作物学报 ›› 2023, Vol. 49 ›› Issue (5): 1197-1210.doi: 10.3724/SP.J.1006.2023.24105
杨太桦(), 杨福权, 郜耿东, 殷帅, 金庆东, 徐林珊, 蒯婕, 汪波, 徐正华, 葛贤宏, 王晶(), 周广生
YANG Tai-Hua(), YANG Fu-Quan, GAO Geng-Dong, YIN Shuai, JIN Qing-Dong, XU Lin-Shan, KUAI Jie, WANG Bo, XU Zheng-Hua, GE Xian-Hong, WANG Jing(), ZHOU Guang-Sheng
摘要:
甘蓝型油菜是我国重要的油料作物之一, 根据其成花转变过程中对低温春化时间需求的不同分为3种生态型: 春性、半冬性和冬性。前人研究发现, 长链非编码RNA (LncRNA)可在多层面上调控基因的表达, 参与对植物生长发育的调控。在拟南芥中, LncRNA可以通过调控春化途径相关基因的表达来影响开花。本研究以3种生态型甘蓝型油菜为材料, 利用高通量测序技术进行苗期叶片的mRNA和LncRNA测序, 初步探究LncRNA在油菜生态型分化及适应性形成中的作用。3种生态型甘蓝型油菜共差异表达基因的GO及KEGG富集分析表明, 不同生态型甘蓝型油菜之间存在大量基础化合物合成代谢差异, 特别是脂质类化合物。3种生态型甘蓝型油菜中共鉴定获得3775个LncRNA, 其中285个在2个及以上生态型组合中存在差异表达, 涉及到1517个候选靶基因。这些差异表达LncRNA涉及到的靶基因也富集到大量基础化合物合成代谢途径。通过mRNA-LncRNA联合分析, 我们预测到了一个开花基因的调控网络, 包含8个开花基因和23个LncRNA, 涉及到温度和光信号调控通路。通过比较鉴定得到的LncRNA和972个甘蓝型油菜重要农艺性状QTL位置信息发现约90%的LncRNA位点和QTL区间存在重叠, 且差异表达LncRNA和QTL的重叠位点在不同生态型油菜中的分布具有差异。结果说明LncRNA在油菜生态型分化及重要农艺性状形成中具有重要作用。
[1] | 王汉中, 殷艳. 我国油料产业形势分析与发展对策建议. 中国油料作物学报, 2014, 36: 414-421. |
Wang H Z, Yin Y. Analysis and strategy for oil crop industry in China. Chin J Oil Crop Sci, 2014, 36: 414-421. (in Chinese with English abstract) | |
[2] |
Lu K, Wei L J, Li X L, Wang Y T, Wu J, Liu M, Zhang C, Chen Z Y, Xiao Z C, Jian H J, Cheng F, Zhang K, Du H, Cheng X C, Qu C M, Qian W, Liu L Z, Wang R, Zou Q Y, Ying J M, Xu X F, Mei J Q, Liang Y, Chai Y R, Tang Z L, Wan H F, Ni Y, He Y J, Lin N, Fan Y H, Sun W, Li N N, Zhou G, Zheng H K, Wang X W, Paterson A H, Li J N. Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nat Commun, 2019, 10: 1154.
doi: 10.1038/s41467-019-09134-9 |
[3] |
Hu D D, Jing J J, Snowdon R J, Mason A S, Shen J, Meng J L, Zou J. Exploring the gene pool of Brassica napus by genomics-based approaches. Plant Biotechnol J, 2021, 19: 1693-1712.
doi: 10.1111/pbi.v19.9 |
[4] |
Wei D Y, Cui Y X, He Y J, Xiong Q, Qian L W, Tong C B, Lu G Y, Ding Y J, Li J N, Jung C, Qian W. A genome-wide survey with different rapeseed ecotypes uncovers footprints of domestication and breeding. J Exp Bot, 2017, 68: 4791-4801.
doi: 10.1093/jxb/erx311 pmid: 28992309 |
[5] | Bouché F, Lobet G, Tocquin P, Périlleux C. FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucleic Acids Res, 2016, 44: D1167-D1171. |
[6] |
Chalhoub B, Denoeud F, Liu S Y, Parkin I A P, Tang H B, Wang X Y, Chiquet J, Belcram H, Tong C B, Samans B, Corréa M, Silva C D, Just J, Falentin C, Koh C S, Clainche I L, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M X, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Paslier MC L, Fan G Y, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H D, Chalabi S, Hu Q, Fan C C, Tollenaere R, Lu Y H, Battail C, Shen J X, Sidebottom C H D, Wang X F, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z S, Sun F M, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X W, Meng J L, Ma J X, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y M, Hua W, Sharpe A G, Paterson A H, Guan C Y, Wincker P. Early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome. Science, 2014, 345: 950-953.
doi: 10.1126/science.1253435 pmid: 25146293 |
[7] |
Sun F M, Fan G Y, Hu Q, Zhou Y M, Guan M, Tong C B, Li J N, Du D Z, Qi C K, Jiang L C, Liu W Q, Huang S M, Chen W B, Yu J Y, Mei D S, Meng J L, Zeng P, Shi J Q, Liu K D, Wang X, Wang X F, Long Y, Liang X M, Hu Z Y, Huang G D, Dong C H, Zhang H, Li J, Zhang Y L, Li L W, Shi C C, Wang J H, Lee S M Y, Guan C Y, Xu X, Liu S Y, Liu X, Chalhoub B, Hua W, Wang H Z. The high-quality genome of Brassica napus cultivar ‘ZS11’ reveals the introgression history in semi-winter morphotype. Plant J, 2017, 92: 452-468.
doi: 10.1111/tpj.2017.92.issue-3 |
[8] |
Zou J, Mao L F, Qiu J, Wang M, Jia L, Wu D Y, He Z S, Chen M H, Shen Y F, Shen E H, Huang Y J, Li R Y, Hu D D, Shi L, Wang K, Zhu Q H, Ye C Y, Bancroft I, King G J, Meng J L, Fan L J. Genome-wide selection footprints and deleterious variations in young Asian allotetraploid rapeseed. Plant Biotechnol J, 2019, 17: 1998-2010.
doi: 10.1111/pbi.13115 pmid: 30947395 |
[9] |
Chen X Q, Tong C B, Zhang X T, Song A X, Hu M, Dong W, Chen F, Wang Y P, Tu J X, Liu S Y, Tang H B, Zhang L S. A high-quality Brassica napus genome reveals expansion of transposable elements, subgenome evolution and disease resistance. Plant Biotechnol J, 2021, 19: 615-630.
doi: 10.1111/pbi.v19.3 |
[10] |
Wu D Z, Liang Z, Yan T, Xu Y, Xuan L J, Tang J, Zhou G, Lohwasser U, Hua S J, Wang H Y, Chen X Y, Wang Q, Zhu L, Maodzeka A, Hussain N, Li Z L, Li X M, Shamsi I H, Jilani G, Wu L D, Zheng H K, Zhang G P, Chalhoub B, Shen L S, Yu H, Jiang L X. Whole-genome resequencing of a worldwide collection of rapeseed accessions reveals the genetic basis of ecotype divergence. Mol Plant, 2019, 12: 30-43.
doi: S1674-2052(18)30343-5 pmid: 30472326 |
[11] |
Yin S, Wan M, Guo C C, Wang B, Li H T, Li G, Tian Y Y, Ge X H, King G J, Liu K D, Li Z Y, Wang J. Transposon insertions within alleles of BnaFLC.A10 and BnaFLC.A2 are associated with seasonal crop type in rapeseed. J Exp Bot, 2020, 71: 4729-4741.
doi: 10.1093/jxb/eraa237 |
[12] |
Kang L, Qian L W, Zheng M, Chen L Y, Chen H, Yang L, You L, Yang B, Yan M L, Gu Y G, Wang T Y, Schiessl S V, An H, Blischak P, Liu X J, Lu H F, Zhang D W, Rao Y, Jia D H, Zhou D G, Xiao H G, Wang Y G, Xiong X H, Mason A S, Pires J C, Snowdon R J, Hua W, Liu Z S. Genomic insights into the origin, domestication and diversification of Brassica juncea Nat Genet, 2021, 53: 1392-1402.
doi: 10.1038/s41588-021-00922-y pmid: 34493868 |
[13] |
Hu J H, Chen B Y, Zhao J, Zhang F G, Xie T, Xu K, Gao G Z, Yan G X, Li H G, Li L X, Ji G X, An H, Li H, Huang Q, Zhang M L, Wu J F, Song W L, Zhang X J, Luo Y J, Pires J C, Batley J, Tian S L, Wu X M. Genomic selection and genetic architecture of agronomic traits during modern rapeseed breeding. Nat Genet, 2022, 54: 694-704.
doi: 10.1038/s41588-022-01055-6 |
[14] |
An H, Qi X S, Gaynor M L, Hao Y, Gebken S C, Mabry M E, McAlvay A C, Teakle G R, Conant G C, Barker M S, Fu T D, Yi B, Pires J C. Transcriptome and organellar sequencing highlights the complex origin and diversification of allotetraploid Brassica napus. Nat Commun, 2019, 10: 2878.
doi: 10.1038/s41467-019-10757-1 |
[15] |
Song J M, Guan Z L, Hu J L, Guo C C, Yang Z Q, Wang S, Liu D X, Wang B, Lu S P, Zhou R, Xie W Z, Cheng Y F, Zhang Y T, Liu K D, Yang Q Y, Chen L L, Guo L. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat Plants, 2020, 6: 34-45.
doi: 10.1038/s41477-019-0577-7 |
[16] |
Calderwood A, Lloyd A, Hepworth J, Tudor E H, Jones D M, Woodhouse S, Bilham L, Chinoy C, Williams K, Corke F, Doonan J H, Ostergaard L, Irwin J A, Wells R, Morris R J. Total FLC transcript dynamics from divergent paralogue expression explains flowering diversity in Brassica napus. New Phytol, 2021, 229: 3534-3548.
doi: 10.1111/nph.17131 pmid: 33289112 |
[17] |
Akter A, Itabashi E, Kakizaki T, Okazaki K, Dennis E S, Fujimoto R. Genome triplication leads to transcriptional divergence of FLOWERING LOCUS C genes during vernalization in the genus Brassica. Front Plant Sci, 2021, 11: 619417.
doi: 10.3389/fpls.2020.619417 |
[18] |
Schiessl S V, Quezada-Martinez D, Tebartz E, Snowdon R J, Qian L W. The vernalisation regulator FLOWERING LOCUS C is differentially expressed in biennial and annual Brassica napus. Sci Rep, 2019, 9: 14911.
doi: 10.1038/s41598-019-51212-x pmid: 31624282 |
[19] |
Ponjavic J, Ponting C P, Lunter G. Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res, 2007, 17: 556-565.
doi: 10.1101/gr.6036807 pmid: 17387145 |
[20] |
Swiezewski S, Liu F Q, Magusin A, Dean C. Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature, 2009, 462: 799-802.
doi: 10.1038/nature08618 |
[21] |
Song J H, Cao J S, Yu X L, Xiang X. BcMF11, a putative pollen-specific non-coding RNA from Brassica campestris ssp. chinensis. J Plant Physiol, 2007, 164: 1097-1000.
doi: 10.1016/j.jplph.2006.10.002 |
[22] |
Song J H, Cao J S, Wang C G. BcMF11, a novel non-coding RNA gene from Brassica campestris, is required for pollen development and male fertility. Plant Cell Rep, 2013, 32: 21-30.
doi: 10.1007/s00299-012-1337-6 |
[23] | Joshi R K, Megha S, Basu U, Rahman M H, Kav N N V. Genome wide identification and functional prediction of long non-coding RNAs responsive to sclerotinia sclerotiorum infection in Brassica napus. PLoS One, 2016, 11: e0158784. |
[24] |
Zhang J F, Wei L J, Jiang J, Mason A S, Li H J, Cui C, Chai L, Zheng B C, Zhu Y Q, Xia Q, Jiang L C, Fu D H. Genome-wide identification, putative functionality and interactions between lncRNAs and miRNAs in Brassica species. Sci Rep, 2018, 8: 4960.
doi: 10.1038/s41598-018-23334-1 |
[25] |
Shen E H, Zhu X T, Hua S J, Chen H Y, Ye C Y, Zhou L H, Liu Q, Zhu Q H, Fan L J, Chen X. Genome-wide identification of oil biosynthesis-related long non-coding RNAs in allopolyploid Brassica napus. BMC Genomics, 2018, 19: 745.
doi: 10.1186/s12864-018-5117-8 |
[26] |
Tan X Y, Li S, Hu L Y, Zhang C L. Genome-wide analysis of long non-coding RNAs (lncRNAs) in two contrasting rapeseed (Brassica napus L.) genotypes subjected to drought stress and re-watering. BMC Plant Biol, 2020, 20: 81
doi: 10.1186/s12870-020-2286-9 |
[27] | Rousseau-Gueutin M, Belser C, Silva C D, Richard G, Istace B, Cruaud C, Falentin C, Boideau F, Boutte J, Delourme R, Deniot G, Engelen S, de Carvalho J F, Lemainque A, Maillet L, Morice J, Wincker P, Denoeud F, Chèvre A M, Aury J M. Long-read assembly of the Brassica napus reference genome Darmor-bzh. Gigascience, 2020, 9: giaa137. |
[28] |
Brown J, Pirrung M, McCue L A. FQC Dashboard: integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool. Bioinformatics, 2017, 33: 3137-3139.
doi: 10.1093/bioinformatics/btx373 pmid: 28605449 |
[29] |
Bolger A M, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30: 2114-2120.
doi: 10.1093/bioinformatics/btu170 pmid: 24695404 |
[30] |
Kim D, Paggi J M, Park C, Bennett C, Salzberg S L. Graph-based genome alignment and genotyping with HISAT2 and HISAT- genotype. Nat Biotechnol, 2019, 37: 907-915.
doi: 10.1038/s41587-019-0201-4 |
[31] |
Pertea M, Pertea G M, Antonescu C M, Chang T C, Mendell J T, Salzberg S L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol, 2015, 33: 290-295.
doi: 10.1038/nbt.3122 pmid: 25690850 |
[32] |
Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15: 550.
doi: 10.1186/s13059-014-0550-8 |
[33] | Pertea G, Pertea M. GFF Utilities: GffRead and GffCompare. F1000Res, 2020, 9: ISCB Comm J-304. |
[34] | Kang Y J, Yang D C, Kong L, Hou M, Meng Y Q, Wei L P, Gao G. CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res, 2017, 45: W12-W16. |
[35] | Wang L, Park H J, Dasari S, Wang S Q, Kocher J P, Li W. CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Res, 2013, 41: e74. |
[36] |
Li A, Zhang J Y, Zhou Z Y. PLEK: a tool for predicting long non-coding RNAs and messenger RNAs based on an improved k-mer scheme. BMC Bioinformatics, 2014, 15: 311.
doi: 10.1186/1471-2105-15-311 pmid: 25239089 |
[37] | Szcześniak M W, Rosikiewicz W, Makałowska I. CANTATAdb: a collection of plant long non-coding RNAs. Plant Cell Physiol, 2016, 57: e8. |
[38] |
Havlickova L, He Z S, Wang L H, Langer S, Harper A L, Kaur H, Broadley M R, Gegas V, Bancroft I. Validation of an updated associative transcriptomics platform for the polyploid crop species Brassica napus by dissection of the genetic architecture of erucic acid and tocopherol isoform variation in seeds. Plant J, 2018, 93: 181-192.
doi: 10.1111/tpj.2018.93.issue-1 |
[39] |
Raboanatahiry N, Chao H B, Dalin H, Pu S, Yan W, Yu L J, Wang B S, Li M T. QTL alignment for seed yield and yield related traits in Brassica napus. Front Plant Sci, 2018, 9: 1127
doi: 10.3389/fpls.2018.01127 pmid: 30116254 |
[40] |
王艳花, 谢玲, 杨博, 曹艳茹, 李加纳. 甘蓝型油菜开花相关基因的鉴定及进化与表达分析. 作物学报, 2019, 45: 1137-1145.
doi: 10.3724/SP.J.1006.2019.84159 |
Wang Y H, Xie L, Yang B, Cao Y R, Li J N. Flowering genes in oilseed rape: identification, characterization, evolutionary and expression analysis. Acta Agron Sin, 2019, 45: 1137-1145. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.84159 |
|
[41] |
Qüesta J I, Song J, Geraldo N, An H H, Dean C. Arabidopsis transcriptional repressor VAL1 triggers Polycomb silencing at FLC during vernalization. Science, 2016, 353: 485-488.
doi: 10.1126/science.aaf7354 pmid: 27471304 |
[42] |
Blümel M, Dally N, Jung C. Flowering time regulation in crop: what did we learn from Arabidopsis. Curr Opin Biotechnol, 2015, 32: 121-129.
doi: 10.1016/j.copbio.2014.11.023 |
[43] |
Teramoto H, Toyama T, Takeba G, Tsuji H. Noncoding RNA for CR20, a cytokinin-repressed gene of cucumber. Plant Mol Biol, 1996, 32: 797-808.
pmid: 8980532 |
[44] |
Li X R, Zhang S F, Bai J J, He Y K. Tuning growth cycles of Brassica crops via natural antisense transcripts of BrFLC. Plant Biotechnol J, 2016, 14: 905-914.
doi: 10.1111/pbi.2016.14.issue-3 |
[45] |
Thalhammer A, Bryant G, Sulpice R, Hincha D K. Disordered cold regulated15 proteins protect chloroplast membranes during freezing through binding and folding, but do not stabilize chloroplast enzymes in vivo. Plant Physiol, 2014, 166: 190-201.
doi: 10.1104/pp.114.245399 pmid: 25096979 |
[46] |
Kidokoro S, Yoneda K, Takasaki H, Takahashi F, Shinozaki K, Yamaguchi-Shinozaki K. Different cold-signaling pathways function in the responses to rapid and gradual decreases in temperature. Plant Cell, 2017, 29: 760-774.
doi: 10.1105/tpc.16.00669 |
[47] |
Hayami N, Sakai Y, Kimura M, Saito T, Tokizawa M, Iuchi S, Kurihara Y, Matsui M, Nomoto M, Tada Y, Yamamoto Y Y. The responses of Arabidopsis Early Light-Induced Protein2 to ultraviolet B, high light, and cold stress are regulated by a transcriptional regulatory unit composed of two elements. Plant Physiol, 2015, 169: 840-855.
doi: 10.1104/pp.15.00398 |
[48] |
Li X Y, Zhang G F, Liang Y H, Hu L, Zhu B N, Qi D M, Cui S J, Zhao H T. TCP7 interacts with Nuclear Factor-Ys to promote flowering by directly regulating SOC1 in Arabidopsis. Plant J, 2021, 108: 1493-1506.
doi: 10.1111/tpj.v108.5 |
[49] |
Tang S, Zhao H, Lu S P, Yu L Q, Zhang G F, Zhang Y T, Yang Q Y, Zhou Y M, Wang X M, Ma W, Xie W B, Guo L. Genome- and transcriptome-wide association studies provide insights into the genetic basis of natural variation of seed oil content in Brassica napus. Mol Plant, 2021, 14: 470-487.
doi: 10.1016/j.molp.2020.12.003 |
[50] |
Basu U, Hegde V S, Daware A, Jha U C, Parida S K. Transcriptome landscape of early inflorescence developmental stages identifies key flowering time regulators in chickpea. Plant Mol Biol, 2022, 108: 565-583.
doi: 10.1007/s11103-022-01247-y pmid: 35106703 |
[51] |
Li Z W, Tian P, Huang T B, Huang J Z. Noncoding-RNA- mediated regulation in response to macronutrient stress in plants. Int J Mol Sci, 2021, 22: 11205.
doi: 10.3390/ijms222011205 |
[52] |
Fukuda M, Fujiwara T, Nishida S. Roles of non-coding RNAs in response to nitrogen availability in plants. Int J Mol Sci, 2020, 21: 8508.
doi: 10.3390/ijms21228508 |
[53] |
Zhou X X, Cui J, Meng J, Luan Y S. Interactions and links among the noncoding RNAs in plants under stresses. Theor Appl Genet, 2020, 133: 3235-3248.
doi: 10.1007/s00122-020-03690-1 pmid: 33025081 |
[54] |
Song L, Fang Y, Chen L, Wang J, Chen X W. Role of non- coding RNAs in plant immunity. Plant Commun, 2021, 2: 100180.
doi: 10.1016/j.xplc.2021.100180 |
[1] | 杨一丹, 何督, 刘静, 张岩, 陈飞志, 巫燕飞, 杜雪竹. 寄主诱导的基因沉默干扰核盘菌致病基因OAH在甘蓝型油菜抗菌核病中的应用[J]. 作物学报, 2023, 49(6): 1542-1550. |
[2] | 袁大双, 张晓莉, 朱冬鸣, 杨友鸿, 姚梦楠, 梁 颖. BnMAPK2 对甘蓝型油菜耐旱性的影响[J]. 作物学报, 2023, 49(6): 1518-1531. |
[3] | 张盈川, 吴晓明玉, 陶保龙, 陈丽, 鲁海琴, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-miR43-FBXL调控模块参与甘蓝型油菜铝胁迫的功能分析[J]. 作物学报, 2023, 49(5): 1211-1221. |
[4] | 陈慧, 肖清, 汪华栋, 文静, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 易斌. 甘蓝型油菜SUMO蛋白家族成员鉴定及Bna.SUMO1.C08基因的功能研究[J]. 作物学报, 2023, 49(4): 917-925. |
[5] | 陈晓汉, 王丽琴, 汪华栋, 肖清, 陶保龙, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. BnABCI8影响甘蓝型油菜叶绿体发育[J]. 作物学报, 2023, 49(4): 893-905. |
[6] | 柏成成, 姚小尧, 王雨璐, 王赛玉, 李金莹, 蒋有为, 靳舒荣, 陈春杰, 刘渔, 魏星玥, 徐新福, 李加纳, 倪郁. 甘蓝型油菜长链烷烃合成相关基因的克隆及其与BnCER1-2的互作[J]. 作物学报, 2023, 49(4): 1016-1027. |
[7] | 王珍, 张晓莉, 刘淼, 姚梦楠, 孟晓静, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1超量表达及中油821的转录差异表达分析[J]. 作物学报, 2023, 49(3): 856-868. |
[8] | 张文宣, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 利用CRISPR/Cas9技术突变BnaMPK6基因降低甘蓝型油菜的耐盐性[J]. 作物学报, 2023, 49(2): 321-331. |
[9] | 张超, 杨博, 张立源, 肖忠春, 刘景森, 马晋齐, 卢坤, 李加纳. 基于QTL定位和全基因组关联分析挖掘甘蓝型油菜收获指数相关位点[J]. 作物学报, 2022, 48(9): 2180-2195. |
[10] | 李胜婷, 徐远芳, 常玮, 刘亚俊, 谷嫄, 朱红, 李加纳, 卢坤. Bna.C02SWEET15通过光周期途径正向调控油菜开花时间[J]. 作物学报, 2022, 48(8): 1938-1947. |
[11] | 张天宇, 王越, 刘影, 周婷, 岳彩鹏, 黄进勇, 华营鹏. 油菜脯氨酸代谢基因家族的生物信息学分析与核心成员鉴定[J]. 作物学报, 2022, 48(8): 1977-1995. |
[12] | 戴丽诗, 常玮, 张赛, 钱明超, 黎小东, 张凯, 李加纳, 曲存民, 卢坤. Bna-novel-miR36421调节拟南芥株型和花器官发育的功能验证[J]. 作物学报, 2022, 48(7): 1635-1644. |
[13] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[14] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[15] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
|