作物学报 ›› 2023, Vol. 49 ›› Issue (6): 1542-1550.doi: 10.3724/SP.J.1006.2023.24126
杨一丹1(), 何督1, 刘静2, 张岩1, 陈飞志1, 巫燕飞1, 杜雪竹1,*()
YANG Yi-Dan1(), HE Du1, LIU Jing2, ZHANG Yan1, CHEN Fei-Zhi1, WU Yan-Fei1, DU Xue-Zhu1,*()
摘要:
油菜是我国第一大油料作物, 菌核病是我国油菜面临的主要病害之一。本试验利用HIGS技术将核盘菌中关键致病基因SS1G_08218 (OAH)的干扰片段转化到甘蓝型油菜中, 获得含有siRNA的转基因油菜植株, 研究HIGS介导的SsOAH基因沉默对油菜抗菌核病的影响。接种核盘菌后的抗病鉴定结果表明, SS.OAH.RNAi转基因油菜植株对核盘菌抗性增强; R18、R25和R36株系叶片接菌后病斑部位核盘菌菌丝内的OAH基因表达量均低于野生型, 证明siRNA在转基因油菜中成功表达; 在添加了转基因油菜叶片提取物的培养基上培养的核盘菌扩展面积显著小于野生型, 分别降低35.29%、21.98%、31.53%, 且菌丝生长显著迟缓, 扩展长度较短, 分支少, 生长过程中发生断裂, 生长异常, 将其接种于正常的野生型油菜后, 其致病力明显下降; 对转基因油菜叶片接种核盘菌后观察发现, 叶片上的菌丝扩展较为稀疏, 生长受阻, 侵染垫形成受到抑制, 暗示在油菜中表达OAH 基因的干扰片段影响了菌丝生长和扩展; 进一步检测其病斑组织中的草酸含量发现, 接菌36 h、48 h后转基因油菜病斑组织中的草酸含量为391 μg g-1、446 μg g-1, 与野生型相比分别减少54 μg g-1、32 μg g-1。这一研究表明在油菜中表达核盘菌OAH的干扰片段能够降低核盘菌侵染时草酸的积累, 从而增强转基因油菜对核盘菌的抗性水平。本试验利用HIGS技术研究了干扰核盘菌关键致病基因OAH增强油菜对核盘菌的抗性, 为选育油菜抗菌核病品种提供理论基础和种质资源。
[1] | 李慧, 文李, 刘凯, 官春云. 油菜抗菌核病机制研究进展. 作物研究, 2015, 29(1): 84-90. |
Li H, Wen L, Liu K, Guan C Y. Research progress on resistance mechanism of Brassica napus to Sclerotinia sclerotiorum. Crop Res, 2015, 29(1): 84-90. (in Chinese with English abstract) | |
[2] |
Liang X, Rollins J A. Mechanisms of broad host range necrotrophic pathogenesis in Sclerotinia sclerotiorum. Phytopathology, 2018, 108: 1128-1140.
doi: 10.1094/PHYTO-06-18-0197-RVW |
[3] | 吴健, 周永明, 王幼平. 油菜与核盘菌互作分子机理研究进展. 中国油料作物学报, 2018, 40: 721-729. |
Wu J, Zhou Y M, Wang Y P. Research progress on molecular mechanisms of Brassica napus Sclerotinia sclerotiorum interaction. Chin Oil Crop Sci, 2018, 40: 721-729. (in Chinese with English abstract) | |
[4] | 杨清坡, 刘万才, 黄冲. 近10年油菜主要病虫害发生危害情况的统计和分析. 植物保护, 2018, 44(3): 24-30. |
Yang Q P, Liu W C, Huang C. Statistics and analysis of oilseed rape losses caused by main diseases and insect pests in recent 10 years. Plant Prot Sci, 2018, 44(3): 24-30. (in Chinese with English abstract) | |
[5] |
Wu J, Zhao Q, Yang Q, Liu H, Li Q Y, Yi X Q, Cheng Y, Guo L, Fan C C, Zhou Y Z. Comparative transcriptomic analysis uncovers the complexgenetic network for resistance to Sclerotinia sclerotiorum in Brassica napus. Sci Rep, 2016, 6: 19007.
doi: 10.1038/srep19007 |
[6] |
Adams P B, Ayers W A. Ecology of Sclerotinia species. Phytopathology, 1979, 69: 896-896.
doi: 10.1094/Phyto-69-896 |
[7] |
Willetts H J, Wong J. The biology of Sclerotinia sclerotiorum, S. trifoliorum and S. minor with emphasis on specific nomenclature. Bot Rev, 1980, 46: 101-165.
doi: 10.1007/BF02860868 |
[8] |
Godoy G, Steadman J R, Dickman M B, Dam R. Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris. Mol Plant Pathol, 1990, 37: 179-191.
doi: 10.1111/radm.2007.37.issue-3 |
[9] |
Liang Y, Strelkov S E, Kav N N V. Oxalic acid-mediated stress responses in Brassica napus L. Proteomics, 2010, 9: 3156-3173.
doi: 10.1002/pmic.200800966 |
[10] | Williams B, Kabbage M, Kim H J, Britt R, Dickman M B. Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment. PLoS Pathog, 2011, 7: e1002107. |
[11] |
Heller A, Witt G T. Oxalic acid has an additional. detoxifying function in Sclerotinia sclerotiorum pathogenesis. PLoS One, 2013, 8: e72292.
doi: 10.1371/journal.pone.0072292 |
[12] |
Riou C, Freyssinet G, Fevre M. Production of cell wall-degrading enzymes by the phytopathogenic fungus Sclerotinia sclerotiorum. Appl Environ Microb, 1991, 57:1478-1484.
doi: 10.1128/aem.57.5.1478-1484.1991 pmid: 16348487 |
[13] |
Evans M V D, Christine S. Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can J Microbiol, 1996, 42: 881-895.
doi: 10.1139/m96-114 |
[14] |
Derbyshire M, Mbengue M, Barascud M, Navaud O, Raffaele S. Small RNAs from the plant pathogenic fungus Sclerotinia sclerotiorum highlight host candidate genes associated with quantitative disease resistance. Mol Plant Pathol, 2019, 20: 1279-1297.
doi: 10.1111/mpp.12841 pmid: 31361080 |
[15] |
Wu J, Zhao Q, Yang Q, Liu H, Li Q, Yi X, Cheng Y, Guo L, Fan C, Zhou Y. Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus. Sci Rep, 2016, 6: 19007-19022.
doi: 10.1038/srep19007 |
[16] |
Xu J, Wang X, Li Y, Zeng J, Wang G, Deng C, Guo W. Host-induced gene silencing of a regulator of G protein signalling gene (VdRGS1) confers resistance to Verticillium wilt in cotton. Plant Biotechnol J, 2018, 16: 1629-1643.
doi: 10.1111/pbi.2018.16.issue-9 |
[17] |
Nowara D, Gay A, Lacomme C, Shaw J, Ridout C, Douchkov D, Hensel G, Kumlehn J, Schweizer P. HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell, 2010, 22: 3130-3141.
doi: 10.1105/tpc.110.077040 |
[18] |
Yin C, Jurgenson J E, Hulbert S H. Development of a host-induced rnai system in the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Mol Plant Microbe Interact, 2011, 24: 554-561.
doi: 10.1094/MPMI-10-10-0229 |
[19] |
Zhu L, Zhu J, Liu Z, Wang Z, Zhou C, Wang H. Host-induced gene silencing of rice blast fungus Magnaporthe oryzae pathogenicity genes mediated by the brome mosaic virus. Genes, 2017, 8: 241.
doi: 10.3390/genes8100241 |
[20] |
McCaghey M, Shao D, Kurcezewski J, Lindstrom A, Ranjan A, Whitham S A, Conley S P, Williams B, Smith D L, Kabbage M. Host-induced gene silencing of a Sclerotinia sclerotiorum oxaloacetate acetylhydrolase using bean pod mottle virus as a vehicle reduces disease on soybean. Front Plant Sci, 2021, 12: 677631.
doi: 10.3389/fpls.2021.677631 |
[21] |
Rana K, Yuan J, Liao H, Banga S S, Kumar R, Qian W, Ding Y. Host-induced gene silencing reveals the role of Sclerotinia sclerotiorum oxaloacetate acetylhydrolase gene in fungal oxalic acid accumulation and virulence. Microbiol Res, 2022, 258: 126981.
doi: 10.1016/j.micres.2022.126981 |
[22] |
Nakayashiki H, Nguyen Q B. RNA interference: roles in fungal biology. Curr Opin Microbiol, 2008, 11: 494-502.
doi: 10.1016/j.mib.2008.10.001 pmid: 18955156 |
[23] |
Spiering M J, Moon C D, Wilkinson H H, Schardl C L. Gene clusters for insecticidal loline alkaloids in the grass-endophytic fungus Neotyphodium uncinatum. Genetics, 2005, 169: 1403-1414.
pmid: 15654104 |
[1] | 唐玉凤, 姚敏, 何昕, 官梅, 刘忠松, 官春云, 钱论文. 甘蓝型油菜SGR基因家族的全基因组鉴定与功能分析[J]. 作物学报, 2023, 49(7): 1829-1842. |
[2] | 袁大双, 张晓莉, 朱冬鸣, 杨友鸿, 姚梦楠, 梁颖. BnMAPK2 对甘蓝型油菜耐旱性的影响[J]. 作物学报, 2023, 49(6): 1518-1531. |
[3] | 杨太桦, 杨福权, 郜耿东, 殷帅, 金庆东, 徐林珊, 蒯婕, 汪波, 徐正华, 葛贤宏, 王晶, 周广生. 初步探究LncRNA在甘蓝型油菜生态型分化中的作用[J]. 作物学报, 2023, 49(5): 1197-1210. |
[4] | 张盈川, 吴晓明玉, 陶保龙, 陈丽, 鲁海琴, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-miR43-FBXL调控模块参与甘蓝型油菜铝胁迫的功能分析[J]. 作物学报, 2023, 49(5): 1211-1221. |
[5] | 陈慧, 肖清, 汪华栋, 文静, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 易斌. 甘蓝型油菜SUMO蛋白家族成员鉴定及Bna.SUMO1.C08基因的功能研究[J]. 作物学报, 2023, 49(4): 917-925. |
[6] | 陈晓汉, 王丽琴, 汪华栋, 肖清, 陶保龙, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. BnABCI8影响甘蓝型油菜叶绿体发育[J]. 作物学报, 2023, 49(4): 893-905. |
[7] | 柏成成, 姚小尧, 王雨璐, 王赛玉, 李金莹, 蒋有为, 靳舒荣, 陈春杰, 刘渔, 魏星玥, 徐新福, 李加纳, 倪郁. 甘蓝型油菜长链烷烃合成相关基因的克隆及其与BnCER1-2的互作[J]. 作物学报, 2023, 49(4): 1016-1027. |
[8] | 王珍, 张晓莉, 刘淼, 姚梦楠, 孟晓静, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1超量表达及中油821的转录差异表达分析[J]. 作物学报, 2023, 49(3): 856-868. |
[9] | 张文宣, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 利用CRISPR/Cas9技术突变BnaMPK6基因降低甘蓝型油菜的耐盐性[J]. 作物学报, 2023, 49(2): 321-331. |
[10] | 张超, 杨博, 张立源, 肖忠春, 刘景森, 马晋齐, 卢坤, 李加纳. 基于QTL定位和全基因组关联分析挖掘甘蓝型油菜收获指数相关位点[J]. 作物学报, 2022, 48(9): 2180-2195. |
[11] | 张天宇, 王越, 刘影, 周婷, 岳彩鹏, 黄进勇, 华营鹏. 油菜脯氨酸代谢基因家族的生物信息学分析与核心成员鉴定[J]. 作物学报, 2022, 48(8): 1977-1995. |
[12] | 李胜婷, 徐远芳, 常玮, 刘亚俊, 谷嫄, 朱红, 李加纳, 卢坤. Bna.C02SWEET15通过光周期途径正向调控油菜开花时间[J]. 作物学报, 2022, 48(8): 1938-1947. |
[13] | 戴丽诗, 常玮, 张赛, 钱明超, 黎小东, 张凯, 李加纳, 曲存民, 卢坤. Bna-novel-miR36421调节拟南芥株型和花器官发育的功能验证[J]. 作物学报, 2022, 48(7): 1635-1644. |
[14] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[15] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
|