J]. 作物学报, 2023, 49(5): 1211-1221.
[5] 陈慧, 肖清, 汪华栋, 文静, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 易斌. 甘蓝型油菜SUMO蛋白家族成员鉴定及Bna.SUMO1.C08基因的功能研究[J]. 作物学报, 2023, 49(4): 917-925.
[6] 陈晓汉, 王丽琴, 汪华栋, 肖清, 陶保龙, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. BnABCI8影响甘蓝型油菜叶绿体发育[J]. 作物学报, 2023, 49(4): 893-905.
[7] 柏成成, 姚小尧, 王雨璐, 王赛玉, 李金莹, 蒋有为, 靳舒荣, 陈春杰, 刘渔, 魏星玥, 徐新福, 李加纳, 倪郁. 甘蓝型油菜长链烷烃合成相关基因的克隆及其与BnCER1-2的互作[J]. 作物学报, 2023, 49(4): 1016-1027.
[8] 王珍, 张晓莉, 刘淼, 姚梦楠, 孟晓静, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1超量表达及中油821的转录差异表达分析[J]. 作物学报, 2023, 49(3): 856-868.
[9] 张文宣, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 利用CRISPR/Cas9技术突变BnaMPK6基因降低甘蓝型油菜的耐盐性[J]. 作物学报, 2023, 49(2): 321-331.
[10] 张超, 杨博, 张立源, 肖忠春, 刘景森, 马晋齐, 卢坤, 李加纳. 基于QTL定位和全基因组关联分析挖掘甘蓝型油菜收获指数相关位点[J]. 作物学报, 2022, 48(9): 2180-2195.
[11] 张天宇, 王越, 刘影, 周婷, 岳彩鹏, 黄进勇, 华营鹏. 油菜脯氨酸代谢基因家族的生物信息学分析与核心成员鉴定[J]. 作物学报, 2022, 48(8): 1977-1995.
[12] 李胜婷, 徐远芳, 常玮, 刘亚俊, 谷嫄, 朱红, 李加纳, 卢坤. Bna.C02SWEET15通过光周期途径正向调控油菜开花时间[J]. 作物学报, 2022, 48(8): 1938-1947.
[13] 戴丽诗, 常玮, 张赛, 钱明超, 黎小东, 张凯, 李加纳, 曲存民, 卢坤. Bna-novel-miR36421调节拟南芥株型和花器官发育的功能验证[J]. 作物学报, 2022, 48(7): 1635-1644.
[14] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[15] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .