欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (6): 1518-1531.doi: 10.3724/SP.J.1006.2023.24153

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

BnMAPK2 对甘蓝型油菜耐旱性的影响

袁大双1,2,3(), 张晓莉1,2, 朱冬鸣1,2, 杨友鸿1,2, 姚梦楠1,2, 梁颖1,2,*()   

  1. 1西南大学农学与生物科技学院/油菜工程研究中心, 重庆 400715
    2西南大学现代农业科学研究院, 重庆 400715
    3贵州省六盘水市六枝特区自然资源局, 贵州六盘水 553400
  • 收稿日期:2022-07-01 接受日期:2022-10-10 出版日期:2023-06-12 网络出版日期:2023-04-07
  • 通讯作者: *梁颖, E-mail: yliang@swu.edu.cn
  • 作者简介:E-mail: 1967548139@qq.com
  • 基金资助:
    国家自然科学基金项目(31872876)

Effects of BnMAPK2 on drought tolerance in Brassica napus

YUAN Da-Shuang1,2,3(), ZHANG Xiao-Li1,2, ZHU Dong-Ming1,2, YANG You-Hong1,2, YAO Meng-Nan1,2, LIANG Ying1,2,*()   

  1. 1College of Agronomy and Biotechnology, Southwest University/Chongqing Engineering Research Center for Rapeseed, Chongqing 400715, China
    2Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
    3Natural Resources Bureau of Liuzhi Special Economic Zone, Liupanshui City, Guizhou Province, Liupanshui 553400, Guizhou, China
  • Received:2022-07-01 Accepted:2022-10-10 Published:2023-06-12 Published online:2023-04-07
  • Contact: *E-mail: yliang@swu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31872876)

摘要:

促分裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)级联参与植物多种生物及非生物胁迫应答过程, BnMAPK2属于MAPK级联途径最下游C族基因。本研究成功获得BnMAPK2超量表达(OE-MAPK2)和RNA干扰表达(RNAi-MAPK2)转基因甘蓝型油菜, 在干旱条件下, OE-MAPK2植株耐旱性增加, RNAi-MAPK2植株耐旱性降低。相关生理指标试验结果证明, 在干旱胁迫下, BnMAPK2可减缓叶片脱水程度、促进植物体内脯氨酸积累、降低丙二醛含量, 在干旱后期增加POD活性。比较干旱相关基因(P5CSBSCE1)、BnMAPK2互作干旱相关基因(STRS2CRL1)以及STRS2依赖ABA信号途径相关基因(RD22MYCSnRK2), 在转基因植株和野生型植株中表达水平变化差异, 结果表明, BnMAPK2可正向调控P5CSBSCE1CRL1RD22MYCSnRK2的表达; 负调控STRS2的表达, 并且STRS2依赖ABA信号途径相关基因在OE-MAPK2植株中的表达变化趋势和strs2突变体中一致。由此推测BnMAPK2可通过调控植株体内渗透能力、叶片含水量、细胞膜和蛋白质结构稳定性、清除自由基、降低膜脂过氧化来增加植株耐旱性; 还可通过与STRS2互作, 负调控STRS2基因的表达, 介导STRS2依赖ABA信号途径, 增加植株的耐旱性。本研究为进一步阐明BnMAPK2基因的抗逆作用机制奠定了基础。

关键词: 甘蓝型油菜, BnMAPK2, 耐旱性, qRT-PCR

Abstract:

The mitogen-activated protein kinase (MAPK) cascade is involved in various biotic and abiotic stress responses in plants. BnMAPK2 belongs to the most downstream C-family genes in the MAPK cascade pathway. In this study, BnMAPK2 overexpression (OE-MAPK2) and RNA interference expression (RNAi-MAPK2) transgenic Brassica napus were successfully obtained. Under drought conditions, the drought tolerance of OE-MAPK2 plants was increased, and the drought tolerance of RNAi-MAPK2 plants was decreased. The related physiological indicators showed that under drought stress BnMAPK2 could slow down the degree of leaf dehydration, promote the accumulation of proline in plants, reduce the content of malondialdehyde, and increase the activity of POD at the later stage of drought. We compared the differences in the relative expression levels between transgenic and wild-type plants in the drought-related genes (P5CSB, SCE1), BnMAPK2-interacting drought-related genes (STRS2, CRL1), and STRS2-dependent ABA signaling pathway-related genes (RD22, MYC, SnRK2). The results showed that BnMAPK2 positively regulated the relative expression levels of P5CSB, SCE1, CRL1, RD22, MYC, and SnRK2, negatively regulated the relative expression levels of STRS2, and the relative expression trends of genes related to STRS2-dependent ABA signaling pathway in OE-MAPK2 plants and strs2 mutants were consistent. Therefore, it was speculated that BnMAPK2 can increase plant drought tolerance by regulating the in vivo permeability, leaf water content, cell membrane and protein structure stability, scavenging free radicals, and reducing membrane lipid peroxidation, which can also negatively regulate STRS2 by interacting with STRS2. The relative expression of the genes mediated the STRS2-dependent ABA signaling pathway and increased the drought tolerance of plants. This study lays a foundation for further elucidating the anti-stress mechanism of BnMAPK2 gene.

Key words: Brassica napus, BnMAPK2, drought tolerance, qRT-PCR

表1

本研究所用引物"

引物名称
Primer name
上游引物
Forward sequence (5′-3′)
下游引物
Reverse sequence (5′-3′)
OV-BnMAPK2 CACCATGTTATTGCATAACTTGTCTGAAGG GAGCTCAGAGTTAACAGTTTCTGGA
impk2-A ctGACGTCTATTCCCGGGGACAGAATGTC cgCCATGGTCTGAAGCAGATCAATGGCTAG
impk2-B ctGGATCCTATTCCCGGGGACAGAATGTC cgTCTAGATCTGAAGCAGATCAATGGCTAG
F35s3ND GGAAGTTCATTTCATTTGGAGAG GCTGCATAATTCTCGGGGCAGCA
Bar CGACATCCGCCGTGCCACCGA CAAATCTCGGTGACGGGCAGG
26S CACAATGATAGGAAGAGCCGAC CAAGGGAACGGGCTTGGCAGAATC
ACT7 TGGGTTTGCTGGTGACGAT TGCCTAGGACGACCAACAATACT
MAPK2-q GGGGACAGAATGTCTTAACCAGA GGGAGAGACTCTATGTATCTTTTG
P5CSB CAGAAGCCACAGACTGAACTTG AAACTGCTATCAGTCACCAGCA
PLC CTGATCGATGTTCAGAAGCAAG TCGAGGTGGAGACCGTTACTAT
SCE1 AGGCTTTTTCCACCCTAATGTCTATCCA ACCCTTTTCTTGTACTCAACTGCATCC
STRS2 GAAGCAAGATCATGAGTTCGTC CTGGTTCTGTAACTCTGAGGTT
SnRK ATATCGAGCGAGGTGAGAAGA AGCTGCGTATTCCATAACAATA
BnMYC2 CGACGATAACGCCTCTATGA CCTTCGTTTGTCCCTTCAAT
BnRD22 CGCAGCGGCTGGAGTAAAGA ACCGCGTAAACGCTCGTCAT

图1

转基因植株BnMAPK2和野生型植株表达量的鉴定 相同处理标以不同字母的柱值在 P < 0.05 水平差异显著。"

图2

干旱条件下BnMAPK2基因的表达量 数据表示为平均值±SD (n = 3)。"

图3

干旱胁迫下转基因植株和野生型植株叶片含水量变化和表型分析 数据表示为平均值±SD (n = 3)。*、**和***分别表示在0.05、0.01、0.001概率水平差异显著。显著性均指转基因植株与野生型植株之间比较。"

图4

自然干旱条件下转基因植株和野生型植株脯氨酸和丙二醛的对比 数据表示为平均值±SD (n = 3)。*、**和***分别表示在0.05、0.01、0.001概率水平差异显著。显著性均指转基因植株与野生型植株之间比较。"

图5

自然干旱条件下转基因植株和野生型植株抗氧化酶含量的对比 数据表示为平均值±SD (n = 3)。*、**和***分别表示在0.05、0.01、0.001概率水平差异显著。显著性均指转基因植株与野生型植株之间比较。"

图6

干旱条件下转基因植株和野生型植株中干旱相关基因表达情况 数据表示为平均值±SD (n = 3)。*、**和***分别表示在0.05、0.01、0.001概率水平差异显著。显著性均指转基因植株与野生型植株之间比较。"

图7

干旱条件下BnMAPK2互作基因表达情况 数据表示为平均值±SD (n = 3)。*、**和***分别表示在0.05、0.01、0.001概率水平差异显著。显著性均指转基因植株与野生型植株之间比较。"

图8

ABA途径相关基因表达模式 数据表示为平均值±SD (n = 3)。*、**和***分别表示在0.05、0.01、0.001概率水平差异显著。显著性均指转基因植株与野生型植株之间比较。"

[1] 王汉中. 我国油菜产需形势分析及产业发展对策. 中国油料作物学报, 2007, 29: 101-105.
Wang H Z. Analysis of my country’s rapeseed production and demand situation and industrial development countermeasures. Chin J Oil Crop Sci, 2007, 29: 101-105. (in Chinese with English abstract)
[2] 杨春杰, 张学昆, 邹崇顺, 程勇, 郑普英, 李桂英. PEG-6000模拟干旱胁迫对不同甘蓝型油菜品种萌发和幼苗生长的影响. 中国油料作物学报, 2007, 29: 425-430.
Yang C J, Zhang X K, Zou C S, Cheng Y, Zheng P Y, Li G Y. Effects of PEG-6000 simulated drought stress on germination and seedling growth of different Brassica napus varieties. Chin J Oil Crop Sci, 2007, 29: 425-430. (in Chinese with English abstract)
[3] 伊淑丽. 高温对不同基因型甘蓝型油菜影响的生理生化机理研究. 西南大学博士学位论文, 重庆, 2008.
Yi S L. Physiological and Biochemical Mechanisms of the Effects of High Temperature on Different Genotypes of Brassica napus. PhD Dissertation of Southwest University, Chongqing, China, 2008. (in Chinese with English abstract)
[4] Xu J, Zhang S. Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends Plant Sci, 2015, 20: 56-64.
doi: 10.1016/j.tplants.2014.10.001 pmid: 25457109
[5] Danquah A, Zelicourt A D, Colcombet J, Hirt H. The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv, 2014, 32: 40-52.
doi: 10.1016/j.biotechadv.2013.09.006 pmid: 24091291
[6] Hamel L P, Nicole M C, Sritubtim S, Morency M J, Ellis M, Ehlting J, Beaudoin N, Barbazuk B, Dan K, Lee J. Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci, 2006, 11: 192-198.
doi: 10.1016/j.tplants.2006.02.007
[7] Kumar K, Raina S K, Sultan S M. Arabidopsis MAPK signaling pathways and their cross talks in abiotic stress response. J Plant Biochem Biotechnol, 2020, 29: 1-15.
doi: 10.1007/s13562-020-00550-3
[8] Mahmood T, Khalid S, Abdullah M, Ahmed Z, Shah M K N, Ghafoor A, Du X. Insights into drought stress signaling in plants and the molecular genetic basis of cotton drought tolerance. Cells, 2019, 9: 105.
doi: 10.3390/cells9010105
[9] Kovtun Y, Chiu W L, Tena G, Sheen J. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA, 2000, 97: 2940-2945.
doi: 10.1073/pnas.97.6.2940 pmid: 10717008
[10] Du X, Jin Z, Zhang L, Liu X, Yang G, Pei Y. H2S is involved in ABA-mediated stomatal movement through MPK4 to alleviate drought stress in Arabidopsis thaliana. Plant Soil, 2019, 435: 295-307.
doi: 10.1007/s11104-018-3894-0
[11] 王伟威, 林浩, 唐晓飞, 魏崃, 董兴月, 吴广锡, 刘丽君. 干旱胁迫下大豆相关基因的表达特性. 分子植物育种, 2014, 12: 903-908.
Wang W W, Lin H, Tang X F, Wei L, Dong X Y, Wu G X, Liu L J. Expression characteristics of soybean-related genes under drought stress. Mol Plant Breed, 2014, 12: 903-908. (in Chinese with English abstract)
[12] 潘月云, 朱寿松, 张银东, 陈银华. 木薯促分裂原激活蛋白激酶MeMAPK2基因的克隆和功能分析. 分子植物育种, 2019, 17: 1112-1120.
Pan Y Y, Zhu S S, Zhang Y D, Chen Y H. Cloning and functional analysis of cassava mitogen-activated protein kinase MeMAPK2 gene. Mol Plant Breed, 2019, 17: 1112-1120 (in Chinese with English abstract)
[13] Ortiz-Masia D, Perez-Amador M A, Carbonell P, Aniento F, Carbonell J, Marcote M J. Characterization of PsMPK2, the first C1 subgroup MAP kinase from pea (Pisum sativum L.). Planta, 2008, 227: 1333-1342.
doi: 10.1007/s00425-008-0705-5 pmid: 18283488
[14] Agrawal G K, Rakwal R, Iwahashi H. Isolation of novel rice (Oryza sativa L.) multiple stress responsive MAP kinase gene, OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cues. Biochem Biophy Res Commun, 2002, 294: 1009-1016.
doi: 10.1016/S0006-291X(02)00571-5
[15] 陆俊杏. 甘蓝型油菜及其亲本物种白菜和甘蓝MAPK C组基因家族的克隆及甘蓝型油菜MAPK1的功能鉴定. 西南大学博士学位论文, 重庆, 2013.
Lu J X. Cloning of Brassica napus and Its Parent Species Chinese Cabbage and Brassica napus MAPK Group C Gene Family and Functional Identification of Brassica napus MAPK1. PhD Dissertation of Southwest University, Chongqing, China, 2013. (in Chinese with English abstract)
[16] Wang Z, Wan Y Y, Meng X J, Zhang X L, Yao M N, Miu W J, Zhu D M, Yuan D S, Lu K, Li J N, Qu C M, Liang Y. Genome-wide identification and analysis of MKK and MAPK gene families in Brassica species and response to stress in Brassica napus. Int J Mol Sci, 2021, 22: 544.
doi: 10.3390/ijms22020544
[17] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析. 作物学报, 2022, 48: 840-850.
doi: 10.3724/SP.J.1006.2022.14061
Yuan D S, Deng W Y, Wang Z, Pen Q, Zhang X L, Yao M N, Miu W J, Zhu D M, Li J N, Liang Y. Cloning and functional analysis of BnMAPK2 gene in Brassica napus. Acta Agron Sin, 2022, 48: 840-850. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.14061
[18] Wang Y, Wu W H. Potassium transport and signaling in higher plants. Annu Rev Plant Biol, 2013, 64: 451-476.
doi: 10.1146/annurev-arplant-050312-120153 pmid: 23330792
[19] 康雯. 土壤自然失水胁迫对地锦幼苗生理生化特性的影响. 东北林业大学硕士学位论文, 黑龙江哈尔滨, 2010.
Kang W. Effect of Soil Natural Water Stress on Physiological and Biochemical Indexes in Parthenocissus tricuspidata Seedling. Ms Thesis of Northeast Forestry University, Harbin, Heilongjiang, China, 2010. (in Chinese with English abstract)
[20] 张治安, 张美善, 蔚荣海. 植物生理学实验指导. 北京: 中国农业科学技术出版社, 2004. pp 265-296.
Zhang Z A, Zhang M S, Wei R H. Plant Physiology Experiment Guide. Beijing: China Agricultural Science and Technology Press, 2004. pp 265-296. (in Chinese with English abstract)
[21] 宗学凤, 王三根. 植物生理研究技术. 重庆: 西南师范大学出版社, 2011.
Zong X F, Wang S G. Plant Physiology Research Technology. Chongqing: Southwest Normal University Press, 2011. (in Chinese)
[22] Kant P, Kant S, Gordon M, Shaked R, Barak S. Stress response suppressor 1 and stress response suppressor 2, two DEAD-Box RNA helicases that attenuate Arabidopsis responses to multiple abiotic stresses. Plant Physiol, 2007, 145: 814-830.
doi: 10.1104/pp.107.099895
[23] Prakash S, Wu X, Bhat S R. History, evolution and domestication of Brassica crops. Plant Breed Rev, 2012, 35: 19-84.
[24] 朱斌, 陆俊杏, 彭茜, 翁昌梅, 王淑文, 余浩, 李加纳, 卢坤, 梁颖. 甘蓝型油菜MAPK7基因家族及其启动子的克隆与表达分析. 作物学报, 2013, 39: 789-805.
doi: 10.3724/SP.J.1006.2013.00789
Zhu B, Lu J X, Peng Q, Weng C M, Wang S W, Yu H, Li J N, Lu K, Liang Y. Cloning and expression analysis of MAPK7 gene family and its promoter in Brassica napus. Acta Agron Sin, 2013, 39: 789-805. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.00789
[25] Szabados L, Savouré A. Proline: a multifunctional amino acid. Trends Plant Sci, 2010, 15: 89-97.
doi: 10.1016/j.tplants.2009.11.009 pmid: 20036181
[26] Kishor P, Hong Z, Miao G H, Hu C, Verma D. Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol, 1995, 108: 1387-1394.
doi: 10.1104/pp.108.4.1387 pmid: 12228549
[27] Hare P D, Cress W A. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul, 1997, 21: 79-102.
doi: 10.1023/A:1005703923347
[28] Bandurska H, Niedziela J, Pietrowska-Borek M, Nuc K, Chadzinikolau T, Radzikowska D. Regulation of proline biosynthesis and resistance to drought stress in two barley (Hordeum vulgare L.) genotypes of different origin. Plant Physiol Biochem, 2017, 118: 427-437.
doi: 10.1016/j.plaphy.2017.07.006
[29] Sharma P, Dubey R S. Ascorbate peroxidase from rice seedlings: properties of enzyme isoforms, effects of stresses and protective roles of osmolytes. Plant Sci, 2004, 167: 541-550.
doi: 10.1016/j.plantsci.2004.04.028
[30] Türkan I, Bor M, Ozdemir F, Koca H. Differential responses of lipid peroxidation and antioxidants in the leaves of drought- tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Sci, 2005, 168: 223-231.
doi: 10.1016/j.plantsci.2004.07.032
[31] Per T S, Khan N A, Reddy P S, Masood A, Hasanuzzaman M, Khan M I R, Anjum N A. Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: phytohormones, mineral nutrients and transgenics. Plant Physiol Biochem, 2017, 115: 126-140
doi: 10.1016/j.plaphy.2017.03.018
[32] Chaves M M, Oliveira M M. Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot, 2004, 407: 2365-2384.
[33] Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci, 2002, 7: 405-410.
doi: 10.1016/s1360-1385(02)02312-9 pmid: 12234732
[34] Zhang C S, Lu Q, Verma D P. Removal of feedback inhibition of delta 1-pyrroline-5-carboxylate synthetase, a bifunctional enzyme catalyzing the first two steps of proline biosynthesis in plants. J Biol Chem, 1995, 270: 20491-20496.
doi: 10.1074/jbc.270.35.20491 pmid: 7657626
[35] Bandurska H. Does proline accumulated in leaves of water deficit stressed barley plants confine cell membrane injuries? II: Proline accumulation during hardening and its involvement in reducing membrane injuries in leaves subjected to severe osmotic stress. Acta Physiol Plant, 2001, 23: 483-490.
doi: 10.1007/s11738-001-0059-0
[36] Parida A K, Dagaonkar V S, Phalak M S, Aurangabadkar L P. Differential responses of the enzymes involved in proline biosynthesis and degradation in drought tolerant and sensitive cotton genotypes during drought stress and recovery. Acta Physiol Plant, 2008, 30: 619-627.
doi: 10.1007/s11738-008-0157-3
[37] Chakraborty K, Sairam R K, Bhattacharya R C. Salinity-induced expression of pyrrolline-5-carboxylate synthetase determine salinity tolerance in Brassica spp. Acta Physiol Plant, 2012, 34: 1935-1941.
doi: 10.1007/s11738-012-0994-y
[38] Pichler A, Fatouros C, Lee H, Eisenhardt N. SUMO conjugation: a mechanistic view. Biomol Concepts, 2017, 8: 13-36.
doi: 10.1515/bmc-2016-0030 pmid: 28284030
[39] Eisenhardt N, Ilic D, Nagamalleswari E, Pichler A. Biochemical characterization of SUMO-conjugating enzymes by in vitro sumoylation assays. Methods Enzymol. 2019, 618: 167-185.
[40] Ghimire S, Tang X, Liu W, Fu X, Zhang H, Zhang N, Si H. SUMO conjugating enzyme: a vital player of SUMO pathway in plants. Physiol Mol Biol Plants, 2021, 27: 2421-2431.
doi: 10.1007/s12298-021-01075-2
[41] Wang H, Wang M, Xia Z. Overexpression of a maize SUMO conjugating enzyme gene (ZmSCE1) increases sumoylation levels and enhances salt and drought tolerance in transgenic tobacco. Plant Sci, 2019, 281: 113-121.
doi: 10.1016/j.plantsci.2019.01.020
[42] Joo J, Choi D H, Lee Y H, Seo H S, Song S. The rice SUMO conjugating enzymes OsSCE1 and OsSCE3 have opposing effects on drought stress. J Plant Physiol, 2019, 240: 152993.
doi: 10.1016/j.jplph.2019.152993
[43] Stergaard L, Lauvergeat V V, Naested H, Mattsson O, Mundy J. Two differentially regulated Arabidopsis genes define a new branch of the DFR superfamily. Plant Sci, 2001, 160: 463-472.
doi: 10.1016/S0168-9452(00)00407-6
[44] Yin X, Bai YL, Ye T, Yu M, Wu Y, Feng Y Q. Cinnamoyl coA: NADP oxidoreductase-like 1 regulates abscisic acid response by modulating phaseic acid homeostasis in Arabidopsis thaliana. J Exp Bot, 2022, 73: 860-872.
doi: 10.1093/jxb/erab474
[45] Schmid S R, Linder P. D-E-A-D protein family of putative RNA helicases. Mol Microbiol, 1992, 6: 283-291.
pmid: 1552844
[46] Kim J S, Kim K A, Oh T R, Park C M, Kang H. Functional characterization of DEAD-box RNA helicases in Arabidopsis thaliana under abiotic stress conditions. Plant Cell Physiol, 2008, 49: 1563-1571.
doi: 10.1093/pcp/pcn125
[47] Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K. Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell, 1997, 9: 1859-1868.
doi: 10.1105/tpc.9.10.1859 pmid: 9368419
[48] Huai J, Wang M, He J, Zheng J, Dong Z, Lv H, Zhao J, Wang G. Cloning and characterization of the SnRK2 gene family from Zea mays. Plant Cell Rep, 2008, 27: 1861-1868.
doi: 10.1007/s00299-008-0608-8
[49] 沈元月, 黄丛林, 张秀海, 曹鸣庆. 植物抗旱的分子机制研究. 中国生态农业学报, 2002, 10: 30-34.
Shen Y Y, Huang C L, Zhang X H, Cao M Q. Molecular mechanism of plant drought resistance. Chin J Ecol Agric, 2002, 10: 30-34. (in Chinese with English abstract)
[1] 唐玉凤, 姚敏, 何昕, 官梅, 刘忠松, 官春云, 钱论文. 甘蓝型油菜SGR基因家族的全基因组鉴定与功能分析[J]. 作物学报, 2023, 49(7): 1829-1842.
[2] 杨一丹, 何督, 刘静, 张岩, 陈飞志, 巫燕飞, 杜雪竹. 寄主诱导的基因沉默干扰核盘菌致病基因OAH在甘蓝型油菜抗菌核病中的应用[J]. 作物学报, 2023, 49(6): 1542-1550.
[3] 杨太桦, 杨福权, 郜耿东, 殷帅, 金庆东, 徐林珊, 蒯婕, 汪波, 徐正华, 葛贤宏, 王晶, 周广生. 初步探究LncRNA在甘蓝型油菜生态型分化中的作用[J]. 作物学报, 2023, 49(5): 1197-1210.
[4] 张盈川, 吴晓明玉, 陶保龙, 陈丽, 鲁海琴, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-miR43-FBXL调控模块参与甘蓝型油菜铝胁迫的功能分析[J]. 作物学报, 2023, 49(5): 1211-1221.
[5] 陈慧, 肖清, 汪华栋, 文静, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 易斌. 甘蓝型油菜SUMO蛋白家族成员鉴定及Bna.SUMO1.C08基因的功能研究[J]. 作物学报, 2023, 49(4): 917-925.
[6] 陈晓汉, 王丽琴, 汪华栋, 肖清, 陶保龙, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. BnABCI8影响甘蓝型油菜叶绿体发育[J]. 作物学报, 2023, 49(4): 893-905.
[7] 柏成成, 姚小尧, 王雨璐, 王赛玉, 李金莹, 蒋有为, 靳舒荣, 陈春杰, 刘渔, 魏星玥, 徐新福, 李加纳, 倪郁. 甘蓝型油菜长链烷烃合成相关基因的克隆及其与BnCER1-2的互作[J]. 作物学报, 2023, 49(4): 1016-1027.
[8] 王珍, 张晓莉, 刘淼, 姚梦楠, 孟晓静, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1超量表达及中油821的转录差异表达分析[J]. 作物学报, 2023, 49(3): 856-868.
[9] 张文宣, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 利用CRISPR/Cas9技术突变BnaMPK6基因降低甘蓝型油菜的耐盐性[J]. 作物学报, 2023, 49(2): 321-331.
[10] 濮雪, 王凯彤, 张宁, 司怀军. 马铃薯StMAPKK4基因表达分析及互作蛋白筛选与鉴定[J]. 作物学报, 2023, 49(1): 36-45.
[11] 柯会锋, 张震, 谷淇深, 赵艳, 李培育, 张冬梅, 崔彦茹, 王省芬, 吴立强, 张桂寅, 马峙英, 孙正文. 低磷胁迫下陆地棉苗期根生物量相关性状全基因组关联分析[J]. 作物学报, 2022, 48(9): 2168-2179.
[12] 张超, 杨博, 张立源, 肖忠春, 刘景森, 马晋齐, 卢坤, 李加纳. 基于QTL定位和全基因组关联分析挖掘甘蓝型油菜收获指数相关位点[J]. 作物学报, 2022, 48(9): 2180-2195.
[13] 李胜婷, 徐远芳, 常玮, 刘亚俊, 谷嫄, 朱红, 李加纳, 卢坤. Bna.C02SWEET15通过光周期途径正向调控油菜开花时间[J]. 作物学报, 2022, 48(8): 1938-1947.
[14] 张天宇, 王越, 刘影, 周婷, 岳彩鹏, 黄进勇, 华营鹏. 油菜脯氨酸代谢基因家族的生物信息学分析与核心成员鉴定[J]. 作物学报, 2022, 48(8): 1977-1995.
[15] 戴丽诗, 常玮, 张赛, 钱明超, 黎小东, 张凯, 李加纳, 曲存民, 卢坤. Bna-novel-miR36421调节拟南芥株型和花器官发育的功能验证[J]. 作物学报, 2022, 48(7): 1635-1644.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .