欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (11): 1682-1690.doi: 10.3724/SP.J.1006.2019.91007

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

不同水分条件下HMW-GS对小麦品质的影响

赵佳佳1,马小飞1,郑兴卫1,郝建宇1,乔玲1,葛川1,王爱爱1,张树伟2,张晓军2,姬虎太1,郑军1,*()   

  1. 1 山西省农业科学院小麦研究所, 山西临汾 041000
    2 山西省农业科学院作物科学研究所, 山西太原 030006
  • 收稿日期:2019-01-21 接受日期:2019-06-12 出版日期:2019-11-12 网络出版日期:2019-07-12
  • 通讯作者: 郑军
  • 作者简介:E-mail: jjzhao@sxagri.ac.cn
  • 基金资助:
    本研究由国家重点研发计划项目(2017YFD0100600);山西省重点研发计划项目(201703D211007);山西省重点研发计划项目(201803D4210);创新平台项目(201605D151002)

Effects of HMW-GS on wheat quality under different water conditions

ZHAO Jia-Jia1,MA Xiao-Fei1,ZHENG Xing-Wei1,HAO Jian-Yu1,QIAO Ling1,GE Chuan1,WANG Ai-Ai1,ZHANG Shu-Wei2,ZHANG Xiao-Jun2,JI Hu-Tai1,ZHENG Jun1,*()   

  1. 1 Institute of Wheat Research, Shanxi Academy of Agricultural Sciences, Linfen 041000, Shanxi, China
    2 Institute of Crop Science Research, Shanxi Academy of Agricultural Sciences, Taiyuan 030006, Shanxi, China
  • Received:2019-01-21 Accepted:2019-06-12 Published:2019-11-12 Published online:2019-07-12
  • Contact: Jun ZHENG
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2017YFD0100600);the Nation Key Research and Development Program of Shanxi Province(201703D211007);the Nation Key Research and Development Program of Shanxi Province(201803D4210);Innovation Platform(201605D151002)

摘要:

以SY95-71 (1, 13+16, 5+10)和CH7034 (1, 14+15, 5'+12)重组自交系研究了高分子量麦谷蛋白(HMW-GS)在不同水分条件下对品质性状的影响。结果表明, Glu-1位点各亚基及组合对品质性状的效应受水分条件影响, 当Glu-A1为1, Glu-D1为5'+12时, 14+15面团形成时间(雨养)和最大抗延阻力(灌溉)明显高于13+16, 增幅分别为5.10%和6.16%; Glu-A1位点为1, Glu-B1为13+16时, 含5+10亚基的沉降值(灌溉), 以及雨养条件下拉伸面积和最大抗延阻力显著高于5'+12; 1, 14+15, 5+10组合对沉降值(雨养和灌溉)和拉伸面积(灌溉)的效应大于1, 13+16, 5'+12, 增幅分别为7.49%、9.54%和10.39%。各组合的蛋白质含量和延伸性、1, 13+16, 5+10的稳定时间以及1, 14+15, 5+10的稳定时间和拉伸面积受水分影响较大, 1, 13+16, 5+10和1, 14+15, 5+10的面包体积在雨养条件下大于灌溉条件下, 1, 14+15, 5'+12和1, 13+16, 5'+12则反之。研究结果对选育和推广符合当地生产用途和栽培模式的品种具有指导作用。

关键词: 高分子量麦谷蛋白, 重组自交系, 品质性状, 灌溉, 雨养

Abstract:

The effects of high molecular weight glutenin subunit (HMW-GS) on quality traits were evaluated using recombine inbred lines (RILs) under different water conditions. Different water regimes influenced effects of subunits at Glu-1 loci on quality traits. Under the same background of 1 at Glu-A1 and 5'+12 at Glu-D1, the 14+15 had more significant effects on the development time under rain-fed and max resistance under well-watered regime than 13+16, with the increase of 5.10% and 6.16%, respectively. The combination of 5+10 had much more significant effects on Zeleny sedimentation under well-water regime and stretch area and max resistance under rain-fed than 5'+12. The effect of (1, 14+15, 5+10) on Zeleny sedimentation was significantly higher than that of (1, 13+16, 5'+12), and the stretch area under well-watered condition had similar trends. The protein content and extensibility of each combination, and the stability time and stretch area of (1, 14+15, 5+10) and the stability time of (1, 13+16, 5+10) were significantly influenced by water conditions, and the performance of other quality traits was relatively stable. Compared with the condition of well-watered, the bread volume of (1, 13+16, 5+10) and (1, 14+15, 5+10) were slightly larger under rain-fed conditions, while (1, 14+15, 5'+12) and (1, 13+16, 5'+12) were opposite. The results of the study have a positive guiding role to select and popularize varieties suitable for production and cultivation at local area.

Key words: HMW-GS, RIL, quality traits, well-watered, rain-fed

图1

高分子量麦谷蛋白亚基的SDS-PAGE分析 M1: 烟农19 (1, 17+18, 5+10); M2: 陕225 (1, 14+15, 2+12); M3: 师栾02-1 (1, 7+9, 5+10); M4: 中国春(N, 7+8, 2+12)。1: CH7034; 10: SY95-71; 2~9: RIL部分株系。"

表1

SY95-71/CH7034重组自交系群体HMW-GS组成"

Glu-A1 Glu-B1 Glu-D1 株系数量
Number of RILs
比例
Ratio (%)
1 13+16 5+10 43 23.89
1 13+16 5'+12 41 22.78
1 14+15 5+10 57 31.67
1 14+15 5'+12 39 21.67

表2

不同年度及不同水分条件间品质性状相关系数"

相关性
Correlation
蛋白质
Protein
content (%)
沉降值
Zeleny
(mL)
形成时间
Development time (min)
稳定时间
Stability time (min)
拉伸面积
Stretch area (cm2)
最大抗延阻力
Max resistance (B.U.)
延伸性
Tractility
(mm)
不同年度(WW)
Different years (WW)
0.75** 0.75** 0.66** 0.64** 0.66** 0.63** 0.80**
不同年度(RF)
Different years (RF)
0.78** 0.74** 0.62** 0.68** 0.67** 0.68** 0.71**
不同水分(2017年)
Water conditions (2017)
0.37 0.71** 0.69** 0.55* 0.51* 0.59** 0.42
不同水分(2018年)
Water conditions (2018)
0.39 0.63** 0.57** 0.42* 0.53* 0.53** 0.41

表3

不同水分条件下RIL群体品质性状"

性状
Trait
处理
Treatment
亲本 Parent RILs
SY95-71 CH7034 均值Mean 幅度Range 变异系数CV (%)
蛋白质含量
Protein content (%)
RF 16.00±0.14 b 18.44±0.24 a 16.37±0.10 14.03-19.08 7.19
WW 15.31±0.14 b 16.55±0.26 a 14.90±0.09 12.18-18.12 7.32
沉降值
Zeleny (mL)
RF 37.98±2.83 a 47.94±1.95 a 37.28±0.43 28.12-49.15 13.13
WW 40.47±6.43 a 45.33±3.53 a 36.17±0.57 20.58-49.38 17.02
形成时间
Development time (min)
RF 5.65±0.09 a 5.51±0.12 a 5.25±0.04 4.12-6.63 8.73
WW 5.68±1.68 a 5.66±1.02 a 5.16±0.05 3.82-6.50 11.79
稳定时间
Stability time (min)
RF 7.12±0.11 a 7.15±0.16 a 6.89±0.06 4.90-9.15 10.74
WW 6.36±0.55 a 7.78±0.54 a 7.29±0.08 4.83-9.40 12.48
拉伸面积
Stretch area (cm2)
RF 96.28±15.26 a 107.47±6.53 a 96.95±1.18 54.32-139.5 14.04
WW 85.5±39.17 a 115.45±22.88 a 101.70±1.65 60.50-138.33 18.72
最大抗延阻力
Max resistance (B.U.)
RF 564.55±96.39 a 600.76±38.24 a 522.29±6.43 358.0-725.5 14.20
WW 422.92±78.08 a 605.62±88.05 a 510.90±8.50 300.5-720.5 19.18
延伸性
Extensibility (mm)
RF 172.28±4.55 b 198.84±4.12 a 173.23±1.04 145.27-201.53 6.91
WW 170.6±0.41 b 181.46±1.41 a 161.77±1.10 132.4-195.78 7.82

表4

Glu-1位点等位基因品质性状效应比较"

亚基
Subunit
蛋白质含量
Protein content (%)
沉降值
Zeleny (mL)
形成时间
Development time (min)
稳定时间
Stability time (min)
拉伸面积
Stretch area (cm2)
最大抗延阻力
Max Resistance (B.U.)
延伸性
Extensibility (mm)
RF WW RF WW RF WW RF WW RF WW RF WW RF WW
13+16 16.31 A 14.89 B 36.85 a 35.85 a 5.17 a 5.11 a 6.87 B 7.26 A 96.33 a 98.96 a 521.16 A 512.01 B 172.91 A 161.52 B
14+15 16.43 A 14.90 B 37.75 a 36.58 a 5.32 a 5.20 a 6.92 B 7.31 A 97.80 B 104.6 A 522.09 a 523.65 a 173.50 A 161.98 B
LSD 0.38 0.04 0.72 0.34 3.70* 0.66 0.15 0.12 0.23 2.58 71.74** 0.34 0.08 0.04
变异比Percentage (%) 0.73 0.07 2.41 2.02 2.86 1.75 0.73 0.69 1.5 5.54 0.18 2.25 0.34 0.28
5+10 16.37 A 14.95 B 37.69 a 37.49 a 5.27 a 5.21 a 6.87 B 7.35 A 99.07 b 103.93 a 533.29 a 515.89 a 173.99 A 162.18 B
5'+12 16.39 A 14.87 B 36.41 a 34.95 a 5.22 a 5.10 a 6.93 a 7.21 a 95.00 a 99.60 a 509.96 B 519.77 A 172.27 A 161.24 B
LSD 0.2 0.39 3.89* 5.34* 0.33 1.05 0.21 0.68 2.72 2.06 97.3** 0.11 0.68 0.18
变异比Percentage (%) 0.12 0.54 3.45 7.01 0.95 2.13 0.87 1.92 4.19 4.25 4.47 0.75 0.99 0.58

表5

不同HMW-GS组合的品质效应"

组合
Subunit composition
蛋白质
Protein content (%)
沉降值
Zeleny (mL)
形成时间
Development time (min)
稳定时间
Stability time (min)
拉伸面积
Stretch area (cm2)
最大抗延阻力
Max Resistance (B.U.)
延伸性
Extensibility (mm)
RF WW F % RF WW F % RF WW F % RF WW F % RF WW F % RF WW F % RF WW F %
1, 13+16, 5+10 16.43 a 15.11 a 23.83** 8.37 37.91 ab 37.42 a 0.08 1.3 5.23 ab 5.22 a 0.01 0.25 6.87 a 7.25 a 4.82* 5.38 100.19 a 102.15 ab 0.14 2.81 541.10 a 522.19 ab 1.36 5.89 175.54 a 163.60 a 208.58** 7.04
1, 13+16, 5'+12 16.18 a 14.66 a 21.06** 9.85 35.79 b 34.28 b 1.06 4.31 5.09 b 5.00 a 0.42 1.92 6.86 a 7.26 a 2.67 5.68 92.56 b 95.76 b 0.51 4.47 501.22 b 501.82 b 0.001 0.12 170.11 a 159.31 a 110.69** 6.56
1, 14+15, 5+10 16.32 a 14.83 a 36.00** 9.51 38.47 a 37.55 a 1.48 2.42 5.29 ab 5.20 a 0.73 1.85 6.86 a 7.42 a 10.46** 7.72 97.95 ab 105.71 a 5.91* 5.84 525.48 ab 509.58 ab 0.76 3.07 172.80 a 161.10 a 260.58** 7.01
1, 14+15, 5'+12 16.61 a 15.01 a 34.42** 10.13 37.02 ab 35.61 ab 0.45 3.88 5.35 a 5.20 a 0.91 2.85 6.99 a 7.16 a 0.48 2.38 97.64 ab 103.44 ab 1.9 5.69 518.69 ab 537.72 a 0.86 0.84 174.50 a 163.24 a 139.32** 6.67

图2

雨养条件下不同HMW-GS组合面包比较"

图3

雨养和灌溉下不同HMW-GS组合面包体积 SC含义与图2一致。"

[1] Payne P I, Corfield K G, Blackman J A . Correlation between the inheritance of certain high-molecular-weight subunits of glutenin and bread-making quality in progenies of six crosses of bread wheat. J Sci Food Agric, 1981,32:51-60.
[2] Lawrence G J, Shepherd K W . Inheritance of glutenin protein subunits of the high molecular wheat. Theor Appl Genet, 1981,60:333-337.
[3] Payne P I, Lawrence G J . Catalogue of alleles for the complex loci, Glu-A1, Glu-B1 and Glu-D1, which code for high molecular-weight subunits of glutenin in hexaploid wheat. Cereal Res Commun, 1983,11:29-35.
[4] Lawrence G J, Macritchie F, Wrigley C W . Dough and baking quality of wheat lines deficient in glutenin subunits controlled by the Glu-A1, Glu-B1 and Glu-D1 loci. J Cereal Sci, 1988,7:109-112.
[5] Payne P I, Mark A N, Krattiger A F, Holt L M . The relationship between HMW glutenin subunit composition and bread-making quality of British-grown wheat varieties. J Sci Food Agric, 1987,40:51-65.
[6] Branlard G, Dardcvet M, Saccomano R, Lagoutte F, Gourdon J . Genetic diversity of wheat storage proteins and bread wheat quality. Euphytica, 2001,119:59-67.
[7] Lagudh E S, Halloran G M . Phylogenetic relationships of Triticum tauschii the D genome donor to hexaploid wheat: I. Variation in HMW subunits of glutenin and gliadins. Theor Appl Genet, 1988,75:592-598.
[8] 韩彬 , Shepherd K W. 低分子量谷蛋白亚基与醇溶蛋白的关系及其对小麦烘烤品质的影响. 中国农业科学, 1991,24(4):19-25.
Han B, Shepherd K W . The correlation between LMW glutenin subunits and gliadins and their effects on bread-making quality in the progeny of two wheats. Sci Agric Sin, 1991,24(4):19-25 (in Chinese with English abstract).
[9] Pena R J, Zacro-Hemandez J, Mujeeb-Kazi A . Glutenin subunits composition and bread-making quality characteristies of synthetic hexaploid Wheats derived from Triticum turgidum × Triticum tauschii (coss) Schmal crosses. J Cereal Sci, 1995,21:15-23.
[10] Sontag-Strohm T, Payne P I, Salovaara H . Effect of allelic variation of glutenin subunits and gliadins on baking quality in the progeny of two biotypes of bread wheat cv. Ulla. J Cereal Sci, 1996,24:115-124.
[11] 王晨阳, 郭天财, 彭羽, 朱云集, 马冬云, 张灿军 . 花后灌水对小麦籽粒品质性状及产量的影响. 作物学报, 2004,30:1031-1035.
Wang C Y, Guo T C, Peng Y, Zhu Y J, Ma D Y, Zhang C J . Effects of post-anthesis irrigation on grain quality indices and yield in winter wheat (Triticum aestivum L.). Acta Agron Sin, 2004,30:1031-1035 (in Chinese with English abstract).
[12] Popineau Y, Cornec M, Lefebvre J, Marchylo B . Influence of high Mr glutenin subunits on glutenin polymers and rheological properties of glutens and gluten subfractions of near-isogenic lines of wheat Sicco. J Cereal Sci, 1994,19:231-241.
[13] Nieto T, Perretant M . R, Rousset M. Effect of gliadins and HMW and LMW subunits of glutenin on dough properties in the F6 recombinant inbred lines from a bread wheat cross. Theor Appl Genet, 1994,88:81-88.
[14] Langner M, Krystkowiak K, Salmanowicz B P, Adamski T, Krajewski P, Kaczmarek Z, Surma M . The influence of Glu-1 and Glu-3 loci on dough rheology and bread-making properties in wheat( Triticum aestivum L.) doubled haploid lines. J Sci Food Agric, 2017,97:5083-5091.
[15] Deng Z Y, Tian J C, Sun G X . Influence of high molecular weight glutenin subunit substitution on rheological behavior and bread-baking quality of near-isogenic lines developed from Chinese wheats. Plant Breed, 2005,124:428-431.
[16] Gao X, Liu T H, Yu J G, Li L Q, Feng Y, Li X J . Influence of high-molecular-weight glutenin subunit composition at Glu-B1 locus on secondary and micro structures of gluten in wheat(Triticum aestivum L.). Food Chem, 2016,197:1184-1190.
[17] Pang B S, Yang Y S, Wang L F, Zhang X Y, Yu Y J . Complementary effect of high-molecular-weight glutenin subunits on bread-making quality in common wheat. Acta Agron Sin, 2009,35:1379-1385.
[18] 刘丽, 周阳, 何中虎, 阎俊, 张艳, Pena R J . Glu-1Glu-3等位变异对小麦加工品质的影响. 作物学报, 2004,30:959-968.
Liu L, Zhou Y, He Z H, Yan J, Zhang Y, Pena R J . Effect of allelic variation at Glu-1 and Glu-3 loci on processing quality in common wheat. Acta Agron Sin, 2004,30:959-968 (in China with English abstract).
[19] 张华文, 田纪春, 管延安, 杨延兵, 任卫国 . 利用RIL-6群体研究HMW-GS对小麦品质指标的影响. 中国农业科学, 2007,40:464-471.
Zhang H W, Tian J C, Guan Y A, Yang Y B, Ren W G . A study of the effects of high molecular weight glutenin subunits (HMW-GS) on quality traits, using recombinant inbred line-6 (RIL-6) population. Sci Agric Sin, 2007,40:464-471 (in Chinese with English abstract).
[20] 张延滨, 赵海滨, 宋庆杰, 于海洋, 张春利, 辛文利, 肖志敏 . 龙麦20小麦品种中7+8*亚基和17+18亚基近等基因系间的品质差异. 中国农业科学, 2008,41:1536-1541.
Zhang Y B, Zhao H B, Song Q J, Yu H Y, Zhang C L, Xin W L, Xiao Z M . Quality difference of near-isogenic lines with HMW glutenin subunits 7+8* and 17+18 in wheat cultivars Longmai 20. Sci Agric Sin, 2008,41:1536-1541 (in Chinese with English abstract).
[21] Mary J G, Jeffrey C S, Katherine O B, Edward S . Relative sensitivity of spring wheat grain yield and quality parameters to moisture deficit. Crop Sci, 2001,41:327-335.
[22] 王立秋, 靳占忠, 曹敬山, 王占宇 . 水肥因子对小麦籽粒及面包烘烤品质的影响. 中国农业科学, 1997,30(3):67-73.
Wang L Q, Jin Z Z, Cao J S, Wang Z Y . Effect of water and fertilizer factors on grain quality and breeding baking quality of wheat. Sci Agric Sin, 1997,30(3):67-73 (in China with English abstract).
[23] Zhou J X, Liu D M, Deng X, Zhen S M, Wang Z M, Yan Y M . Effects of water deficit on bread making quality and storage protein composition in bread wheat (Triticum aestivum L.). J Sci Food Agric, 2018,11:4357-4368.
[24] Farrand E A . Potential milling and baking value of home grown wheat. J Natl Inst Agric Bot, 1972,12:464-470.
[25] 马冬云, 朱云集, 郭天财, 王晨阳 . 基因型和环境及其互作对河南省小麦品质的影响及品质稳定性分析. 麦类作物学报, 2002,22(4):13-18.
doi: 10.7606/j.issn.1009-1041.2002.04.096
Ma D Y, Zhu Y J, Guo T C, Wang C Y . Effect of genotype, environment and G×E interaction on wheat quality of Henan province and the stability analysis. J Trit Crops, 2002,22(4):13-18 (in Chinese with English abstract).
doi: 10.7606/j.issn.1009-1041.2002.04.096
[26] Campbell C A, Davidson H R, Winkleman G E . Effect of nitrogen, temperature, growth stage and duration of moisture stress on yield components and protein content of mantou spring wheat. Can J Plant Sci, 1981,61:549-563.
[27] Weegels P L, Hamer R J, Schofield J D . RP-HPLC and capillary electrophoresis of subunits from glutenin isolated by SDS and Osborne fraction. J Cereal Sci, 1995,22:211-224.
[28] Don C, Lichtendonk W J, Plijter J J, Hamera R J . Understanding the link between GMP and dough: from glutenin particles in flour towards developed dough. J Cereal Sci, 2003,38:157-165.
[29] 赵琦, 李勇, 李文阳, 王平, 陈晓光, 尹燕枰, 王振林 . 水氮互作对不同基因型小麦HMW-GS含量及GMP粒度分布的影响. 中国农业科学, 2011,44:1571-1584.
Zhao Q, Li Y, Li W Y, Wang P, Chen X G, Yin Y P, Wang Z L . Effects of water-nitrogen interaction on content of high molecular weight glutenin subunits and GMP size distribution in wheat cultivars of different genotypes. Sci Agric Sin, 2011,44:1571-1584 (in Chinese with English abstract).
[30] 岳鸿伟, 谭维娜, 姜东, 戴廷波, 荆奇, 曹卫星 . 花后干旱和渍水对小麦籽粒HMW-GS及GMP含量的影响. 作物学报, 2007,33:1845-1849.
Yue H W, Tan W N, Jiang D, Dai T B, Jing Q, Cao W X . Effect of post anthesis drought and waterlogging on contents of high molecular weight glutenin subunits and glutenin macropolymer in wheat grain. Acta Agron Sin, 2007,33:1845-1849 (in Chinese with English abstract).
[31] 郝黎仁, 樊元, 郝哲欧 . SPSS实用统计分析. 北京: 中国水利水电出版社, 2002.
Hao L R, Fan Y, Hao Z O. The Practical Statistical Analysis of SPSS. Beijing: China Water & Power Press, 2002 (in Chinese).
[32] Bronneke V, Zimmermann G, Killermann B . Effect of high molecular weight glutenins and D-zone gliadins on bread making quality in German wheat varieties. Cereal Res Commun, 2000,28:187-194.
[33] Grama A, Wright D S C, Cressey P J . Hexaploid wild emmer wheat derivatives grown under New Zealand condition: I. Relationship between protein composition and quality parameters. New Zeal J Agric Res, 1987,30(1):35-43.
[34] 马传喜, 徐风, 谭蕴之 . 在一对面包小麦杂交后代中Glu-B1控制的麦谷蛋白亚基17+18对烘烤品质的影响. 作物学报, 1995,21:90-94.
Ma C X, Xu F, Tan Y Z . Effects of high molecular weight subunits 17+18 of glutenin on bread-making quality in progenies from a bread wheat cross. Acta Agron Sin, 1995,21:90-94 (in Chinese with English abstract).
[35] Redaelli R, Pogna N E, Ng P K W . Effects of prolamins encoded by chromosomes 1B and 1D on the rheological properties of dough in near-isogenic lines of bread wheat. Cereal Chem, 1997,74:102-107.
[36] 张学勇, 董玉琛, 游光侠, 王兰芬, 李培, 贾继增 . 中国大面积推广品种及骨干亲本的高分子量麦谷蛋白亚基组成分析. 中国农业科学, 2001,34:355-362.
Zhang X Y, Dong Y C, You G X, Wang L F, Li P, Jia J Z . Allelic variation of Glu-A1, Glu-B1 and Glu-D1 in Chinese commercial wheat varieties in the last 50 years. Sci Agric Sin, 2001,34:355-362 (in Chinese with English abstract).
[37] 王步军 . 2017年中国小麦质量报告. 北京: 中国农业科学技术出版社, 2018.
Wang B J. The 2017 Report of China Wheat Quality. Beijing: China Agricultural Science and Technology Press, 2018 (in Chinese).
[38] 李硕碧, 高翔, 单明珠, 李必运 . 小麦高分子量谷蛋白亚基与加工品质. 北京: 中国农业出版社, 2001.
Li S B, Gao X, Shan M Z, Li B Y. The High Molecular Weight Glutenin Subunits and Industrial Quality of Wheat. Beijing: China Agriculture Press, 2001 (in Chinese).
[1] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[2] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
[3] 史梦霞, 张佳笑, 石晓宇, 褚庆全, 陈阜, 雷永登. 近20年河北省几种高耗水作物的水分利用效率分析[J]. 作物学报, 2021, 47(12): 2450-2458.
[4] 郭建斌,黄莉,刘念,罗怀勇,周小静,陈伟刚,吴贝,淮东欣,任小平,姜慧芳. 利用RIL群体创制低山嵛酸花生新种质[J]. 作物学报, 2020, 46(5): 661-667.
[5] 杨晓梦, 李霞, 普晓英, 杜娟, Muhammad Kazim Ali, 杨加珍, 曾亚文, 杨涛. 大麦重组自交系群体籽粒总花色苷含量和千粒重QTL定位[J]. 作物学报, 2020, 46(01): 52-61.
[6] 姜丽娜,马静丽,方保停,马建辉,李春喜,王志敏,蒿宝珍. 限水减氮对豫北冬小麦产量和植株不同层次器官干物质运转的影响[J]. 作物学报, 2019, 45(6): 957-966.
[7] 鱼海跃,闫岩,张钰石,张明才,李召虎. 不同灌溉条件下冠菌素对大豆光合特性与产量的调控效应[J]. 作物学报, 2019, 45(12): 1851-1858.
[8] 刘江宁,王楚鑫,张宏根,缪一栩,高海林,许作鹏,刘巧泉,汤述翥. 水稻黑条矮缩病抗性QTL定位[J]. 作物学报, 2019, 45(11): 1664-1671.
[9] 张经廷,吕丽华,董志强,张丽华,姚艳荣,申海平,姚海坡,贾秀领. 华北冬小麦开花期补灌的增产效应及其影响因素[J]. 作物学报, 2019, 45(11): 1746-1755.
[10] 石洪亮,严青青,张巨松,李春艳,窦海涛. 氮肥对非充分灌溉下棉花花铃期光合特性及产量的补偿作用[J]. 作物学报, 2018, 44(8): 1196-1204.
[11] 赵德辉, 张勇, 王德森, 黄玲, 陈新民, 肖永贵, 阎俊, 张艳, 何中虎. 北方冬麦区新育成优质品种的面包和馒头品质性状[J]. 作物学报, 2018, 44(05): 697-705.
[12] 徐云姬, 许阳东, 李银银, 钱希旸, 王志琴, 杨建昌. 干湿交替灌溉对水稻花后同化物转运和籽粒灌浆的影响[J]. 作物学报, 2018, 44(04): 554-568.
[13] 袁莉民, 展明飞, 章星传, 王志琴, 杨建昌. 水稻穗上不同粒位籽粒胚乳结构及其结实期灌溉方式对它的调控作用[J]. 作物学报, 2018, 44(02): 245-259.
[14] 胡德益,蔡露,陈光登,张锡洲,刘春吉. 不同磷水平下大麦分蘖期磷效率相关性状QTL定位分析[J]. 作物学报, 2017, 43(12): 1746-1759.
[15] 黄明,王朝辉,罗来超,王森,包明,何刚,曹寒冰,刁超朋,李莎莎. 膜侧施肥对旱地小麦产量、籽粒蛋白质含量和水分利用效率的影响[J]. 作物学报, 2017, 43(06): 899-911.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!