欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (6): 1480-1495.doi: 10.3724/SP.J.1006.2023.24113

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

谷子MAPK家族成员的鉴定及其对生物胁迫的响应分析

刘佳1,**(), 邹晓悦1,2,**(), 马继芳1, 王永芳1, 董志平1, 李志勇1,*(), 白辉1,*()   

  1. 1河北省农林科学院谷子研究所/农业农村部特色杂粮遗传改良与利用重点实验室(省部共建)/河北省杂粮研究实验室, 河北石家庄 050035
    2河北师范大学生命科学学院, 河北石家庄 050024
  • 收稿日期:2022-05-05 接受日期:2022-07-21 出版日期:2023-06-12 网络出版日期:2022-08-09
  • 通讯作者: *李志勇, E-mail: lizhiyongds@126.com;白辉, E-mail: baihui_mbb@126.com
  • 作者简介:刘佳, E-mail: 15031210252@126.com;
    邹晓悦, E-mail: z_xiaoyue@126.com第一联系人:**同等贡献
  • 基金资助:
    国家重点研发计划项目(2018YFD1000703);国家重点研发计划项目(2018YFD1000700);国家自然科学基金项目(31872880);河北省农林科学院基本科研业务费包干制项目(HBNKY-BGZ-02);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-06-14.5-A25);河北省重点研发计划项目(21326338D)

Genome-wide identification and characterization of MAPK genes and their response to biotic stresses in foxtail millet

LIU Jia1,**(), ZOU Xiao-Yue1,2,**(), MA Ji-Fang1, WANG Yong-Fang1, DONG Zhi-Ping1, LI Zhi-Yong1,*(), BAI Hui1,*()   

  1. 1Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang 050035, Hebei, China
    2College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
  • Received:2022-05-05 Accepted:2022-07-21 Published:2023-06-12 Published online:2022-08-09
  • Contact: *E-mail: lizhiyongds@126.com;E-mail: baihui_mbb@126.com
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    National Key Research & Development Program of China(2018YFD1000703);National Key Research & Development Program of China(2018YFD1000700);Natural Science Foundation of China(31872880);HAAFS Basic Science and Technology Contract Project(HBNKY-BGZ-02);China Agriculture Research System of MOF and MARA(CARS-06-14.5-A25);Hebei Key Research & Development Program(21326338D)

摘要:

MAPK在植物的生长发育调节、生物和非生物胁迫反应、激素信号转导中具有重要作用。系统分析谷子SiMPKs基因家族成员全基因组分布、结构、进化及其响应不同胁迫的表达特性, 对于阐明其生物学功能具有重要意义。本研究利用谷子和水稻MAPK蛋白保守结构域及特异TXY基序的氨基酸序列在全基因组水平鉴定了谷子SiMPKs家族成员, 分析其蛋白质理化性质、系统进化、染色体定位、基因结构、蛋白质保守基序、启动子顺式作用元件及共线性等。利用荧光定量PCR技术, 分析了谷子SiMPKs在不同组织部位和谷锈菌、玉米螟病虫害生物胁迫以及不同激素处理下的表达模式。结果显示, 共鉴定到15个谷子SiMPK成员, 其编码的蛋白质含有220~611个氨基酸, 相对分子量范围25.77~69.63 kD, 等电点范围5.46~9.34。系统进化分析表明, SiMPK基因分为4组, A、B、C组包含TEY基序, D组包含TDY基序。SiMPK基因分布在1号、3号、4号、5号、8号和9号染色体上, 含有3~11个外显子, 所有SiMPK蛋白均含有motif 1与motif 2。上游2000 bp启动子区域预测到多个与胁迫、激素和植物生长发育等相关的顺式作用元件。qRT-PCR结果表明, 大部分基因具有明显的组织表达特异性; 除SiMPK21-2SiMPK6外, 其余成员对谷锈菌侵染、玉米螟取食、SA和MeJA激素处理等1~3种胁迫具有明显响应。以上结果为进一步研究SiMPK基因在谷子应对病虫害生物胁迫中的功能奠定了理论基础。

关键词: 谷子, MAPK家族, 谷锈菌, 玉米螟, 表达分析

Abstract:

MAPK plays an important role in plant growth and development regulation, biotic and abiotic stress responses, and hormone signal transduction. In order to elucidate the biological function of the SiMPK genes in foxtail millet, we identified the SiMPK family members in the genome and analyzed the distribution, structure, evolution, and its expression characteristics in response to different stresses. In this study, the SiMPK gene family members were identified in the genome-wide level using the amino acid sequences of conserved domains and specific TXY motifs of MAPK proteins between foxtail millet and rice. The protein physicochemical property, phylogenetic evolution, chromosome distribution, gene structure, protein conserved motif, promoter cis-acting regulatory elements, and collinearity were analyzed. The relative expression patterns of SiMPK genes in the different tissue, under the biotic stresses of Uromyces setariae-italicae Yoshino and Ostrinia furnacalis and with different hormone treatments were analyzed by qRT-PCR. The results showed that a total of 15 SiMPK genes were identified, and the encoded proteins contained 220-611 amino acids, the relative molecular weight ranged from 25.77 kD to 69.63 kD, and the isoelectric point ranged from 5.46 to 9.34. Phylogenetic analysis showed that SiMPK genes were divided into four groups. Group A, B, and C contained TEY motifs, and group D contained TDY motifs. SiMPK genes were distributed on chromosomes 1, 3, 4, 5, 8, and 9, and contained 3-11 exons. All SiMPK proteins contained motif 1 and motif 2. A number of cis-acting elements related to stress, hormones and plant growth and development were predicted in the promoter regions of the SiMPK genes. Most genes had obvious tissue expression specificity. Except for SiMPK21-2 and SiMPK6, the other members had obvious responses to 1 to 3 kinds of stresses, such as Uromyces setariae-italicae Yoshino infection, Ostrinia furnacalis feeding, and SA and MeJA treatments. The results laid a theoretical foundation for further research on the function of SiMPK genes in the biotic stresses of disease and pest in foxtail millet.

Key words: foxtail millet (Setaria italica), MAPK gene family, Uromyces setariae-italicae Yoshino, Ostrinia furnacalis, relative expression analysis

表1

引物序列表"

引物
Primer
正向序列
Forward sequence (5'-3')
反向序列
Reverse sequence (5'-3')
SiActin_F CGCATATGTGGCTCTTGACT GGGCACCTAAATCTCTCTGC
SiMPK3 AGCGACATGATGACGGAGTA TAGTCGGTGGAGTTGAGCAG
SiMPK4-1 GTGCAGTCGATTTGTTGGAG ATGCAGAGCCTCATCAACTG
SiMPK4-2 CAGCACGACCAGAAGAAGAA TATGGGTGTCCAGAGCAGAG
SiMPK4-3 AATCAGAGATGATGCACGGA TAACGCTCTGCAGAACCAAC
SiMPK6 ATGAGCCTGTCTGCTCAATG TTGTTCTTCGGACAGTGCAT
SiMPK7 TGTACCCACAAGCACATCCT CAGAGCCTCGGTGACACTAA
SiMPK14 TGTGCCTATCAAGCCCATAG CTTAGTGCATCCACACGGTT
SiMPK17-1 ACGGATTATGTGGCAACAAG TCAGCAAATATGCACCCAAT
SiMPK17-2 CTTCCAGATGCGCTATCAAA CACCCTGGGTACCTTGTCTAA
SiMPK20-1 TTGCAGGCTGAAAGGTACAC TCATGTCCAGAGCAACATCA
SiMPK20-2 TTCGGTGGGAGATCTGGTG TCTGTCGAGTGTGCAGATCA
SiMPK20-4 CCAAGTCATCAAGGCAAATG TTCTTTGGCTTCAAATCACG
SiMPK20-5 GTCGCCGATCAACACATTAC CCGGTCTTTCTCAAGCTCTC
SiMPK21-1 GAAAGCATCAGTGCTTCCAA AGCGATCTTCTTCGACACCT
SiMPK21-2 GACCCAATGGCTCTTCATTT GTGTTATAGGCTCGCGTTCA

表2

谷子SiMPK家族成员特征"

基因名称
Gene name
基因编号
Gene ID
氨基酸数目
Number of amino acids (aa)
分子量
Molecular weight (kD)
等电点
Isoelectric point (pI)
亚细胞定位
Subcellular
location
信号肽
Signal
peptide
SiMPK3 Seita.9G444100 375 42.43 5.46 C 无 No
SiMPK4-1 Seita.9G344000 372 42.29 5.96 C 无 No
SiMPK4-2 Seita.3G058000 557 63.46 8.83 N 无 No
SiMPK4-3 Seita.8G104500 535 61.17 8.79 C 无 No
SiMPK6 Seita.4G069900 347 39.13 5.71 C 无 No
SiMPK7 Seita.4G243400 369 42.34 6.63 N 无 No
SiMPK14 Seita.1G089400 370 42.41 6.53 N 无 No
SiMPK17-1 Seita.4G273900 574 65.25 6.64 N 无 No
SiMPK17-2 Seita.1G095300 506 57.85 7.67 N 无 No
SiMPK20-1 Seita.5G235700 611 69.63 9.14 N 无 No
SiMPK20-2 Seita.3G131800 220 25.77 9.17 C 无 No
SiMPK20-4 Seita.5G261300 589 67.37 9.34 N 无 No
SiMPK20-5 Seita.3G145200 591 67.26 9.20 N 无 No
SiMPK21-1 Seita.3G136100 590 66.86 6.74 C 无 No
SiMPK21-2 Seita.5G241700 508 57.77 7.64 C 无 No

图1

谷子、水稻和拟南芥中MAPK基因家族系统发育进化树 Si: 谷子; Os: 水稻; At: 拟南芥。"

图2

SiMPK基因在谷子染色体上的分布"

图3

谷子SiMPK家族成员保守基序和基因结构 Motif: 保守基序; UTR: 非翻译区; CDS: 编码区序列。"

图4

谷子MAPK保守基序的序列Logo"

图5

谷子15个SiMPK基因启动子中顺式作用元件"

图6

谷子MAPK基因家族共线性分析"

图7

谷子与水稻MAPK基因的共线性分析"

图8

SiMPK家族基因在谷子不同组织部位中的表达分析 SD: 苗期; BT: 孕穗期; shoot: 苗期地上部; root: 苗期地下部或孕穗期根。不同字母表示差异水平显著(P < 0.05)。"

图9

谷子SiMPK基因在谷锈菌侵染的谷子叶片中的表达分析 * 代表基因在同一时间点的抗病反应与感病反应中的相对表达量在0.05概率水平差异显著。"

图10

谷子SiMPK基因在玉米螟取食的谷子叶片中的表达分析 * 代表基因在玉米螟取食后不同时间点的叶片中的相对表达量与0 h相比在0.05概率水平差异显著。** 代表在0.01概率水平差异显著, *** 代表在0.001概率水平差异显著。"

图11

SiMPK基因在激素SA和MeJA处理的谷子叶片中的表达分析 * 代表基因在SA/JA处理谷子叶片后不同时间点的相对表达量与0 h相比在0.05概率水平差异显著, ** 代表在0.01概率水平差异显著, *** 代表在0.001概率水平差异显著。"

[1] Zhang M, Su J, Zhang Y, Xu J, Zhang S. Conveying endogenous and exogenous signals: MAPK cascades in plant growth and defense. Curr Opin Plant Biol, 2018, 45: 1-10.
doi: S1369-5266(17)30213-3 pmid: 29753266
[2] Komis G, Šamajová O, Ovečka M, Šamaj J. Cell and developmental biology of plant mitogen-activated protein kinases. Annu Rev Plant Biol, 2018, 69: 237-265.
doi: 10.1146/annurev-arplant-042817-040314 pmid: 29489398
[3] Chen J, Wang L, Yuan M. Update on the roles of rice MAPK cascades. Int J Mol Sci, 2021, 2: 1679.
[4] Rodriguez M C, Petersen M, Mundy J. Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol, 2010, 61: 621-649.
doi: 10.1146/annurev-arplant-042809-112252 pmid: 20441529
[5] Wang G, Wang T, Jia Z H, Xuan J P, Pan D L, Guo Z R, Zhang J Y. Genome-wide bioinformatics analysis of MAPK gene family in Kiwifruit (Actinidia chinensis). Int J Mol Sci, 2018, 19: 2510.
doi: 10.3390/ijms19092510
[6] MAPK Group. Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci, 2002, 7: 301-308.
doi: 10.1016/s1360-1385(02)02302-6 pmid: 12119167
[7] Jonak C, Okrész L, Bögre L, Hirt H. Complexity, cross talk and integration of plant MAP kinase signaling. Curr Opin Plant Biol, 2002, 5: 415-424.
doi: 10.1016/S1369-5266(02)00285-6
[8] Colcombet J, Hirt H. Arabidopsis MAPKs: a complex signaling network involved in multiple biological processes. Biochem J, 2008, 413: 217-226.
doi: 10.1042/BJ20080625 pmid: 18570633
[9] Reyna N S, Yang Y. Molecular analysis of the rice MAP kinase gene family in relation to Magnaporthe grisea infection. Mol Plant Microbe Interact, 2006, 19: 530-540.
doi: 10.1094/MPMI-19-0530
[10] Chen L, Hu W, Tan S, Wang M, Ma Z, Zhou S, Deng X, Zhang Y, Huang C, Yang G, He G. Genome-wide identification and analysis of MAPK and MAPK gene families in Brachypodium distachyon. PLoS One, 2012, 7: e46744.
doi: 10.1371/journal.pone.0046744
[11] Liu Y K, Zhang D, Wang L, Li D Q. Genome-wide analysis of mitogen-activated protein kinase gene family in maize. Plant Mol Biol Rep, 2013, 316: 1446-1460.
[12] Cui L, Yang G, Yan J, Pan Y, Nie X. Genome-wide identification, expression profiles and regulatory network of MAPK cascade gene family in barley. BMC Genomics, 2019, 20: 750.
doi: 10.1186/s12864-019-6144-9 pmid: 31623562
[13] Zhan H, Yue H, Zhao X, Wang M, Song W, Nie X. Genome-wide identification and analysis of MAPK and MAPKK gene families in bread wheat (Triticum aestivum L.). Genes (Basel), 2017, 8: 284.
doi: 10.3390/genes8100284
[14] Pedley K F, Martin G B. Role of mitogen-activated protein kinases in plant immunity. Curr Opin Plant Biol, 2005, 8: 541-547.
pmid: 16043387
[15] Xu J, Zhang S. Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends Plant Sci, 2015, 20: 56-64.
doi: 10.1016/j.tplants.2014.10.001 pmid: 25457109
[16] Meng X, Zhang S. MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol, 2013, 51: 245-266.
doi: 10.1146/annurev-phyto-082712-102314 pmid: 23663002
[17] Bush S M, Krysan P J. Mutational evidence that the Arabidopsis MAP kinase MPK6 is involved in anther, inflorescence, and embryo development. J Exp Bot, 2007, 58: 2181-2191.
doi: 10.1093/jxb/erm092
[18] Liu S, Hua L, Dong S, Chen H, Zhu X, Jiang J, Zhang F, Li Y, Fang X, Chen F. OsMAPK6, a mitogen-activated protein kinase, influences rice grain size and biomass production. Plant J, 2015, 84: 672-681.
doi: 10.1111/tpj.2015.84.issue-4
[19] Liu X, Li J, Noman A, Lou Y. Silencing OsMAPK20-5has different effects on rice pests in the field. Plant Signal Behav, 2019, 14: e1640562.
[20] Xiong L, Yang Y. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell, 2003, 15: 745-759.
doi: 10.1105/tpc.008714 pmid: 12615946
[21] Hong Y, Liu Q, Cao Y, Zhang Y, Chen D, Lou X, Cheng S, Cao L. The OsMPK15negatively regulates Magnaporthe oryza and Xoo disease resistance via SA and JA signaling pathway in rice. Front Plant Sci, 2019, 10: 752.
doi: 10.3389/fpls.2019.00752
[22] Wang Q, Li J, Hu L, Zhang T, Zhang G, Lou Y. OsMPK3 positively regulates the JA signaling pathway and plant resistance to a chewing herbivore in rice. Plant Cell Rep, 2013, 32: 1075-1084.
doi: 10.1007/s00299-013-1389-2 pmid: 23344857
[23] Liu X, Li J, Xu L, Wang Q, Lou Y. Expressing OsMPK4 impairs plant growth but enhances the resistance of rice to the striped stem borer Chilo suppressalis. Int J Mol Sci, 2018, 19: 1182.
doi: 10.3390/ijms19041182
[24] 贾冠清, 刁现民. 中国谷子种业创新现状与未来展望. 中国农业科学, 2022, 55: 653-665.
doi: 10.3864/j.issn.0578-1752.2022.04.003
Jia G Q, Diao X M. Current status and perspectives of innovation studies related to foxtail millet seed industry in China. Sci Agric Sin, 2022, 55: 653-665. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2022.04.003
[25] 刁现民. 禾谷类杂粮作物耐逆和栽培技术研究新进展. 中国农业科学, 2019, 52: 3943-3949.
doi: 10.3864/j.issn.0578-1752.2019.22.001
Diao X M. Progresses in stress tolerance and field cultivation studies of orphan cereals in China. Sci Agric Sin, 2019, 52: 3943-3949. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2019.22.001
[26] 李顺国, 刘斐, 刘猛, 程汝宏, 夏恩君, 刁现民. 中国谷子产业和种业发展现状与未来展望. 中国农业科学, 2021, 54: 459-470.
doi: 10.3864/j.issn.0578-1752.2021.03.001
Li S G, Liu F, Liu M, Cheng R H, Xia E J, Diao X M. Current status and future prospective of foxtail millet production and seed industry in China. Sci Agric Sin, 2021, 54: 459-470. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2021.03.001
[27] 赵立强, 潘文嘉, 马继芳, 瓮巧云, 董立, 全建章, 邢继红, 董志平, 董金皋. 一个谷子新抗锈基因的AFLP标记. 中国农业科学, 2010, 43: 4349-4355.
doi: 10.3864/j.issn.0578-1752.2010.21.003
Zhao L Q, Pan W J, Ma J F, Weng Q Y, Dong L, Quan J Z, Xing J H, Dong Z P, Dong J G. Identification of AFLP markers linked to a novel rust resistance gene in foxtail millet. Sci Agric Sin, 2010, 43: 4349-4355. (in Chinese with English abstract)
[28] 董立, 马继芳, 董志平. 谷子病虫草害防治原色生态图谱. 北京: 中国农业出版社, 2013. pp 3-6.
Dong L, Ma J F, Dong Z P. Foxtail Millet Disease Pest and Weed Prevention Atlas. Beijing: China Agriculture Press, 2013. pp 3-6. (in Chinese)
[29] 梁克恭, 刘维, 王雅儒, 冯凌云, 崔光先, 宋燕春, 武小菲, 郑桂春, 董志平. 粟品种资源抗粟锈病鉴定研究. 沈阳农业大学学报, 1992, 23(1): 13-18.
Liang K G, Liu W, Wang Y R, Feng L Y, Cui G X, Song Y C, Wu X F, Zheng G C, Dong Z P. Rust resistance evaluation for millet varieties. J Shenyang Agric Univ, 1992, 23(1): 13-18. (in Chinese with English abstract)
[30] 白辉, 宋振君, 王永芳, 全建章, 马继芳, 刘磊, 李志勇, 董志平. 谷子抗锈病反应相关MYB转录因子的鉴定与表达. 中国农业科学, 2019, 52: 4016-4027.
doi: 10.3864/j.issn.0578-1752.2019.22.007
Bai H, Song Z J, Wang Y F, Quan J Z, Ma J F, Liu L, Li Z Y, Dong Z P. Identification and expression analysis of MYB transcription factors related to rust resistance in foxtail millet. Sci Agric Sin, 2019, 52: 4016-4027. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2019.22.007
[31] Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[32] Mohanta T K, Arora P K, Mohanta N, Parida P, Bae H. Identification of new members of the MAPK gene family in plants shows diverse conserved domains and novel activation loop variants. BMC Genomics, 2015, 16: 58.
doi: 10.1186/s12864-015-1244-7 pmid: 25888265
[33] Singh A, Nath O, Singh S, Kumar S, Singh I K. Genome-wide identification of the MAPK gene family in chickpea and expression analysis during development and stress response. Plant Gene, 2017, 13: 25-35.
doi: 10.1016/j.plgene.2017.12.001
[34] Zhou M, Zhao B, Li H, Ren W, Zhang Q, Liu Y, Zhao J. Comprehensive analysis of MAPK cascade genes in sorghum (Sorghum bicolor L.) reveals SbMPK14 as a potential target for drought sensitivity regulation. Genomics, 2022, 114: 110311.
doi: 10.1016/j.ygeno.2022.110311
[35] Yao Y, Zhao H, Sun L, Wu W, Li C, Wu Q. Genome-wide identification of MAPK gene family members in Fagopyrum tataricum and their expression during development and stress responses. BMC Genomics, 2022, 23: 96.
doi: 10.1186/s12864-022-08293-2
[36] Ali A, Chu N, Ma P, Javed T, Zaheer U, Huang M T, Fu H Y, Gao S J. Genome-wide analysis of mitogen-activated protein (MAP) kinase gene family expression in response to biotic and abiotic stresses in sugarcane. Physiol Plant, 2021, 171: 86-107.
doi: 10.1111/ppl.v171.1
[37] Zhang X, Xu X, Yu Y, Chen C, Wang J, Cai C, Guo W. Integration analysis of MKK and MAPK family members highlights potential MAPK signaling modules in cotton. Sci Rep, 2016, 6: 29781.
doi: 10.1038/srep29781 pmid: 27417377
[38] Yang Z R, Zhang H S, Li X K, Shen H M, Gao J H, Hou S Y, Zhang B, Mayes S, Bennett M, Ma J X, Wu C Y, Sui Y, Han Y H, Wang X C. A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nat Plants, 2020, 6: 1167-1178.
doi: 10.1038/s41477-020-0747-7
[39] Goyal R K, Tulpan D, Chomistek N, González-Peña Fundora D, West C, Ellis B E, Frick M, Laroche A, Foroud N A. Analysis of MAPK and MAPKK gene families in wheat and related Triticeae species. BMC Genomics, 2018, 19: 178.
doi: 10.1186/s12864-018-4545-9 pmid: 29506469
[40] Xiao X, Tang Z, Li X, Hong Y, Li B, Xiao W, Gao Z, Lin D, Li C, Luo L, Niu X, He C, Chen Y. Overexpressing OsMAPK12-1 inhibits plant growth and enhances resistance to bacterial disease in rice. Funct Plant Biol, 2017, 44: 694-704.
doi: 10.1071/FP16397
[41] Wang C, He X, Li Y, Wang L, Guo X, Guo X. The cotton MAPK kinase GhMPK20 negatively regulates resistance to Fusarium oxysporum by mediating the MKK4-MPK20-WRKY40 cascade. Mol Plant Pathol, 2018, 19: 1624-1638.
doi: 10.1111/mpp.2018.19.issue-7
[1] 万夷曼, 肖圣慧, 白依超, 范佳音, 王琰, 吴长艾. 谷子毛状根诱导方法的建立与优化[J]. 作物学报, 2023, 49(7): 1758-1768.
[2] 丁洪艳, 冯晓溪, 汪柏宇, 张积森. 甘蔗割手密种LRRII-RLK基因家族演化和表达分析[J]. 作物学报, 2023, 49(7): 1769-1784.
[3] 梅玉琴, 刘意, 王崇, 雷剑, 朱国鹏, 杨新笋. 甘薯PHB基因家族的全基因组鉴定和表达分析[J]. 作物学报, 2023, 49(6): 1715-1725.
[4] 贾玉库, 高宏欢, 冯健超, 郝紫瑞, 王晨阳, 谢迎新, 郭天财, 马冬云. 小麦G2-like转录因子家族基因鉴定与表达模式分析[J]. 作物学报, 2023, 49(5): 1410-1425.
[5] 孙全喜, 苑翠玲, 牟艺菲, 闫彩霞, 赵小波, 王娟, 王奇, 孙慧, 李春娟, 单世华. 花生SWEET基因全基因组鉴定及表达分析[J]. 作物学报, 2023, 49(4): 938-954.
[6] 齐燕妮, 李闻娟, 赵丽蓉, 李雯, 王利民, 谢亚萍, 赵玮, 党照, 张建平. 亚麻生氰糖苷合成关键酶CYP79基因家族的鉴定及表达分析[J]. 作物学报, 2023, 49(3): 687-702.
[7] 王蓉, 陈小红, 王倩, 刘少雄, 陆平, 刁现民, 刘敏轩, 王瑞云. 中国谷子名米品种遗传多样性与亲缘关系研究[J]. 作物学报, 2022, 48(8): 1914-1925.
[8] 王沙沙, 黄超, 汪庆昌, 晁岳恩, 陈锋, 孙建国, 宋晓. 小麦籽粒大小相关基因TaGS2克隆及功能分析[J]. 作物学报, 2022, 48(8): 1926-1937.
[9] 韩尚玲, 霍轶琼, 李辉, 韩华蕊, 侯思宇, 孙朝霞, 韩渊怀, 李红英. 基于WGCNA发掘谷子穗部类黄酮合成途径调控关键基因[J]. 作物学报, 2022, 48(7): 1645-1657.
[10] 陈璐, 周淑倩, 李永新, 陈刚, 陆国权, 杨虎清. 甘薯解偶联蛋白基因家族鉴定与表达分析[J]. 作物学报, 2022, 48(7): 1683-1696.
[11] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[12] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[13] 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885.
[14] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[15] 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[3] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[4] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[5] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[6] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[7] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[8] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[9] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .