作物学报 ›› 2023, Vol. 49 ›› Issue (6): 1532-1541.doi: 10.3724/SP.J.1006.2023.24121
刘亭萱1,2,**(), 谷勇哲2,**(), 张之昊3, 王俊1,*(), 孙君明2,*(), 邱丽娟1,2,*()
LIU Ting-Xuan1,2,**(), GU Yong-Zhe2,**(), ZHANG Zhi-Hao3, WANG Jun1,*(), SUN Jun-Ming2,*(), QIU Li-Juan1,2,*()
摘要:
大豆是重要的粮食作物和经济作物, 其籽粒蛋白约为40%, 是优质植物蛋白主要来源之一。挖掘控制大豆高蛋白数量性状位点(Quantitative trait loci, QTL)以及分子标记育种对高蛋白大豆培育具有重要的意义。本研究利用蛋白含量存在明显差异的中黄35 (Zhonghuang 35, ZH35)和中黄13 (Zhonghuang 13, ZH13)杂交构建的包含192个株系的重组自交系群体为供试材料, 通过对两亲本及RIL群体重测序, 构建了包含4879个bin标记的高密度遗传图谱, 总遗传距离为3760.71 cM, 相邻标记间的遗传距离为0.77 cM。RIL群体及亲本分别于北京顺义和河南濮阳种植, 2个环境共检测到15个蛋白含量相关QTL位点, 分布于5号、12号、15号、17号、18号、19号和20号染色体, 贡献率为4.36%~11.39%。其中, 北京顺义和河南濮阳检测到qPro-20-1和qPro-20-3, 2个QTL贡献率分别为7.65%和7.58%, 重叠区域包括33个基因。本研究有助于精细定位和图位克隆大豆蛋白含量相关基因, 并为进一步培育高蛋白大豆品种提供基因资源。
[1] |
Huang J H, Ma Q B, Cai Z D, Xia Q J, Cheng Y B. Identification and mapping of stable QTLs for seed oil and protein content in soybean [Glycine max (L.) Merr]. J Agric Food Chem, 2020, 68: 6448-6460.
doi: 10.1021/acs.jafc.0c01271 |
[2] |
Wang J, Chen P, Wang D, Shannon G, Zeng A, Orazaly M, Wu C. Identification and mapping of stable QTL for protein content in soybean seeds. Mol Breed, 2015, 35: 92-102.
doi: 10.1007/s11032-015-0285-6 |
[3] |
Pathan S M, Vuong T, Clark K, Lee J D, Sleper D A. Genetic mapping and confirmation of quantitative trait loci for seed protein and oil contents and seed weight in soybean. Crop Sci, 2013, 53: 765-774.
doi: 10.2135/cropsci2012.03.0153 |
[4] |
Wilcox J R. Increasing seed protein in soybean with eight cycles of recurrent selection. Crop Sci, 1998, 38: 1536-1540.
doi: 10.2135/cropsci1998.0011183X003800060021x |
[5] |
Keim P, Diers B W, Olson T C, Shoemaker R C. RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics, 1990, 126: 735-742.
doi: 10.1093/genetics/126.3.735 pmid: 1979039 |
[6] |
Du W J, Wang M, Fu S X, Yu D Y. Mapping QTLs for seed yield and drought susceptibility index in soybean (Glycine max L.) across different environments. J Genet Genomics, 2009, 36: 721-731.
doi: 10.1016/S1673-8527(08)60165-4 |
[7] |
Pipolo C V, Pipolo A E, Haleem A H, Boerma H R, Sinclair T R. Identification of QTLs associated with limited leaf hydraulic conductance in soybean. Euphytica, 2012, 186: 679-686.
doi: 10.1007/s10681-011-0535-6 |
[8] |
Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed, 1996, 2: 225-238.
doi: 10.1007/BF00564200 |
[9] | Apuya N R, Frazier B L, Keim P, Roth E J, Lark K G. Restriction fragment length polymorphisms as genetic markers in soybean, Glycine max (L.) Merrill. Theorl Appl Genet, 1988, 75: 889-901. |
[10] |
Keim P S, Diers B W, Olson T C, Shoemaker R C. RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics, 1990, 126: 735-742.
doi: 10.1093/genetics/126.3.735 pmid: 1979039 |
[11] |
Keim P, Schupp J M, Travis S E, Clayton K, Zhu T, Shi L, Ferreira A, Webb D M. A high-density soybean genetic map based on AFLP markers. Crop Sci, 1997, 37: 537-543.
doi: 10.2135/cropsci1997.0011183X003700020038x |
[12] |
Akkaya M S, Shoemaker R C, Specht J E, Bhagwat A A, Cregan P B. Integration of simple sequence repeat DNA markers into a soybean linkage map. Crop Sci, 1995, 35: 1439-1445.
doi: 10.2135/cropsci1995.0011183X003500050030x |
[13] |
Cregan P B, Jarvik T, Bush A L, Kaya N, Vantoai T T, Lohnes D G, Chung J. An integrated genetic linkage map of the soybean genome. Crop Sci, 1999, 39: 1464-1490.
doi: 10.2135/cropsci1999.3951464x |
[14] |
Liu N X, Li M, Hu X B, Ma Q B, Mu Y H, Tan Z Y, Xia Q J, Zhang G Y, Nian H. Construction of high-density genetic map and QTL mapping of yield-related and two quality traits in soybean RILs population by RAD-sequencing. BMC Genomics, 2017, 18: 466-479.
doi: 10.1186/s12864-017-3854-8 pmid: 28629322 |
[15] |
Varshney R K, Nayak S N, May G D, Jackson S A. Next- generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol, 2009, 27: 522-530.
doi: 10.1016/j.tibtech.2009.05.006 pmid: 19679362 |
[16] |
Joosen R V L, Arends D, Willems L A J, Ligterink W, Jansen R C, Hilhorst H W M. Visualizing the genetic landscape of Arabidopsis seed performance. Plant Physiol, 2012, 158: 570-589.
doi: 10.1104/pp.111.186676 |
[17] |
Yu H H, Xie W B, Wang J, Xing Y Z, Xu C G, Li X H, Xiao J H, Zhang Q F. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS One, 2011, 6: e17595.
doi: 10.1371/journal.pone.0017595 |
[18] |
Song W B, Wang B B, Hauck A L, Dong X M, Li J P, Lai J S. Genetic dissection of maize seedling root system architecture traits using an ultra-high density bin-map and a recombinant inbred line population. J Integr Plant Biol, 2015, 58: 266-279.
doi: 10.1111/jipb.12452 |
[19] |
Cheng Y B, Ma Q B, Ren H L, Xia Q J, Song E L, Tan Z Y, Li S X, Zhang G Y, Nian H. Fine mapping of a phytophthora- resistance gene RpsWY in soybean (Glycine max L.) by high- throughput genome-wide sequencing. Theor Appl Genet, 2017, 130: 1041-1051.
doi: 10.1007/s00122-017-2869-5 |
[20] |
Jiang N F, Shi S L, Shi H, Khanzada H, Wassan G M, Zhu C L, Peng X S, Yu Q Y, Chen X R, He X P, Fu J R, Hu L F, Xu J, Ou-Yang L J, Sun X T, Zhou D H, He H H, Bian J M. Mapping QTL for seed germinability under low temperature using a new high-density genetic map of rice. Front Plant Sci, 2017, 8: 1223-1232.
doi: 10.3389/fpls.2017.01223 pmid: 28747923 |
[21] |
Yu T, Lei Y, Lu H F, Zhang B, Li Y F, Liu C, Ge T L, Liu Y L, Han J N, Li Y H, Qiu L J. QTL analysis for plant height and fine mapping of two environmentally stable QTLs with major effects in soybean. J Integr Agric, 2022, 21: 933-946.
doi: 10.1016/S2095-3119(21)63693-6 |
[22] |
Pan L Y, He J B, Zhao T J, Xing G N, Wang Y F, Yu D Y, Chen S Y, Gai J Y. Efficient QTL detection of flowering date in a soybean RIL population using the novel restricted two-stage multi-locus GWAS procedure. Theor Appl Genet, 2018, 131: 2581-2599.
doi: 10.1007/s00122-018-3174-7 pmid: 30167759 |
[23] |
Wang W B, Liu M F, Wang Y F, Li X L, Cheng S X, Shu L P, Yu Z P, Kong J J, Zhao T J, Gai J Y. Characterizing two inter-specific bin maps for the exploration of the QTLs/genes that confer three soybean evolutionary traits. Front Plant Sci, 2016, 7: 1248-1264.
doi: 10.3389/fpls.2016.01248 pmid: 27602037 |
[24] |
Allen G C, Flores-Vergara M A, Krasnyanski S, Kumar S, Thompson W F. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat Protoc, 2006, 1: 2320-2325.
doi: 10.1038/nprot.2006.384 pmid: 17406474 |
[25] |
Wang L X, Wang J, Luo G L, Yuan X X, Gong D, Hu L L, Chen H L, Wang S H, Chen X, Cheng X Z. Construction of a high- density adzuki bean genetic map and evaluation of its utility based on a QTL analysis of seed size. J Integr Agric, 2021, 20: 1753-1761.
doi: 10.1016/S2095-3119(20)63343-3 |
[26] |
Shen Y T, Du H L, Liu Y C, Ni L B, Wang Z, Liang C Z, Tian Z X. Update soybean Zhonghuang 13 genome to a golden reference. Sci China Life Sci, 2019, 62: 1257-1260.
doi: 10.1007/s11427-019-9822-2 pmid: 31444683 |
[27] |
Liu D Y, Ma C X, Hong W G, Huang L, Liu M, Liu H, Zeng H P, Deng D J, Xin H, Song J, Xu C H, Sun X W, Hou X L, Wang X W, Zheng H K. Construction and analysis of high-density linkage map using high-throughput sequencing data. PLoS One, 2014, 9: e98855.
doi: 10.1371/journal.pone.0098855 |
[28] | McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-12. |
[29] |
董骥驰, 杨靖, 郭涛, 陈立凯, 陈志强, 王慧. 基于高密度Bin图谱的水稻抽穗期QTL定位. 作物学报, 2018, 44: 938-946.
doi: 10.3724/SP.J.1006.2018.00938 |
Dong J C, Yang J, Guo T, Chen L K, Chen Z Q, Wang H. QTL mapping for heading date in rice using high-density bin map. Acta Agron Sin, 2018, 44: 938-946 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.00938 |
|
[30] |
Hori K, Kobayashi T, Shimizu A, Sato K, Takeda K, Kawasaki S. Efficient construction of high-density linkage map and its application to QTL analysis in barley. Theor Appl Genet, 2003, 107: 806-813.
pmid: 12838391 |
[31] |
Xu X Y, Zeng L, Tao Y, Vuong T, Wan J R, Boerma R, Noe J, Li Z L, Finnerty S, Pathan S M, Shannon J G, Nguyen H T. Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing. Proc Natl Acad Sci USA, 2013, 110: 13469-13474.
doi: 10.1073/pnas.1222368110 pmid: 23898176 |
[32] |
Karikari B, Li S G, Bhat J A, Cao Y, Kong J J, Yang J Y, Gai J Y, Zhao T J. Genome-wide detection of major and epistatic effect QTLs for seed protein and oil content in soybean under multiple environments using high-density bin map. Int J Mol Sci, 2019, 20: 979-1000.
doi: 10.3390/ijms20040979 |
[33] |
Ma Y J, Ma W Y, Hu D Z, Zhang X N, Yuan W J, He X H, Kan G Z, Yu D Y. QTL mapping for protein and sulfur-containing amino acid contents using a high-density bin-map in soybean (Glycine max L. Merr.). J Agric Food Chem, 2019, 67: 12313-12321.
doi: 10.1021/acs.jafc.9b04497 |
[34] |
Huang J H, Ma Q B, Cai Z D, Xia Q J, Li S X, Jia J, Chu L, Lian T X, Nian H, Cheng Y B. Identification and mapping of stable QTLs for seed oil and protein content in soybean [Glycine max (L.) Merr.]. J Agric Food Chem, 2020, 68: 6448-6460.
doi: 10.1021/acs.jafc.0c01271 |
[35] |
Wang J, Mao L, Zeng Z Q, Yu X B, Lian J Q, Feng J, Yang W Y, An J G, Wu H Y, Zhang M G, Liu L Z. Genetic mapping high protein content QTL from soybean ‘Nanxiadou 25’ and candidate gene analysis. BMC Plant Biol, 2021, 21: 388.
doi: 10.1186/s12870-021-03176-2 pmid: 34416870 |
[36] |
Patil G, Vuong T D, Kale S, Valliyodan B, Deshmukh R, Zhu C S, Wu X L, Bai Y H, Yungbiuth D, Lu F, Kumpatla S, Shannon J G, Varshney R K, Nguyen H T. Dissecting genomic hotspots underlying seed protein, oil, and sucrose content in an interspecific mapping population of soybean using high-density linkage mapping. Plant Biotechnol J, 2018, 16: 1939-1953.
doi: 10.1111/pbi.12929 pmid: 29618164 |
[37] |
Mansur L M, Orf J H, Chase K, Jarvik T, Cregan P B, Lark K G. Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci, 1996, 36: 1327-1336.
doi: 10.2135/cropsci1996.0011183X003600050042x |
[38] |
Mao T T, Jiang Z F, Han Y P, Teng W L, Zhao X, Li W B. Identification of quantitative trait loci underlying seed protein and oil contents of soybean across multi-genetic backgrounds and environments. Plant Breed, 2013, 132: 630-641.
doi: 10.1111/pbr.12091 |
[39] | Li X Y, Xue H, Zhang K X, Li W B, Ning H L. Mapping QTLs for protein and oil content in soybean by removing the influence of related traits in a four-way recombinant inbred line population. J Agric Sci, 2020, 158: 659-675. |
[40] |
Wang W, Sun Y, Yang P, Cai X, Yang L, Ma J, Ou Y, Liu T, Ali I, Liu D. A high density SLAF-seq SNP genetic map and QTL for seed size, oil and protein content in upland cotton. BMC Genomics, 2019, 20: 599-610.
doi: 10.1186/s12864-019-5819-6 pmid: 31331266 |
[41] |
Zhang J P, Wang X Z, Lu Y M, Bhusal S J, Song Q J, Cregan P B, Yen Y, Brown M, Jiang G L. Genome-wide scan for seed composition provides insights into soybean quality improvement and the impacts of domestication and breeding. Mol Plant, 2018, 11: 460-472.
doi: S1674-2052(17)30386-6 pmid: 29305230 |
[42] | Kaleri A A, Li L, Zhang Y, Liu W, Jiang C, Zhang Y, Liu C, Kaleri H A, Nizamani M M, Mehmood A, Bahadur S, Li W X, Ning H. Recognition of QTL for seed protein and oil content in two soybean recombinat inbred lines populations. J Anim Plant Sci, 2021, 31: 1669-1685. |
[43] | 邱红梅, 厉志, 于妍, 高淑芹, 马晓萍, 郑宇宏, 孟凡凡, 侯云龙, 王跃强, 王曙明. 基于元分析的大豆含硫氨基酸相关基因挖掘与信息学分析. 中国油料作物学报, 2015, 37: 141-147. |
Qiu H M, Li Z, Yu Y, Gao S Q, Ma X P, Zheng Y H, Meng F F, Hou Y L, Wang Y Q, Wang S M. Mining and analysis of genes related to sulfur-containing amino acids in soybean based on meta-QTL. Chin Oil Crop Sci, 2015, 37: 141-147. (in Chinese with English abstract) | |
[44] |
Li Z W, Meyer S, Essig J S, Liu Y, Schapaugh M A, Muthukrishnan S, Hainline B E, Trick H N. High-level expression of maize γ-zein protein in transgenic soybean (Glycine max). Mol Breed, 2005, 16: 11-20.
doi: 10.1007/s11032-004-7658-6 |
[1] | 李慧, 路依萍, 汪小凯, 王璐瑶, 邱婷婷, 张雪婷, 黄海燕, 崔晓玉. CBL互作蛋白激酶GmCIPK10增强大豆耐盐性[J]. 作物学报, 2023, 49(5): 1272-1281. |
[2] | 吴宗声, 徐彩龙, 李瑞东, 徐一帆, 孙石, 韩天富, 宋雯雯, 吴存祥. 麦秸覆盖还田对大豆耕层物理性状及产量形成的影响[J]. 作物学报, 2023, 49(4): 1052-1064. |
[3] | 舒泽兵, 罗万宇, 蒲甜, 陈国鹏, 梁冰, 杨文钰, 王小春. 基于高产与高效条件下鲜食玉米鲜食大豆带状间作田间配置技术优化[J]. 作物学报, 2023, 49(4): 1140-1150. |
[4] | 杨俊芳, 王宙, 乔麟轶, 王亚, 赵宜婷, 张宏斌, 申登高, 王宏伟, 曹越. 基于高密度遗传图谱的蓖麻种子大小性状QTL定位[J]. 作物学报, 2023, 49(3): 719-730. |
[5] | 杨斌, 乔玲, 赵佳佳, 武棒棒, 温宏伟, 张树伟, 郑兴卫, 郑军. 小麦旗叶叶绿素含量的QTL定位及验证[J]. 作物学报, 2023, 49(3): 744-754. |
[6] | 刘姗姗, 庞婷, 袁晓婷, 罗凯, 陈平, 付智丹, 王小春, 杨峰, 雍太文, 杨文钰. 种间距对不同结瘤特性套作大豆根瘤生长及固氮潜力的影响[J]. 作物学报, 2023, 49(3): 833-844. |
[7] | 才晓溪, 胡冰霜, 沈阳, 王研, 陈悦, 孙明哲, 贾博为, 孙晓丽. GsERF6基因过表达对水稻耐盐碱性的影响[J]. 作物学报, 2023, 49(2): 561-569. |
[8] | 杨硕, 武阳春, 刘鑫磊, 唐晓飞, 薛永国, 曹旦, 王婉, 刘亭萱, 祁航, 栾晓燕, 邱丽娟. 大豆蛋白含量主效位点qPRO-20-1的精细定位[J]. 作物学报, 2023, 49(2): 310-320. |
[9] | 王慧, 吴志医, 张玉娥, 喻德跃. 应用RNA重测序分析低硫条件下大豆基因表达谱[J]. 作物学报, 2023, 49(1): 105-118. |
[10] | 梁政, 柯美玉, 陈志威, 陈栩, 高震. 大豆GmPIN2家族基因调控根系发育功能初探[J]. 作物学报, 2023, 49(1): 24-35. |
[11] | 白智媛, 陈向阳, 郑阿香, 张力, 邹军, 张大同, 陈阜, 尹小刚. 1991—2019年美国大豆区试品种(系)农艺和品质性状时空变化特征[J]. 作物学报, 2023, 49(1): 177-187. |
[12] | 赵凌, 梁文化, 赵春芳, 魏晓东, 周丽慧, 姚姝, 王才林, 张亚东. 利用高密度Bin遗传图谱定位水稻抽穗期QTL[J]. 作物学报, 2023, 49(1): 119-128. |
[13] | 齐阳阳, 窦汝娜, 赵彩桐, 张帜, 李文滨, 姜振峰. 大豆生长节间响应温度和外源GA诱导的赤霉素途径关键基因分析[J]. 作物学报, 2023, 49(1): 62-72. |
[14] | 刘成, 张雅轩, 陈先连, 韩伟, 邢光南, 贺建波, 张焦平, 张逢凯, 孙磊, 李宁, 王吴彬, 盖钧镒. 野生大豆染色体片段代换系群体中与百粒重关联的野生片段及其候选基因[J]. 作物学报, 2022, 48(8): 1884-1893. |
[15] | 怀园园, 张晟瑞, 武婷婷, 李静, 孙石, 韩天富, 李斌, 孙君明. 大豆主要营养品质性状相关分子标记的育种应用潜力评价[J]. 作物学报, 2022, 48(8): 1957-1976. |
|