作物学报 ›› 2023, Vol. 49 ›› Issue (5): 1211-1221.doi: 10.3724/SP.J.1006.2023.24079
张盈川1(), 吴晓明玉1, 陶保龙1, 陈丽1,2, 鲁海琴1, 赵伦1, 文静1, 易斌1, 涂金星1, 傅廷栋1, 沈金雄1,*()
ZHANG Ying-Chuan1(), WU Xiao-Ming-Yu1, TAO Bao-Long1, CHEN Li1,2, LU Hai-Qin1, ZHAO Lun1, WEN Jing1, YI Bin1, TU Jing-Xing1, FU Ting-Dong1, SHEN Jin-Xiong1,*()
摘要:
在酸性土壤中, 铝是制约作物生长和产量的一个重要因素, 如何利用酸性土地意义重大。本研究的对象是前期本课题鉴定到的一个未被报道的miRNA——Bna-miR43。系统地对甘蓝型油菜中Bna-miR43及其靶基因进行生物信息学分析以及表达模式鉴定, 并构建Bna-miR43过表达载体探讨了Bna-miR43-FBXL模块在甘蓝型油菜响应铝胁迫的分子机制。5°-RACE结果表明Bna-miR43在甘蓝型油菜中真实切割BnaA09g03940D、BnaCnng24950D。生物信息学分析表明, BnaA09g03940D、BnaCnng24950D在拟南芥中的同源基因为AT5G27950, 编码含F-box的E3泛素连接酶。qRT-PCR结果显示, Bna-miR43及其靶基因在甘蓝型油菜不同组织以及铝胁迫瞬时处理下的表达水平存在此消彼长的现象。油菜转基因试验表明, Bna-miR43的过表达株系地上部分长势良好, 体内积累了较少的MDA和H2O2, 同时转基因植株根系的铝积累量较对照少。本研究结果为甘蓝型油菜中铝胁迫响应提供参考。
[1] |
Sade H, Meriga B, Surapu V, Gadi J, Sunita M S L, Suravajhala P, Kishor P B K. Toxicity and tolerance of aluminum in plants: tailoring plants to suit to acid soils. BioMetals, 2016, 29: 187-210.
doi: 10.1007/s10534-016-9910-z pmid: 26796895 |
[2] | 肖厚军, 王正银. 酸性土壤铝毒与植物营养研究进展. 西南农业学报, 2006, 19: 1180-1188. |
Xiao H J, Wang Z Y. Advance on study of aluminum toxicity and plant nutrition in acid soils. Southwest China J Agric Sci, 2006, 19: 1180-1188. (in Chinese with English abstract) | |
[3] |
Panda S K, Baluška F, Matsumoto H. Aluminum stress signaling in plants. Plant Signal Behav, 2009, 4: 592-597.
doi: 8903 pmid: 19820334 |
[4] |
Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn S J, Ryan P R, Delhaize E, Matsumoto H. A wheat gene encoding an aluminum-activated malate transporter. Plant J, 2004, 37: 645-653.
doi: 10.1111/j.1365-313x.2003.01991.x pmid: 14871306 |
[5] |
Krill A M, Kirst M, Kochian L V, Buckler E S, Hoekenga O A. Association and linkage analysis of aluminum tolerance genes in maize. PLoS One, 2010, 5: e9958.
doi: 10.1371/journal.pone.0009958 |
[6] |
Sharma T, Dreyer I, Kochian L, Piñeros M A. The ALMT family of organic acid transporters in plants and their involvement in detoxification and nutrient security. Front Plant Sci, 2016, 7: 1488.
pmid: 27757118 |
[7] |
Bojórquez-Quintal E, Escalante-Magaña C, Echevarría-Machado I, Martínez-Estévez M. Aluminum, a friend or foe of higher plants in acid soils. Front Plant Sci, 2017, 8: 1767.
doi: 10.3389/fpls.2017.01767 pmid: 29075280 |
[8] |
Inostroza-Blancheteau C, Rengel Z, Alberdi M, Mora M L, Aquea F, Arce-Johnson P, Reyes-Díaz M. Molecular and physiological strategies to increase aluminum resistance in plants. Mol Biol Rep, 2012, 39: 2069-2079.
doi: 10.1007/s11033-011-0954-4 pmid: 21660471 |
[9] |
Li J Y, Liu J, Dong D, Jia X, McCouch S R, Kochian L V. Natural variation underlies alterations in Nramp aluminum transporter (NRAT1) expression and function that play a key role in rice aluminum tolerance. Proc Natl Acad Sci USA, 2014, 111: 6503-6508.
doi: 10.1073/pnas.1318975111 |
[10] |
Wu Y, Yang Z, How J, Xu H, Chen L, Li K. Overexpression of a peroxidase gene (AtPrx64) of Arabidopsis thaliana in tobacco improves plant’s tolerance to aluminum stress. Plant Mol Biol, 2017, 95: 157-168.
doi: 10.1007/s11103-017-0644-2 |
[11] |
Iuchi S, Koyama H, Iuchi A, Kobayashi Y, Kitabayashi S, Kobayashi Y, Ikka T, Hirayama T, Shinozaki K, Kobayashi M. Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. Proc Natl Acad Sci USA, 2007, 104: 9900-9905.
doi: 10.1073/pnas.0700117104 |
[12] |
Sawaki Y, Iuchi S, Kobayashi Y, Ikka T, Sakurai N, Fujita M, Shinozaki K, Shibata D, Kobayashi M, Koyama H. STOP 1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities. Plant Physiol, 2009, 150: 281-294.
doi: 10.1104/pp.108.134700 |
[13] |
鲁海琴, 陈丽, 陈磊, 张盈川, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-Bna-miR311-HSC70-1模块调控甘蓝型油菜响应热胁迫的机制. 作物学报, 2020, 46: 1474-1484.
doi: 10.3724/SP.J.1006.2020.04014 |
Lu H Q, Chen L, Chen L, Zhang Y C, Wen J, Yi B, Tu J X, Fu T D, Shen J X. Mechanism research of Bna-Bna-miR311-HSC70-1 module regulating heat stress response in Brassica napus L. Acta Agron Sin, 2020, 46: 1474-1484 (in Chinese with English abstract). | |
[14] |
Lima J C, Arenhart R A, Margis-Pinheiro M, Margis R. Aluminum triggers broad changes in microRNA expression in rice roots. Genet Mol Res, 2011, 10: 2817-2832.
doi: 10.4238/2011.November.10.4 pmid: 22095606 |
[15] |
Zeng Q Y, Yang C Y, Ma Q B, Li X P, Dong W W, Nian H. Identification of wild soybean miRNAs and their target genes responsive to aluminum stress. BMC Plant Biol, 2012, 12: 182.
doi: 10.1186/1471-2229-12-182 |
[16] |
He H, He L, Gu M. Role of microRNAs in aluminum stress in plants. Plant Cell Rep, 2014, 33: 831-836.
doi: 10.1007/s00299-014-1565-z pmid: 24413694 |
[17] | 陈丽. 甘蓝型油菜株型及角果长度相关miRNA和靶基因的挖掘. 华中农业大学博士学位论文, 湖北武汉, 2018. |
Chen L. The Study of miRNA and Targets Regulate Plant Architecture and Silique Length in Brassica napus L. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2018. (in Chinese with English abstract) | |
[18] |
Varkonyi-Gasic E, Wu R, Wood M, Walton E F, Hellens R P. Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods, 2007, 3: 12.
pmid: 17931426 |
[19] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[20] | 金建峰. 番茄两个NAC转录因子响应铝胁迫的功能研究. 浙江大学博士学位论文, 浙江杭州, 2021. |
Jin J F. The Study on the Roles of Two NAC Transcription Factors in Response to Aluminum Stress in Tomato. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2021. (in Chinese with English abstract) | |
[21] |
Xu K, Wu N, Yao W, Li X, Zhou Y, Li H. The biological function and roles in phytohormone signaling of the F-Box protein in plants. Agronomy, 2021, 11: 2360.
doi: 10.3390/agronomy11112360 |
[22] |
Hong M J, Kim J B, Seo Y W, Kim D Y. Regulation of glycosylphosphatidylinositol-anchored protein (GPI-AP) expression by F-Box/LRR-Repeat (FBXL) protein in wheat (Triticum aestivum L.). Plants, 2021, 10: 1606.
doi: 10.3390/plants10081606 |
[23] |
Yu Y, Wang P, Bai Y, Wang Y, Liu C, Ni Z. The soybean F-box protein GmFBX176 regulates ABA-mediated responses to drought and salt stress. Environ Exp Bot, 2020, 176: 104056.
doi: 10.1016/j.envexpbot.2020.104056 |
[24] |
Zhang Y, Zhang J, Guo J, Zhou F, Singh S, Xu X, Xie Q, Yang Z, Huang C F. F-box protein RAE1 regulates the stability of the aluminum-resistance transcription factor STOP1 in Arabidopsis. Proc Natl Acad Sci USA, 2019, 116: 319-327.
doi: 10.1073/pnas.1814426116 pmid: 30559192 |
[25] |
Sawaki Y, Iuchi S, Kobayashi Y, Ikka T, Sakurai N, Fujita M, Shinozaki K, Shibata D, Kobayashi M, Koyama H. STOP1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities. Plant Physiol, 2009, 150: 281-294.
doi: 10.1104/pp.108.134700 |
[26] |
Shetty R, Vidya C S N, Prakash N B, Lux A, Vaculik M. Aluminum toxicity in plants and its possible mitigation in acid soils by biochar: a review. Sci Total Environ, 2021, 765: 142744.
doi: 10.1016/j.scitotenv.2020.142744 |
[27] |
Bose J, Babourina O, Rengel Z. Role of magnesium in alleviation of aluminium toxicity in plants. J Exp Bot, 2011, 62: 2251-2264.
doi: 10.1093/jxb/erq456 pmid: 21273333 |
[28] |
Ohyama Y, Ito H, Kobayashi Y, Ikka T, Morita A, Kobayashi M, Imaizumi R, Aoki T, Komatsu K, Sakata Y, Iuchi S, Koyama H. Characterization of AtSTOP1orthologous genes in tobacco and other plant species. Plant Physiol, 2013, 162: 1937-1946.
doi: 10.1104/pp.113.218958 |
[29] |
Sagi M, Fluhr R. Superoxide production by plant homologues of the gp91phox NADPH oxidase. Modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiol, 2001, 126: 1281-1290.
doi: 10.1104/pp.126.3.1281 pmid: 11457979 |
[30] |
Daspute A A, Sadhukhan A, Tokizawa M, Kobayashi Y, Panda S K, Koyama H. Transcriptional regulation of aluminum- tolerance genes in higher plants: clarifying the underlying molecular mechanisms. Front Plant Sci, 2017, 8: 1358.
doi: 10.3389/fpls.2017.01358 |
[1] | 杨一丹, 何督, 刘静, 张岩, 陈飞志, 巫燕飞, 杜雪竹. 寄主诱导的基因沉默干扰核盘菌致病基因OAH在甘蓝型油菜抗菌核病中的应用[J]. 作物学报, 2023, 49(6): 1542-1550. |
[2] | 袁大双, 张晓莉, 朱冬鸣, 杨友鸿, 姚梦楠, 梁 颖. BnMAPK2 对甘蓝型油菜耐旱性的影响[J]. 作物学报, 2023, 49(6): 1518-1531. |
[3] | 杨太桦, 杨福权, 郜耿东, 殷帅, 金庆东, 徐林珊, 蒯婕, 汪波, 徐正华, 葛贤宏, 王晶, 周广生. 初步探究LncRNA在甘蓝型油菜生态型分化中的作用[J]. 作物学报, 2023, 49(5): 1197-1210. |
[4] | 陈慧, 肖清, 汪华栋, 文静, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 易斌. 甘蓝型油菜SUMO蛋白家族成员鉴定及Bna.SUMO1.C08基因的功能研究[J]. 作物学报, 2023, 49(4): 917-925. |
[5] | 陈晓汉, 王丽琴, 汪华栋, 肖清, 陶保龙, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. BnABCI8影响甘蓝型油菜叶绿体发育[J]. 作物学报, 2023, 49(4): 893-905. |
[6] | 柏成成, 姚小尧, 王雨璐, 王赛玉, 李金莹, 蒋有为, 靳舒荣, 陈春杰, 刘渔, 魏星玥, 徐新福, 李加纳, 倪郁. 甘蓝型油菜长链烷烃合成相关基因的克隆及其与BnCER1-2的互作[J]. 作物学报, 2023, 49(4): 1016-1027. |
[7] | 王珍, 张晓莉, 刘淼, 姚梦楠, 孟晓静, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1超量表达及中油821的转录差异表达分析[J]. 作物学报, 2023, 49(3): 856-868. |
[8] | 张文宣, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 利用CRISPR/Cas9技术突变BnaMPK6基因降低甘蓝型油菜的耐盐性[J]. 作物学报, 2023, 49(2): 321-331. |
[9] | 张超, 杨博, 张立源, 肖忠春, 刘景森, 马晋齐, 卢坤, 李加纳. 基于QTL定位和全基因组关联分析挖掘甘蓝型油菜收获指数相关位点[J]. 作物学报, 2022, 48(9): 2180-2195. |
[10] | 李胜婷, 徐远芳, 常玮, 刘亚俊, 谷嫄, 朱红, 李加纳, 卢坤. Bna.C02SWEET15通过光周期途径正向调控油菜开花时间[J]. 作物学报, 2022, 48(8): 1938-1947. |
[11] | 张天宇, 王越, 刘影, 周婷, 岳彩鹏, 黄进勇, 华营鹏. 油菜脯氨酸代谢基因家族的生物信息学分析与核心成员鉴定[J]. 作物学报, 2022, 48(8): 1977-1995. |
[12] | 戴丽诗, 常玮, 张赛, 钱明超, 黎小东, 张凯, 李加纳, 曲存民, 卢坤. Bna-novel-miR36421调节拟南芥株型和花器官发育的功能验证[J]. 作物学报, 2022, 48(7): 1635-1644. |
[13] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[14] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[15] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
|