欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (5): 1211-1221.doi: 10.3724/SP.J.1006.2023.24079

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

Bna-miR43-FBXL调控模块参与甘蓝型油菜铝胁迫的功能分析

张盈川1(), 吴晓明玉1, 陶保龙1, 陈丽1,2, 鲁海琴1, 赵伦1, 文静1, 易斌1, 涂金星1, 傅廷栋1, 沈金雄1,*()   

  1. 1华中农业大学作物遗传改良全国重点实验室/国家油菜工程技术研究中心, 湖北武汉 430070
    2长江师范学院现代农业与生物工程学院, 重庆 408100
  • 收稿日期:2022-04-02 接受日期:2022-07-21 出版日期:2023-05-12 网络出版日期:2022-08-19
  • 通讯作者: *沈金雄, E-mail: jxshen@mail.hzau.edu.cn
  • 作者简介:E-mail: yczhang612@163.com
  • 基金资助:
    国家自然科学基金项目(31871654)

Functional analysis of Bna-miR43-FBXL regulatory module involved in aluminum stress in Brassica napus

ZHANG Ying-Chuan1(), WU Xiao-Ming-Yu1, TAO Bao-Long1, CHEN Li1,2, LU Hai-Qin1, ZHAO Lun1, WEN Jing1, YI Bin1, TU Jing-Xing1, FU Ting-Dong1, SHEN Jin-Xiong1,*()   

  1. 1National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, Hubei, China,
    2School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, China
  • Received:2022-04-02 Accepted:2022-07-21 Published:2023-05-12 Published online:2022-08-19
  • Contact: *E-mail: jxshen@mail.hzau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31871654)

摘要:

在酸性土壤中, 铝是制约作物生长和产量的一个重要因素, 如何利用酸性土地意义重大。本研究的对象是前期本课题鉴定到的一个未被报道的miRNA——Bna-miR43。系统地对甘蓝型油菜中Bna-miR43及其靶基因进行生物信息学分析以及表达模式鉴定, 并构建Bna-miR43过表达载体探讨了Bna-miR43-FBXL模块在甘蓝型油菜响应铝胁迫的分子机制。5°-RACE结果表明Bna-miR43在甘蓝型油菜中真实切割BnaA09g03940DBnaCnng24950D。生物信息学分析表明, BnaA09g03940DBnaCnng24950D在拟南芥中的同源基因为AT5G27950, 编码含F-box的E3泛素连接酶。qRT-PCR结果显示, Bna-miR43及其靶基因在甘蓝型油菜不同组织以及铝胁迫瞬时处理下的表达水平存在此消彼长的现象。油菜转基因试验表明, Bna-miR43的过表达株系地上部分长势良好, 体内积累了较少的MDA和H2O2, 同时转基因植株根系的铝积累量较对照少。本研究结果为甘蓝型油菜中铝胁迫响应提供参考。

关键词: 甘蓝型油菜, Bna-miR43, F-box, 铝胁迫

Abstract:

Aluminum is one of the main factors that limited crop growth and yield in acid soil and how to utilize acid soil is of great significance. This study is based on Bna-miR43, an unreported miRNA identified in the previous study. We analyzed the molecular characteristics, conserved structure, phylogenetic analysis, and the expression level of Bna-miR43 and its target genes in Brassica napus. The Bna-miR43 over expression vector was constructed to explore the molecular mechanism of Bna-miR43- FBXL module in Brassica napus in aluminum stress. 5'-RACE showed that Bna-miR43 actually cleaved BnaA09g03940D and BnaCnng24950D. Bioinformatics analysis revealed that the homologous gene of BnaA09g03940D and BnaCnng24950D in Arabidopsis was AT5G27950, encoding E3 ubiquitin ligase contained F-box. The qRT-PCR indicated that the relative expression levels of Bna-miR43 and its target genes had a phenomenon of trade-off in different tissues of Brassica napus and under transient treatment of aluminum stress. Aluminum treatment showed that the entire aerial part of the transgenic plant grew much better than control and accumulated less MDA and H2O2. Meanwhile, the aluminum accumulation in the root of transgenic plants was less than the control. In this study, these results may provide reference for the response of aluminum stress in Brassica napus.

Key words: Brassica napus L., Bna-miR43, F-box, aluminum stress

附表1

Bna-miR43的前体和成熟体序列"

Bna-miR43 序列 Sequence (5°-3°)
前体序列
Precursor sequence
AGTTTAGGTCGAAGATTGGAACATTGGGACCGTGCCCTATTACAAACTTACACACATTGCAAGCATATTTCTATGCTCATACATATGATCAATATAGCCTTCTATCTTAAGTCAAGTATTGTATAATTTAATTTTGTTATACACTAATTTAGATCATGAAGAGTCTGGATTTTTAGTTTTTTTTTCTACAAT
成熟体序列
Mature sequence
GAAGATTGGAACATTGGGACC

图1

Bna-miR43前体结构预测图 箭头所指处为Bna-miR43成熟体序列。"

表1

Bna-miR43降解组预测靶基因情况概述"

靶基因
Target gene
拟南芥同源基因
Arabidopsis homologous gene
靶基因功能
Function of target genes
类别
Category
BnaA09g03940D AT5G27920 F-box蛋白家族 F-box family protein 0
BnaCnng24950D AT5G27920 F-box蛋白家族 F-box family protein 0
BnaA06g06260D AT5G27920 F-box蛋白家族 F-box family protein 0
BnaC05g08010D AT5G27920 F-box蛋白家族 F-box family protein 0

图2

RLM-RACE验证靶基因定向切割位点 图中箭头表示切割位点, 数字表示挑斑克隆验证目标mRNA切割位点的克隆频率。"

图3

油菜靶基因和拟南芥同源基因序列比对结果"

图4

油菜FBXL基因家族进化分析 A: 油菜FBXL基因家族系统发育进化树; B: F-box家族的基因结构与motif。"

图5

FBXL亚族基因序列同一性分析"

图6

Bna-miR43及其靶基因在甘蓝型油菜不同组织中的表达分析 每次试验3次生物学重复, 3次技术重复。*和**分别表示显著水平(P < 0.05)与极显著水平(P < 0.01)。"

图7

Bna-miR43及其靶基因表达量分析 A: 铝胁迫下甘蓝型油菜J572中Bna-miR43及其靶基因的表达模式; B: 过表达Bna-miR43转基因油菜基因表达量分析。每次试验3次生物学重复, 3次技术重复。*和**分别表示显著水平(P < 0.05)与极显著水平(P < 0.01)。"

图8

铝处理J572和Bna-miR43过表达转基因植株表型鉴定 A: 未进行铝处理油菜植株地上部分表型分析; B: 铝处理后的油菜植株地上部分表型分析, 随机取5株同一株系不同油菜植株的倒一叶照相, 其中地上部分表型图标尺为5 cm, 倒一叶图标尺为2 cm; C: 苏木精染色鉴定根中铝分布。-Al3+: J572在0.5 mmol L-1 CaCl2 (pH 4.5)的培养液中培养1周后, 使用苏木精染色, 体式显微镜观察拍照。+Al3+: 转基因油菜与J572在0.5 mmol L-1 CaCl2, 300 μmol L-1 AlCl3 (pH 4.5)培养液中处理1周后, 使用苏木精染色, 体式显微镜观察照相, 左侧图标尺为1 mm, 右侧图标尺为0.5 mm。"

图9

过表达Bna-miR43油菜根系铝胁迫后生理生化指标分析 A: 过表达Bna-miR43油菜根系铝胁迫后MDA含量分析; B: 过表达Bna-miR43油菜根系铝胁迫后过氧化氢含量分析。每次试验3次生物学重复, 3次技术重复。*和**分别表示显著水平(P < 0.05)与极显著水平(P < 0.01)。"

图10

Bna-miR43的可能作用途径"

[1] Sade H, Meriga B, Surapu V, Gadi J, Sunita M S L, Suravajhala P, Kishor P B K. Toxicity and tolerance of aluminum in plants: tailoring plants to suit to acid soils. BioMetals, 2016, 29: 187-210.
doi: 10.1007/s10534-016-9910-z pmid: 26796895
[2] 肖厚军, 王正银. 酸性土壤铝毒与植物营养研究进展. 西南农业学报, 2006, 19: 1180-1188.
Xiao H J, Wang Z Y. Advance on study of aluminum toxicity and plant nutrition in acid soils. Southwest China J Agric Sci, 2006, 19: 1180-1188. (in Chinese with English abstract)
[3] Panda S K, Baluška F, Matsumoto H. Aluminum stress signaling in plants. Plant Signal Behav, 2009, 4: 592-597.
doi: 8903 pmid: 19820334
[4] Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn S J, Ryan P R, Delhaize E, Matsumoto H. A wheat gene encoding an aluminum-activated malate transporter. Plant J, 2004, 37: 645-653.
doi: 10.1111/j.1365-313x.2003.01991.x pmid: 14871306
[5] Krill A M, Kirst M, Kochian L V, Buckler E S, Hoekenga O A. Association and linkage analysis of aluminum tolerance genes in maize. PLoS One, 2010, 5: e9958.
doi: 10.1371/journal.pone.0009958
[6] Sharma T, Dreyer I, Kochian L, Piñeros M A. The ALMT family of organic acid transporters in plants and their involvement in detoxification and nutrient security. Front Plant Sci, 2016, 7: 1488.
pmid: 27757118
[7] Bojórquez-Quintal E, Escalante-Magaña C, Echevarría-Machado I, Martínez-Estévez M. Aluminum, a friend or foe of higher plants in acid soils. Front Plant Sci, 2017, 8: 1767.
doi: 10.3389/fpls.2017.01767 pmid: 29075280
[8] Inostroza-Blancheteau C, Rengel Z, Alberdi M, Mora M L, Aquea F, Arce-Johnson P, Reyes-Díaz M. Molecular and physiological strategies to increase aluminum resistance in plants. Mol Biol Rep, 2012, 39: 2069-2079.
doi: 10.1007/s11033-011-0954-4 pmid: 21660471
[9] Li J Y, Liu J, Dong D, Jia X, McCouch S R, Kochian L V. Natural variation underlies alterations in Nramp aluminum transporter (NRAT1) expression and function that play a key role in rice aluminum tolerance. Proc Natl Acad Sci USA, 2014, 111: 6503-6508.
doi: 10.1073/pnas.1318975111
[10] Wu Y, Yang Z, How J, Xu H, Chen L, Li K. Overexpression of a peroxidase gene (AtPrx64) of Arabidopsis thaliana in tobacco improves plant’s tolerance to aluminum stress. Plant Mol Biol, 2017, 95: 157-168.
doi: 10.1007/s11103-017-0644-2
[11] Iuchi S, Koyama H, Iuchi A, Kobayashi Y, Kitabayashi S, Kobayashi Y, Ikka T, Hirayama T, Shinozaki K, Kobayashi M. Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. Proc Natl Acad Sci USA, 2007, 104: 9900-9905.
doi: 10.1073/pnas.0700117104
[12] Sawaki Y, Iuchi S, Kobayashi Y, Ikka T, Sakurai N, Fujita M, Shinozaki K, Shibata D, Kobayashi M, Koyama H. STOP 1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities. Plant Physiol, 2009, 150: 281-294.
doi: 10.1104/pp.108.134700
[13] 鲁海琴, 陈丽, 陈磊, 张盈川, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-Bna-miR311-HSC70-1模块调控甘蓝型油菜响应热胁迫的机制. 作物学报, 2020, 46: 1474-1484.
doi: 10.3724/SP.J.1006.2020.04014
Lu H Q, Chen L, Chen L, Zhang Y C, Wen J, Yi B, Tu J X, Fu T D, Shen J X. Mechanism research of Bna-Bna-miR311-HSC70-1 module regulating heat stress response in Brassica napus L. Acta Agron Sin, 2020, 46: 1474-1484 (in Chinese with English abstract).
[14] Lima J C, Arenhart R A, Margis-Pinheiro M, Margis R. Aluminum triggers broad changes in microRNA expression in rice roots. Genet Mol Res, 2011, 10: 2817-2832.
doi: 10.4238/2011.November.10.4 pmid: 22095606
[15] Zeng Q Y, Yang C Y, Ma Q B, Li X P, Dong W W, Nian H. Identification of wild soybean miRNAs and their target genes responsive to aluminum stress. BMC Plant Biol, 2012, 12: 182.
doi: 10.1186/1471-2229-12-182
[16] He H, He L, Gu M. Role of microRNAs in aluminum stress in plants. Plant Cell Rep, 2014, 33: 831-836.
doi: 10.1007/s00299-014-1565-z pmid: 24413694
[17] 陈丽. 甘蓝型油菜株型及角果长度相关miRNA和靶基因的挖掘. 华中农业大学博士学位论文, 湖北武汉, 2018.
Chen L. The Study of miRNA and Targets Regulate Plant Architecture and Silique Length in Brassica napus L. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2018. (in Chinese with English abstract)
[18] Varkonyi-Gasic E, Wu R, Wood M, Walton E F, Hellens R P. Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods, 2007, 3: 12.
pmid: 17931426
[19] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[20] 金建峰. 番茄两个NAC转录因子响应铝胁迫的功能研究. 浙江大学博士学位论文, 浙江杭州, 2021.
Jin J F. The Study on the Roles of Two NAC Transcription Factors in Response to Aluminum Stress in Tomato. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2021. (in Chinese with English abstract)
[21] Xu K, Wu N, Yao W, Li X, Zhou Y, Li H. The biological function and roles in phytohormone signaling of the F-Box protein in plants. Agronomy, 2021, 11: 2360.
doi: 10.3390/agronomy11112360
[22] Hong M J, Kim J B, Seo Y W, Kim D Y. Regulation of glycosylphosphatidylinositol-anchored protein (GPI-AP) expression by F-Box/LRR-Repeat (FBXL) protein in wheat (Triticum aestivum L.). Plants, 2021, 10: 1606.
doi: 10.3390/plants10081606
[23] Yu Y, Wang P, Bai Y, Wang Y, Liu C, Ni Z. The soybean F-box protein GmFBX176 regulates ABA-mediated responses to drought and salt stress. Environ Exp Bot, 2020, 176: 104056.
doi: 10.1016/j.envexpbot.2020.104056
[24] Zhang Y, Zhang J, Guo J, Zhou F, Singh S, Xu X, Xie Q, Yang Z, Huang C F. F-box protein RAE1 regulates the stability of the aluminum-resistance transcription factor STOP1 in Arabidopsis. Proc Natl Acad Sci USA, 2019, 116: 319-327.
doi: 10.1073/pnas.1814426116 pmid: 30559192
[25] Sawaki Y, Iuchi S, Kobayashi Y, Ikka T, Sakurai N, Fujita M, Shinozaki K, Shibata D, Kobayashi M, Koyama H. STOP1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities. Plant Physiol, 2009, 150: 281-294.
doi: 10.1104/pp.108.134700
[26] Shetty R, Vidya C S N, Prakash N B, Lux A, Vaculik M. Aluminum toxicity in plants and its possible mitigation in acid soils by biochar: a review. Sci Total Environ, 2021, 765: 142744.
doi: 10.1016/j.scitotenv.2020.142744
[27] Bose J, Babourina O, Rengel Z. Role of magnesium in alleviation of aluminium toxicity in plants. J Exp Bot, 2011, 62: 2251-2264.
doi: 10.1093/jxb/erq456 pmid: 21273333
[28] Ohyama Y, Ito H, Kobayashi Y, Ikka T, Morita A, Kobayashi M, Imaizumi R, Aoki T, Komatsu K, Sakata Y, Iuchi S, Koyama H. Characterization of AtSTOP1orthologous genes in tobacco and other plant species. Plant Physiol, 2013, 162: 1937-1946.
doi: 10.1104/pp.113.218958
[29] Sagi M, Fluhr R. Superoxide production by plant homologues of the gp91phox NADPH oxidase. Modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiol, 2001, 126: 1281-1290.
doi: 10.1104/pp.126.3.1281 pmid: 11457979
[30] Daspute A A, Sadhukhan A, Tokizawa M, Kobayashi Y, Panda S K, Koyama H. Transcriptional regulation of aluminum- tolerance genes in higher plants: clarifying the underlying molecular mechanisms. Front Plant Sci, 2017, 8: 1358.
doi: 10.3389/fpls.2017.01358
[1] 杨一丹, 何督, 刘静, 张岩, 陈飞志, 巫燕飞, 杜雪竹. 寄主诱导的基因沉默干扰核盘菌致病基因OAH在甘蓝型油菜抗菌核病中的应用[J]. 作物学报, 2023, 49(6): 1542-1550.
[2] 袁大双, 张晓莉, 朱冬鸣, 杨友鸿, 姚梦楠, 梁 颖. BnMAPK2 对甘蓝型油菜耐旱性的影响[J]. 作物学报, 2023, 49(6): 1518-1531.
[3] 杨太桦, 杨福权, 郜耿东, 殷帅, 金庆东, 徐林珊, 蒯婕, 汪波, 徐正华, 葛贤宏, 王晶, 周广生. 初步探究LncRNA在甘蓝型油菜生态型分化中的作用[J]. 作物学报, 2023, 49(5): 1197-1210.
[4] 陈慧, 肖清, 汪华栋, 文静, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 易斌. 甘蓝型油菜SUMO蛋白家族成员鉴定及Bna.SUMO1.C08基因的功能研究[J]. 作物学报, 2023, 49(4): 917-925.
[5] 陈晓汉, 王丽琴, 汪华栋, 肖清, 陶保龙, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. BnABCI8影响甘蓝型油菜叶绿体发育[J]. 作物学报, 2023, 49(4): 893-905.
[6] 柏成成, 姚小尧, 王雨璐, 王赛玉, 李金莹, 蒋有为, 靳舒荣, 陈春杰, 刘渔, 魏星玥, 徐新福, 李加纳, 倪郁. 甘蓝型油菜长链烷烃合成相关基因的克隆及其与BnCER1-2的互作[J]. 作物学报, 2023, 49(4): 1016-1027.
[7] 王珍, 张晓莉, 刘淼, 姚梦楠, 孟晓静, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1超量表达及中油821的转录差异表达分析[J]. 作物学报, 2023, 49(3): 856-868.
[8] 张文宣, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 利用CRISPR/Cas9技术突变BnaMPK6基因降低甘蓝型油菜的耐盐性[J]. 作物学报, 2023, 49(2): 321-331.
[9] 张超, 杨博, 张立源, 肖忠春, 刘景森, 马晋齐, 卢坤, 李加纳. 基于QTL定位和全基因组关联分析挖掘甘蓝型油菜收获指数相关位点[J]. 作物学报, 2022, 48(9): 2180-2195.
[10] 李胜婷, 徐远芳, 常玮, 刘亚俊, 谷嫄, 朱红, 李加纳, 卢坤. Bna.C02SWEET15通过光周期途径正向调控油菜开花时间[J]. 作物学报, 2022, 48(8): 1938-1947.
[11] 张天宇, 王越, 刘影, 周婷, 岳彩鹏, 黄进勇, 华营鹏. 油菜脯氨酸代谢基因家族的生物信息学分析与核心成员鉴定[J]. 作物学报, 2022, 48(8): 1977-1995.
[12] 戴丽诗, 常玮, 张赛, 钱明超, 黎小东, 张凯, 李加纳, 曲存民, 卢坤. Bna-novel-miR36421调节拟南芥株型和花器官发育的功能验证[J]. 作物学报, 2022, 48(7): 1635-1644.
[13] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[14] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[15] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .